Медицинский портал. Щитовидная железа, Рак, диагностика

Лучевая терапия. Методы лучеврй терапии Поглощенная доза и энергия потока излучения

Лучевая терапия – это метод лечения опухолевых заболеваний с помощью ионизирующего облучения.

Такое излучение создается с помощью специальных аппаратов, в которых используется радиоактивный источник. Суть метода заключается в том, что при облучении в активно делящихся клетках накапливается множество мутаций, которые приводят их к гибели. Опухолевые клетки размножаются гораздо быстрее чем здоровые, поэтому они более чувствительны к воздействию облучения.

Существует несколько вариантов лучевой терапии (радиотерапии ). Прежде всего, они делятся по виду излучения — рентгентерапия и гамматерапия . По расположению источника относительно тела человека существует дистанционное облучение (на расстоянии), контактное, внутриполостное. Излучение может подводиться непосредственно к опухоли с помощью тонких игл (внутритканевое облучение). Лучевая терапия это самостоятельная медицинская специальность, которой занимаются лучевые терапевты. При необходимости проведения данного метода лечения врач онколог направляет пациента на консультацию к лучевому терапевту, который определяет вид терапии, объем лучевой нагрузки и длительность курса.

Как проводится ЛТ?

Основной задачей при проведении лучевой терапии является оказать максимальное воздействие на опухоль при минимальном воздействии на здоровые ткани. Для этого при планировании терапии врач должен с точностью определить местонахождение опухолевого процесса, чтобы направить луч в правильном направлении и на нужную глубину. Область воздействия называется полем облучения. При дистанционном облучении на кожу наносится метка, обозначающая область для воздействия. Окружающие области и другие части тела будут защищены свинцовыми экранами. Сеанс облучения длится несколько минут, а количество сеансов определяется общей дозой облучения, которая была назначена. Доза облучения зависит от размера опухоли и типа опухолевых клеток. Во время сеанса пациент не испытывает боли и каких-либо других ощущений. Облучение проходит в специально оборудованном помещении. Во время процедуры пациент находится там один. Врач наблюдает за происходящим из соседнего кабинета через специальное стекло или с помощью видеокамер.

В зависимости от вида злокачественной опухоли лучевая терапия может быть самостоятельным методом лечения или применяться в комбинации с хирургическим методом или химиотерапией . Лучевая терапия носит местный характер и может применяться для воздействия на отдельные участки тела. Во многих случаях она способствует значительному сокращению размеров опухоли или полному излечению.

Какие бывают осложнения при ЛТ?

Побочные эффекты могут проявляться только в облучаемой области или носить общий характер. Перед началом курса лечения спросите у вашего врача, каких осложнений можно ожидать и есть ли способы их избежать.

Побочные эффекты зависят от области, которая подвергалась воздействию. При дистанционном облучении часто возникает сухость кожи, шелушение, зуд, краснота, появления мелких пузырьков. Для предупреждения и лечения такой реакции используются смягчающие кремы и лосьоны. Частым осложнением лучевой терапии является слабость и утомляемость. Справиться с этим вам поможет правильный режим сна, дневной отдых, соблюдение диеты с достаточным количеством калорий, прогулки на свежем воздухе.

Обо всех проблемах следует немедленно сообщать врачу, ведь большинство из них можно ослабить или устранить. Помните, что побочные эффекты хотя и неприятны, но по большей части временны и после лечения постепенно пройдут.

Чаще при проведении лучевой терапии встречаются местные лучевые реакции .

  • При дистанционной лучевой терапии в проекции поля облучения часто возникает сухость кожи, шелушение, зуд, краснота, появление мелких пузырьков. Для предупреждения и лечения такой реакции используются мази (по рекомендации врача-радиолога), аэрозоль «Пантенол», кремы и лосьоны для ухода за детской кожей. Кожа после облучения теряет устойчивость к механическим воздействиям и требует к себе бережного и щадящего отношения.
  • При лучевой терапии опухолей головы и шеи может отмечаться выпадение волос, нарушение слуха, ощущение тяжести в голове.
  • При облучении опухолей лица и шеи могут отмечаться сухость во рту, першение в горле, боли при глотании, осиплость голоса, снижение и потеря аппетита. В этот период полезна пища, приготовленная на пару, а также вареная, протертая или измельченная. Питаться нужно часто небольшими порциями. Рекомендуется употреблять больше жидкости (кисели, фруктовые компоты, отвар шиповника, некислый клюквенный морс). Для уменьшения сухости и першения в горле используется отвар ромашки, календулы, мяты. Рекомендуется закапывать в нос масло облепихи на ночь, а днем принимать натощак несколько ложек растительного масла. Зубы следует чистить мягкой зубной щеткой.
  • При облучении органов грудной полости могут возникать боли и затруднение при глотании, сухой кашель, одышка, болезненность мышц.
  • При облучении молочной железы могут отмечаться болезненность мышц, припухлость и болезненность молочной железы, воспалительная реакция кожи в области облучения, иногда кашель, воспалительные изменения в горле. За кожей необходимо ухаживать по вышеописанной методике.
  • При облучении органов брюшной полости могут возникнуть потеря аппетита, снижение веса, тошнота и рвота, жидкий стул, боли. При облучении органов малого таза побочными эффектами являются тошнота, потеря аппетита, жидкий стул, нарушения мочеиспускания, болезненность в прямой кишке, у женщин – сухость влагалища и выделения из него. Для своевременного устранения этих явлений лучше употреблять диетическое питание. Кратность приемов пищи следует увеличить. Пища должна быть отварной или приготовленной на пару. Не рекомендуются острые, копченые, соленые блюда. При вздутии живота следует отказаться от молочных продуктов, рекомендуются протертые каши, супы, кисели, паровые блюда, пшеничный хлеб. Потребление сахара следует ограничить. Сливочное масло рекомендуется класть в готовые блюда. Возможно применение препаратов, нормализующих микрофлору кишечника.
  • При проведении лучевой терапии пациентам следует носить свободную одежду, которая не стесняет место, где проводится облучение, не натирает кожу. Нижнее белье должно быть изготовлено из льняной или хлопчатобумажной ткани. Для проведения гигиенических процедур следует использовать теплую воду и нещелочное (детское) мыло.

В большинстве случаев все вышеуказанные изменения преходящие, при адекватной и своевременной коррекции имеют обратимый характер и не являются причиной прекращения курса лучевой терапии. Необходимо тщательное выполнение всех рекомендаций врача-радиолога в процессе лечения и после его окончания. Помните, что лучше предупредить осложнение, чем его лечить.

по материалам журнала «Вместе против рака»

Что нужно делать, чтобы уменьшить побочные эффекты ЛТ?

Организм каждого пациента реагирует на лучевую терапию по-разному. Именно поэтому врач при составлении плана лучевого лечения учитывает особенности именно вашего организма и особенности вашего заболевания. Кроме того, он даст советы, как вы должны вести себя дома, учитывая специфику вашего лечения, чтобы уменьшить или предотвратить побочные эффекты.

Почти все больные, получающие лучевую терапию по поводу опухолевого заболевания, должны сами проявлять определенную заботу о себе, чтобы способствовать успешному лечению и улучшить свое состояние. Некоторые ведущие принципы для этого приведены ниже:

  • Используйте больше времени для отдыха. Спать нужно столько, сколько вам хочется. Ваш организм расходует много дополнительной энергии во время лечения, и вы можете чувствовать повышенную утомляемость. Иногда общая слабость может продолжаться в течение еще 4 — 6 недель после окончания лечения.
  • Необходимо хорошо питаться. Нужно иметь сбалансированную диету, чтобы предотвратить потерю веса.
  • Избегайте носить тесную одежду, имеющую тугие воротники или пояса в области облучения. Лучше всего носить старые костюмы, в которых вы чувствуете себя удобно и комфортно, которые вы можете стирать или выбросить, если они окажутся запачканными маркерной краской.
  • Непременно сообщите вашему врачу обо всех лекарствах, которые вы принимали. Если вы принимали или принимаете какое-либо лекарство, даже аспирин, ваш врач должен знать об этом еще до начала лечения.
  • Задавайте своему врачу, лучевому терапевту, любые интересующие вас вопросы. Только он может должным образом дать советы относительно вашего лучевого лечения, побочных эффектов, домашнего наблюдения и других медицинских мероприятий.

Дополнительный уход за кожей в области облучения :

  • Не используйте какого-либо мыла, лосьонов, дезодорантов, лекарств, духов, косметики, присыпок или талька, а также других веществ на область облучения, не посоветовавшись с вашим врачом.
  • В области облучения одежда должна быть из неплотной просторной хлопковой ткани.
  • Не следует крахмалить одежду.
  • Не растирайте и не соскребайте кожу в области облучения.
  • Не используйте лейкопластырь в области облучения. Если необходима перевязка, можно использовать лейкопластырь с порами за пределами области облучения или бинт.
  • Не следует нагревать или охлаждать (грелка, лед и т.п.) область облучения. Даже горячая вода может причинить вред вашей коже. Для купания и умывания можно использовать только умеренно теплую воду, особенно в области облучения.
  • Для бритья, если эта область попадает в поле облучения, лучше использовать электробритву, предварительно посоветовавшись с вашим врачом. Не пользуйтесь лосьонами для бритья или средствами для удаления волос.
  • Защищайте кожу от солнечных лучей. Перед выходом на улицу наденьте головной убор и свободную одежду, чтобы они закрывали облучаемые участки кожи. Посоветуйтесь с вашим врачом относительно использования кремов против загара. Иногда есть смысл в их использовании, если вы легко получаете ожоги на солнце и ваша кожа слишком нежная. Защищать кожу от чрезмерного воздействия солнечных лучей необходимо, по крайней мере, в течение одного года после окончания лучевой терапии.

Какова продолжительность ЛТ?

Длительность курса лучевой терапии зависит от особенностей заболевания, дозы и применяемого метода облучения. Курс гамма терапии в основном занимает от 6 до 8 недель (30 — 40 сеансов). В большинстве случаев лучевая терапия хорошо переносится пациентом, и госпитализация не требуется. При определенных показаниях лучевая терапия проводится в условиях стационара.

Сделает ли лучевая терапия меня радиоактивным?

Нет, пациент, проходящий курс лучевого лечения, безопасен для окружающих и сам не является источником излучения. Исключение составляют только методы брахитерапии, когда источник излучения имплантируется непосредственно в опухоль (например, такая методика распространена при лечении рака простаты). Однако и в этом случае облучение не распространяется на расстояние, превышающее 1 см. Рекоммендуется только избегать интимных контактов с беременными женщинами и не сажать детей на колени. Более детальную информацию Вы получите у лечащего врача.

При системной ЛТ применяют радиоактивные вещества, циркулирующие по организму. Некоторые вещества могут покинуть организм со слюной, потом и мочой еще до ослабления радиоактивности, поэтому данные жидкости радиоактивны. Поэтому иногда пользуются мерами предосторожности при контакте с пациентами. Врач расскажет об этих мерах.

Когда применяется ЛТ?

ЛТ может быть использована для лечения практически любого вида опухолей, включая рак мозга, груди, шейки матки, гортани, легкого, поджелудочной железы, простаты, кожи, позвоночника, желудка, матки и сарком мягких тканей. Также облучение может быть использовано в терапии лейкемии и лимфомы. Доза облучения зависит от многого, включая тип рака и наличие близлежащих органов или тканей, которые могут быть повреждены облучением.
В некоторых случаях рака может проводиться облучение областей, где нет доказательств наличия опухоли (профилактическая ЛТ). Это делается для предотвращения развития рака.
ЛТ также применяется для устранения или ослабления симптомов (паллиативная ЛТ) – например, боли в костях.

В чем разница между наружной ЛТ, внутренней ЛТ (брахитерапией) и системной ЛТ? Когда они применяются?

Излучение может исходить из аппарата снаружи тела (наружное облучение), источник облучения можно установить в организме (внутреннее облучение) или можно использовать радиоактивные материалы, циркулирующие по организму (системная ЛТ). Тип облучения зависит от вида рака, его расположения, как глубоко необходимо облучить место, общее здоровье пациента и его анамнез, будут ли назначены пациенту другие методы лечения и другие факторы.
Большинству людей, получающих ЛТ, проводят наружную ХТ. Некоторым – наружную и внутреннюю или системную, одну за другой или одновременно.

  • Наружная ЛТ применяется для лечения большинства типов рака – мочевого пузыря, мозга, груди, шейки матки, гортани, легкого, простаты и влагалища. Также, наружная ЛТ может быть использована для устранения боли или облегчения других проблем, когда рак распространяется в другие места организма.
  • Интраоперационная ЛТ (ИЛТ) является формой наружной ЛТ, выполняющаяся во время операции. ИЛТ применяется в лечении локализованных опухолей, которых нельзя полностью удалить или которые имеют риск рецидива. После удаления опухоли большая доза облучения подается в место опухоли во время операции (соседние здоровые ткани защищаются специальным экраном). ИЛТ применяют в лечении рака щитовидной железы, толстого и тонкого кишечника, женской репродуктивной системы и поджелудочной железы. Также, в клинических исследованиях изучается применение ИЛТ в лечении некоторых типов опухолей мозга и тазовых сарком у взрослых.
  • Профилактическое облучение черепа (ПОЧ) это наружное облучение мозга в случае риска метастазирования первичного рака (например, легкого) в мозг.
  • Внутренняя ЛТ (брахитерапия): источник облучения находится вблизи или в самой опухоли. Источник излучения обычно помещен в имплантат. Имплантаты могут быть в форме проволоки, катетеров (трубочки), капсул или гранул. Имплантат помещают прямо в тело. В случае внутренней ЛТ может потребоваться лечь в больницу.

Внутреннее облучение обычно доставляется одним из 2 способов, описанных ниже. В обоих случаях используются имплантаты.

  • Интерстициальная ЛТ: источник внедряют рядом с опухолью или в нее. Используется для лечения рака головы и шеи, простаты, шейки матки, яичников, груди, перианальной и тазовой области.
  • Внутриполостная или внутрипросветная ЛТ: источник внедряют в тело. Широко используется в лечении рака матки. Исследователи также изучают применение этих типов ЛТ для лечения рака груди, бронхов, шейки матки, желчного пузыря, полости рта, прямой кишки, трахеи и влагалища.
  • Системная ЛТ: используются радиоактивные вещества, например йод-131 и стронций-89. Препараты принимают внутрь или их вводят инъекционно. Применяют для лечения рака щитовидной железы и неходжкинской лимфомы взрослых. Исследователи изучают применения данного вида терапии для лечения других форм рака.

Как врач определяет дозу облучения?

Количество излучения, поглощенной тканями, называется дозой облучения. До 1985г. доза измерялась радами (доза поглощенного излучения). Сейчас этой единицей является Грей. 1 Грей=100 рад. 1сантиГрей (сГр)=1 рад.
Разные ткани выносят разное количество радиации. Например, печень может выдержать 3000сГр, а почки лишь 1800 сГр. Общая доза обычно делится на более малые (фракции), которыми облучают каждый день в течение определенного времени. Это усиливает разрушение раковых клеток при уменьшении ущерба нормальной ткани.
Врач работает с графиком – терапевтическим коэффициентом. Этот коэффициент сравнивает ущерб раковым и нормальным клеткам. Доступны методы увеличения ущерба раковым клеткам и уменьшения — нормальным.

Что является источником энергии для наружной ЛТ?

Источниками являются радиоактивные изотопы йода-125, -131, стронция-89, фосфора, палладия, цезия, иридия, фосфата или кобальта. Другие изотопы еще исследуются.

Энергия может поступать следующим образом:

  • Рентгеновские или гамма-лучи , оба являются формами электромагнитного излучения. Хотя они образуются по-разному, везде используются фотоны.
  • Рентгеновские лучи создаются аппаратами – линейными ускорителями. В зависимости от количества энергии в рентгеновских лучах, последние могут быть использованы для уничтожения раковых клеток на поверхности тела (низкий энергетический уровень) и в более глубоких структурах (высокий энергетический уровень). По сравнению с другими типами излучения, рентгеновские лучи могут облучать достаточно большую область.
  • Гамма-лучи продуцируются, когда изотопы некоторых элементов (иридий и кобальт 60) высвобождают лучистую энергию при распаде. Каждый элемент распадается с определенной скоростью и каждый высвобождает разное количество энергии, что определяет глубину проникновения в тело (гамма-излучение, образующееся при распаде кобальта-60, используется в лечении «гамма-нож»).
  • Пучки частиц : используются субатомные частицы вместо фотонов. Пучки частиц генерируются линейными ускорителями, синхротронами и циклотронами. При таком лечении используются электроны, генерируемые рентгеновскими трубками, нейтроны, генерируемые радиоактивными элементами и специальным оборудованием. Тяжелые ионы (протоны и гелий), ?-мезоны (пионы) – малые отрицательно заряженные частицы, генерируемые ускорителями и системой магнитов. В отличие от рентгеновских и гамма-лучей, пучки частиц проникают в ткани неглубоко, поэтому часто используются в лечении поверхностных опухолей и опухолей под кожей.

Терапия пучками протонов это тип терапии пучками частиц . Протоны располагают энергией в очень маленькой области – максимуме Брэгга. Его можно использовать для лечения опухоли высокими дозами при малом повреждении соседних нормальных тканей. Пока применяется редко. Сейчас ведутся исследования по использованию такой терапии в лечении интраокулярной меланомы, ретинобластомы, рабдомиосаркомы, рака простаты, легкого и мозга.

Что такое стереотаксическая радиохирургия и стереотаксическая радиотерапия?

При стереотаксической радиохирургии применяют большую дозу облучения для уничтожения опухолей мозга. И это не хирургия в известном понимании. Голова пациента помещается в специальную рамку, прикрепленной к его же черепу. Рамка нужна для того, чтобы пучки частиц следовали точно к опухоли. Доза и область облучения настраиваются очень точно. Большинство соседних структур не повреждаются во время процедуры.
Стереотаксическая хирургия выполняется по-разному. По наиболее распространенной методике линейный ускоритель направляет высокоэнергетичное протонное излучение в опухоль (linac-радиохирургия). Гамма-нож, второй по распространенности метод, распространяет излучение за счет кобальта-60. И, наконец, могут использовать тяжело заряженные пучки частиц для направления облучения в опухоль.
Стереотаксическая радиохирургия применяется, в основном, для лечения небольших добро- и злокачественных опухолей мозга (включая менингиомы, акустические шванномы и рак гипофиза). Также она используется в лечении болезни паркинсона и эпилепсий. Можно добавить, что стереотаксическая радиохирургия применяется для лечения метастатических опухолей мозга.
При стереотаксической радиотерапии используют те же принципы, что и при одноименной радиохирургии для распространения облучения в опухоль. Однако, при стереотаксической терапии используются мелкие фракции облучения, а не одна большая доза облучения. Такой подход улучшает исходы и минимизирует побочные эффекты. Такая терапия применяется в лечении как опухолей мозга, так и других локализаций.
Клинические испытания изучают эффективность стереотаксических радиохирургии и –терапии при собственном применении и в комбинации с другими типами лучевой терапии.

Какие другие методы используются или изучаются для увеличения эффективности наружной ЛТ?

Используются и изучаются следующие методики:

  • Трехмерная (3D) конформная ЛТ . Обычно схема облучения проводится в 2 измерениях. При трехмерной конформной ЛТ, с помощью компьютера, можно более прицельно направить облучение в опухоль. Многие лучевые онкологи используют данную методику. Трехмерное изображение опухоли может быть получено на КТ (компьютерная томография), МРТ (магнитно-резонансная томография), ПЭТ (позитронно-эмиссионная томография). На основе изображения компьютерные программы распределяют облучение так, чтобы оно «подошло» по форме опухоли. Т.к. соседние здоровые ткани практически не повреждаются, можно использовать б?льшие дозы. Описаны улучшенные результаты лечения рак носоглотки, простаты, легкого, печени и мозга.
  • ЛТ, модулированная по интенсивности (IMRT, ЛТМИ). Это новый тип трехмерной конформной ЛТ, при котором используются пучки излучения (обычно, рентгеновские лучи) разных интенсивностей для доставки различных доз облучения в малые области тела в одно время. Технология позволяет облучить опухоль более высокими дозами и меньше повредить соседние нормальные ткани. В некоторых случаях таким способом можно облучать пациента каждый день высокими дозами, т.о. сокращая время лечения и улучшая результат лечения. Также возможно меньше побочных эффектов.

Излучение исходит из линейного ускорителя, укомплектованного многостворчатым коллиматором (необходим для формирования излучения). Оборудование может вращаться вокруг пациента, т.о. пучки излучения могут направляться под лучшими углами. Пучки идеально подогнаны к форме опухоли.
Эта новая технология используется для лечения опухолей мозга, головы и шеи, носоглотки, груди, печени, легкого, простаты и матки. Вскоре будут известны отдаленные результаты лечения.

Что такое облучение с низкой и высокой передачами энергии?

Линейная передача энергии (Linear energy transfer (LET, ЛПЭ)) это скорость, при которой тип излучения запасает энергию по мере прохождения через ткани. Высокие уровни запасенной энергии убивают больше клеток. Разным типам излучений свойственны свои уровни ЛПЭ. Например, у рентгеновских, гамма-лучей и электронов низкая передача энергии, а у нейтронов, тяжелых ионов и пионов — высокая.
Кто планирует и распределяет ЛТ пациентам?
Лучевой терапией занимается команда, состоящая из лучевого онколога, дозиметриста, биотехника и лучевого терапевта. Часто ЛТ это лишь часть схемы лечения пациента. Часто ЛТ комбинируют с химиотерапией.
Лучевой онколог также взаимодействует с онкологом-педиатром, хирургом, лучевым диагностом, патологом и другими специалистами для выработки идеального плана ведения пациента.

Что такое планирование лечения и почему оно важно?

Т.к. есть много типов излучения и множество способов облучения, планирование лечения является важным первым шагом в лечении. До начала ЛТ, врачи, специализирующиеся на ЛТ, определят количество и тип облучения.
Если пациенту назначена наружная ЛТ, лучевой онколог использует процесс симуляцию для определения области облучения. Во время симуляции пациент тихо лежит на столе, а врач специальной рентгеновской установки определяет точную область (порт) облучения. У большинства пациентов определяют несколько портов. При симуляции также могут выполнить КТ или другие методы лучевой диагностики для определения направления излучения.
Области облучения метятся временными или постоянными отметками, показывая, куда направить излучение.
В зависимости от типа ЛТ, пациенту могут предложить особые корсеты для фиксации, например, головы, чтобы устранить ее движения во время процедуры. В некоторых случаях используют специальные защитные экраны, непроницаемые для излучения, для защиты соседних тканей.
По окончании симуляции бригада специалистов, занимающихся ЛТ, определяет дозу облучения, как его доставить и как много циклов потребуется паиценту.

Что такое радиосенсибилизаторы и радиопротекторы?

Радиосенсибилизаторы и радиопротекторы это химические вещества, которые модифицируют ответ клетки на облучение. Радиосенсибилизаторы это препараты, которые делают раковые клетки более чувствительными к облучению. Способность некоторых веществ быть радиосенсибилизаторами изучается. Также, некоторые противоопухолевые препараты, например, 5-фторурацил и цисплатин также делают раковые клетки более чувствительными к облучению.
Радиопротекторы это препараты, защищающие нормальные клетки от излучения. Эти препараты стимулируют «починку» нормальных клеток. На данный момент таким препаратом является амифостин (Ethyol®). Другие препараты изучаются.
Что такое радиофармацевтические препараты (РФП)? Как они применяются?
РФП или радионуклиды это радиоактивные препараты для лечения рака, включая рак щитовидной железы, груди; и устранения боли при костных метастазах. Наиболее часто используют самарий-153 (Quadramet®) и стронций-89 (Metastron™). Эти препараты устраняют боль при костных метастазах. Оба вводятся внутривенно в амбулаторных условиях, иногда их сочетают с наружной ЛТ. Другие препараты используют реже – фосфор-32, родий-186, нитрат галлия. Другие РФП еще исследуются.

Внутренняя лучевая терапия (брахитерапия)

Врач может решить, что высокая доза облучения, подаваемая на малую область тела, является лучшим способом лечения рака. Внутренняя лучевая терапия позволяет врачу использовать б?льшую дозу в более короткие сроки, в отличие от наружного облучения.
При внутренней лучевой терапии радиоактивный источник помещается как можно более близко к раковым клеткам. Вместо использования большого облучающего аппарата, радиоактивный материал, помещенный в тонкую проволоку, катетер или трубку (имплантат) располагают прямо в пораженной ткани. Такой метод лечения концентрирует излучение у раковых клеток и уменьшает лучевое поражение вблизи расположенных нормальных тканей. Используемые радиоактивные материалы: цезий, иридий, йод, фосфор и палладий.
Внутренняя лучевая терапия может быть использована для лечения рака головы и шеи, груди, матки, щитовидной железы, шейки матки и простаты. Врач может комбинировать внутреннее и наружное облучения.
В этом разделе под внутренней лучевой терапией подразумевается имплантируемое излучение, что предпочитают именовать «брахитерапией». Также от врачей можно услышать интерстициальное облучение или внутриполостное облучение, каждая форма является видом внутренней лучевой терапии. Иногда радиоактивные имплантаты называются капсулами или гранулами.
Как помещают имплантат в организм?
Тип имплантата и способ его погружения зависят от размера и расположения опухоли. Имплантаты могут быть помещены прямо в опухоль (интерстициальное облучение), в специальные аппликаторы в полость тела (внутриполостное облучение) или канал (внутрипросветное облучение); на поверхность опухоли; или в область, откуда была удалена опухоль. Имплантаты могут быть удалены вскоре или их оставляют на более длительное время. Если необходимо оставить имплантат, радиоактивное вещество вскоре потеряет радиоактивность и вскоре станет нерадиоактивным.
При интерстициальном облучении радиоактивный источник вводят в опухоль в катетере, гранулах или капсулах. При внутриполостном облучении контейнер или аппликатор с радиоактивным источником помещают в полость тела, например, в матку. При поверхностной брахитерапии радиоактивный источник помещается в небольшой держатель и размещается в или около опухоли. При внутрипросветной брахитерапии радиоактивный источник помещается в канал организма (например, бронх или пищевод).
Внутреннее облучение также можно провести путем инъекции раствора в кровоток или полость тела. Такой метод может называться негерметезированной внутренней лучевой терапией.
Большинство типов имплантатов необходимо применять лишь в больнице. Дается общая или местная анестезия, т.о. Вы не почувствуете боли, когда врач вставляет имплантат.
Как другие люди защищены от радиации, когда имплантат установлен?
Иногда радиоактивный источник в имплантате испускает высокоэнергетические лучи наружу. Для защиты других от излучения, вы будете находиться в частной палате. Хотя медсестры и другие люди, ухаживающие за Вами, не смогут проводить много времени в Вашей палате, они обеспечат Вам необходимый уход. Вам следует вызвать медсестру, если потребуется, но учитывайте, что медсестра будет работать быстрее и говорить с Вами из дверного проема чаще, чем у постели. В большинстве случаев Ваши моча и фекалии не будут радиоактивными, только если Вам не назначена негерметизированная внутренняя лучевая терапия.
Также будет ограничено число посетителей, пока в Вас находится имплантат. Дети до 18 лет и беременные не должны посещать пациентов, получающих внутреннюю лучевую терапию. Удостоверьтесь, что Вы сказали посетителям узнать у сотрудников больницы любые специальные инструкции до того, как зайдут в палату. Посетители должны сидеть минимум в 6*30,48 см (6 футов) от кровати, а сотрудники больницы решат, сколько времени могут провести посетители. Время может варьировать от 30 мин до нескольких часов в день. В некоторых больницах используются свинцовые экраны у кровати.
Каковы побочные эффекты внутренней лучевой терапии?
Побочные эффекты зависят от области тела. У Вас вряд ли будет сильная боль или тяжелое недомогание. Однако, если аппликатор удерживает имплантат, это может быть несколько некомфортным. Если Вам потребуется, врач выпишет препараты от боли и для расслабления. Если была использована общая анестезия в момент установки имплантата, вы можете испытывать вялость, слабость или тошноту, но эти симптомы скоро проходят. В случае необходимости применяют препараты для устранения тошноты. Проинформируйте медсестру о симптомах, беспокоящих Вас..

Как долго остается имплантат?
Врач решит сколько времени имплантат останется в организме. Это зависит от дозы радиоактивности, необходимой для эффективного лечения. Схема Вашего лечения зависит от типа рака, его расположения, Вашего общего здоровья и других схем лечения от рака, которые Вам предназначены. В зависимости от места установки имплантата Вам, возможно, придется оберегать его от смещения путем нахождения в постели. У временных имплантатов может быть низкая или высокая мощность дозы. Имплантаты с низкой мощностью дозы оставляют на несколько дней, с высокой – удаляют через несколько минут. В некоторых местах, где расположен рак, имплантат остается надолго. Если у вас долговременный имплантат, Вам, возможно, потребуется находиться в отдельной палате в течение нескольких дней. Имплантат становится менее радиоактивным каждый день; к моменту выписки излучение в Вашем организме значительно ослабнет. Врач сообщит Вам, нужны ли какие-либо специальные меры предосторожности, которые Вам следует соблюдать дома
Что происходит после удаления имплантата?
Обычно не требуется обезболивание при удалении временного имплантата. В большинстве случаев их вытаскивают в палате. Когда имплантат удален, радиоактивность в организме пропадает. Больше у сотрудников больницы и посетителей нет ограничений быть с Вами.
Врач скажет Вам, надо ли ограничить активность после выписки. Большинству пациентов разрешается делать столько, сколько им хочется. Вам могут потребоваться дополнительное время на сон и отдых, но вскоре вы окрепнете.
Область, в которой находился имплантат, может быть чувствительной или болезненной некоторое время. Если определенная деятельность, например, спорт или половое сношение, вызывают раздражение такой области, врач может посоветовать Вам временно ограничить данную деятельность.
Отдаленная брахитерапия
При отдаленной брахитерапии компьютер посылает радиоактивный источник через трубку в катетер, расположенный у опухоли. Процедура управляется бригадой специалистов по брахитерапии, которые наблюдают пациента на экране и общаются по системе двухсторонней связи. Радиация остается в опухоли в течение лишь нескольких минут. В некоторых случаях требуется несколько сеансов отдаленной брахитерапии.
Отдаленная брахитерапия может быть использована для схем лечения с низкой мощностью дозы в стационаре. Отдаленная брахитерапия с высокой мощностью дозы позволяет провести внутреннюю лучевую терапию амбулаторно. Лечение высокой мощностью дозы занимает только несколько минут. Т.к. радиоактивный материал не остается в организме, пациент может вернуться домой после лечения. Отдаленная брахитерапия используется в случае рака шейки матки, груди, легкого, поджелудочной железы, простаты и пищевода.

Какие существуют новые подходы к ЛТ?

Изучается совместное применение гипертермии (высокие температуры) совместно с ЛТ. Ученые выяснили, что при таком сочетании опухоль лучше «отвечает» на лечение.
Также исследователи изучают антитела, меченные радиоактивными метками, для доставки излучения непосредственно в опухоль (радиоиммуннотерапия). Антитела это высоко специфичные белки, образующиеся в организме в ответ на появление антигенов (чужеродные вещества, распознающиеся иммунной системой). У некоторых опухолевых клеток есть специфические антигены, которые запускают продукцию опухоль-специфических антител. Большое количество этих антител может быть произведено в лаборатории, далее к ним присоединяют радиоактивные метки (radiolabeling). При введении в организм антитела ищут раковые клетки, которые разрушаются излучением. Такой подход минимизирует риск повреждения соседних здоровых тканей.
Изобретены следующие препараты: ибритумомаб тиуксетан (Zevalin®) и йод-131 тоситумомаб (Bexxar®), которые используются для лечения распространенной неходжкинской лимфомы взрослых. В клинических испытаниях изучается лечение подобными препаратами рака печени, легкого, мозга, простаты, щитовидной железы, груди, яичников, поджелудочной железы, колоректального рака и лейкемии. Открыты и другие препараты: гефитиниб (Iressa®) и иматиниб мезилат (Gleevec®).

Диета при лучевой терапии

Выпивайте 8-12 чашек жидкости в день. Напитки с высоким содержанием сахара следует разбавлять водой.

Ешьте чаще и малыми порциями. Например, в день лучше есть 5 или 6 раз небольшие порции, чем питаться 3 раза в день, съедая больше.

Ешьте легко усваиваемую еду (пища с низким содержанием волокон, жиров и лактозы).

Продолжайте соблюдать диету с низким содержанием жиров, лактозы и волокон в течение 2 недель после окончания лучевой терапии. Постепенно вводите в рацион новые продукты. Можно начать с маленьких порций продуктов с низким содержанием волокон, например, рис, бананы, яблочный сок, картофельное пюре, нежирный сыр, хлебцы.

Избегайте:
o Молоко и молочные продукты (мороженое, сметана, сыр)
o Острую пищу
o Продукты и напитки с кофеином (кофе, черный чай и шоколад)
o Продукты или жидкости, приводящие к газообразованию (бобовые, капуста, брокколи, продукты из сои)
o Продукты с высоким содержанием волокон (сырые овощи и фрукты, бобовые, продукты из злаковых и зерновых)
o Жареную и жирную пищу
o Заведений быстрого питания

Источник : National Cancer Institute, National Institutes of Health www.health.mail.ru www.oncology.ru

Лучевая терапия (радиотерапия) - это лечение ионизирующими излучениями. Применяется главным образом для воздействия на опухоли с целью излечения больного (радикальная лучевая терапия) или временного облегчения его состояния (паллиативная лучевая терапия). Лучевая терапия может быть использована при некоторых неопухолевых заболеваниях (воспалительных, процессах типа мастита, гидраденита и др., экземе, нейродермите и др.) в тех случаях, когда другие методы лечения оказались безуспешными.

Источниками ионизирующих излучений являются радиоактивные изотопы (см.), применяемые в виде специально изготовленных препаратов (см. ), или излучения, генерируемые аппаратами (см. . , ). Естественные радиоактивные элементы ( , радий-мезоторий) в настоящее время в целях терапии (радиевая терапия) уже не применяются.

В основе лучевой терапии опухолевых заболеваний лежит известная в закономерность, свидетельствующая о неодинаковой (см.) здоровых и опухолевых тканей. В силу, как правило, большей радиочувствительности, опухоли при лучевом воздействии повреждаются сильнее, чем окружающие их здоровые ткани, неизбежно попадающие в зону облучения. Чем больше интервал в радиочувствительности здоровых и опухолевых тканей (терапевтический интервал), тем легче уничтожить опухоль путем облучения, без нанесения значительного вреда здоровым окружающим тканям. Естественно, что опухоли, обладающие высокой радиочувствительностью, расширяют терапевтический интервал. Достаточный для лечения терапевтический интервал, как правило, имеет место при раке шейки матки, опухолях , миндалин, глотки, носоглотки, гортани и некоторых других органов. Лучевая терапия может применяться как самостоятельный метод лечения (например, при опухолях носоглотки, раке и др.).Наиболее часто лучевую терапию проводят в комбинации с хирургическим методом лечения или химиотерапией (комбинированная лучевая терапия). При комбинированном лучевом и хирургическом методах лечения лучевую терапию могут применять как в предоперационном (предоперационная лучевая терапия), так и послеоперационном (послеоперационная, или профилактическая, лучевая терапия) периодах. Облучение опухоли проводят главным образом для подавления ее активности; в тех случаях, когда нет возможности удалить опухоль с сохранением принципа абластики (см.), основной целью лучевой терапии является попытка привести больного в операбельное состояние. При проведении пред- и послеоперационной лучевой терапии облучению подвергается не только опухоль или ее вместилище, но и зоны возможного метастазирования. Например, при дополнительно облучают подмышечные впадины, надключичные и подключичные области, .

Существуют следующие методы лучевой терапии: аппликационная, внутренняя, внутриполостная, внутритканевая, дистанционная.

Аппликационная лучевая терапия - лечение с помощью β- или γ-активных препаратов, расположенных на специальных аппликаторах, которые удерживают радиоактивные источники в определенном месте и на необходимом расстоянии от поверхности тела. Проводится для лечения заболеваний кожи или слизистых оболочек. Аппликаторы в виде муляжей, применявшиеся ранее очень широко, теперь используются редко. Чаще применяются так называемые гибкие β -аппликаторы, предназначенные для лечения поверхностных заболеваний - , нейродермитов, капиллярных и др. Они изготавливаются в виде гибкой пластмассовой пластинки, содержащей равномерно распределенный радиоактивный , или , которая накладывается на пораженную кожу на несколько минут или даже часов. При работе β -аппликаторами необходимо тщательно следить за сохранностью полиэтиленового пакета, в котором находится аппликатор, так как в противном случае возможно загрязнение кожи больного пылевыми частичками радиоактивных препаратов.

Внутренняя лучевая терапия проводится путем введения в организм (per os или непосредственно в ток крови) радиоактивных препаратов - чаще I 131 (см. Йод, радиоактивный), P 32 (см. ), Au 148 (см. Золото, радиоактивное). Используется при , болезнях крови (например, лейкозы), лимфогранулематозе. Больные, получающие радиоактивные препараты внутрь, требуют изоляции в специальных палатах; их мочу и в течение 10 дней после приема препарата собирают в специальные контейнеры (см. Контейнеры радиоизотопные).

Внутриполостная лучевая терапия - облучение опухолей полостных органов путем подведения к ним радиоактивных препаратов, чаще всего кобальта-60 (см. Кобальт, радиоактивный). Наиболее часто употребляют при лечении рака шейки и полости матки, мочевого пузыря, и носоглотки. Препараты вводят на несколько часов или даже на сутки. Введение осуществляется только в специально оборудованных помещениях - радиоманипуляционных. При введении препаратов персонал находится за специальными свинцовыми ширмами.

Больные с радиоактивными препаратами содержатся в специальных палатах (см. Радиологическое отделение). Особенностью , которым производится лечение, является тщательный контроль и предупреждение выпадения препаратов. После извлечения препаратов больные могут находиться в общих палатах.

Внутритканевая лучевая терапия - облучение опухолей путем внедрения в них игл радиоактивного кобальта или прошивания опухоли нейлоновыми нитями, наполненными тонкими отрезками проволоки, изготовленными из радиоактивного кобальта, золота или иридия. Чаще всего применяется при поверхностно расположенных опухолях, а также опухолях языка и полости рта. Радиоактивные иглы и нити вводят на несколько дней, а затем извлекают. В последнее время вместо игл и нитей в опухоли вводят путем инъекции коллоидные растворы радиоактивного золота-198 или очень мелкие иридиевые зерна. Введение зерен производят с помощью специального пистолета, а коллоидных растворов - с помощью шприцев в защитных свинцовых футлярах (см. Радиологический инструментарий).

Дистанционная лучевая терапия - облучение с помощью специальных установок, генерирующих ионизирующие излучения, причем источник излучения располагают на некотором расстоянии от больного. Источником излучения может быть рентгеновский аппарат - ; радиоактивный кобальт или цезий - телегамматерапия; бетатрон или линейный ускоритель - мегавольтная терапия. В зависимости от того, какой вид излучения бетатрона используется - электронное (см. Электронное излучение) или тормозное, различают мегавольтную терапию электронную или тормозным излучением. Дистанционная лучевая терапия является самым распространенным видом лучевой терапии. Она осуществляется только в специальных процедурных кабинетах, где источники излучения устанавливаются стационарно (см. Гамма-аппараты). При использовании аппаратов «Луч» и «Рокус», характеризующихся хорошей защитой источника излучения, опасность облучения для персонала весьма незначительна.

Лучевая терапия [синоним: кюритерапия, радиумтерапия, радиотерапия (устаревшие названия)] - способ лечения болезней при помощи разнообразных видов ионизирующей радиации различных энергий.

Как клиническая дисциплина лучевая терапия тесно связана с радиобиологией (см.), физикой излучений к дозиметрией (см.), а также с техникой лечебного применения источников радиации; основные ее разделы - методика лечебного применения излучений и радиологическая клиника.

Лучевая терапия объединяет лечебное применение рентгеновского, гамма-, электронного, протонного, нейтронного и других ионизирующих излучений (см. Альфа-терапия, Бета-терапия, Гамма-терапия, Нейтронная терапия, Протонная терапия, Рентгенотерапия, Электронная терапия).

Рациональная организация лучевой терапии предусматривает сосредоточение различных видов ее в рамках крупных централизованных больничных (клинических) учреждений.

Лучевая терапия должна проводиться комплексно; именно от этого зависит успех лечения. Лучевая терапия осуществляется при содружественной работе врачей радиологов и медицинских физиков, совместно решающих принципиальные и частные клинические задачи оптимального лучевого воздействия.

Задачи лучевой терапии: 1) дозиметрическая характеристика облучения, оценка дозных полей, создаваемых в очагах поражения и здоровых тканях; 2) радиобиологическое обоснование лучевого воздействия, характеристика радиочувствительности тканей, направленное изменение радиочувствительности; 3) выяснение реакций здоровых и патологических тканей и целого организма на облучение, разработка методики и тактики облучений, борьба с непосредственными и поздними осложнениями.

Одним из важных звеньев в комплексном лечении больных с злокачественными новообразованиями является применение лу­чевой терапии. За последнее десятилетие ее возможности значи­тельно расширились. Это связано с получением многочисленных радиоактивных изотопов, созданием новых аппаратов, обладаю­щих высокой энергией излучения. Во многом успеху лучевой терапии способствует прогресс в области дозиметрии.

Применение лучевой терапии при различных заболеваниях ос­новано на повреждающем действии ионизирующим излучением различных клеток и тканей живого организма. Многочисленными наблюдениями доказано, что патологически измененные ткани, в том числе и злокачественные опухоли, более чувствительны к ионизирующему излучению, чем здоровые. Это явление получило название терапевтического интервала радиочувствительности. Чем этот интервал больше, тем больше повреждается опухоль и одно­временно лучше сохраняются окружающие здоровые ткани.

Методы лучевой терапии

Основным методом лучевой терапии является внешнее местное облучение, при котором удается определить объем облучаемой части тела и до некоторой степени защитить остальные органы больного от проникновения ионизирующего излучения. Этот метод дает возможность варьировать и индивидуализировать мощность и величину дозы в зависимости от клинического течения заболевания и самочувствия больного. Внешнее общее облучение в настоящее время применяется редко. Необходимо отметить, что и местное облучение оказывает определенное общее воздействие на организм, вызывая нежелательные изменения в кроветворной, нервной, эндокринной и других жизненноважных системах.

Внутреннее облучение достигается путем введения в организм через рот или внутривенно радиоактивных изотопов с учетом их избирательной поглощаемости определенными органами или си­стемами. Известные трудности при данном способе облучения представляет дозирование, так как трудно учесть точное количе­ство изотопа, поглощенного организмом, а также повлиять на его выделение.

Дальнедистанционная лучевая терапия (кожно-фокусное расстояние до 120 см) осуществляется на рентгенотерапевтических установ­ках, а также на гамма-установках, содержащих заряд радиоактив­ного кобальта. За последние годы появились установки, обладаю­щие высокой энергией электронов. К ним относятся бетатрон, циклотрон и линейный ускоритель.

Для характеристики терапевтических возможностей вышеука­занных установок достаточно привести следующие данные: при облучении на рентгенотерапевтическом аппарате (250 кв) доза на глубине 10 см равняется 25-30% кожной дозы, при облу­чении на ГУТ-Со-200 - 50%, на линейном ускорителе (8 Мэе) - 70%, а на бетатроне (30 Мэе) она достигает 85%.

Дальнедистанционную лучевую терапию применяют для лечения глу­боко расположенных опухолей ( , пищевода, матки и других органов).

Достоинством рентгенотерапевтической установки является легкость регулировки количества и качества излучения, что по­зволяет получать излучение различной проникающей способно­сти и применять его для лечения поражений, расположенных на различной глубине от поверхности кожи.

Недостатком рентгеновской трубки является неоднородный пучок излучения и недостаточная его проникающая способность. Это приводит к поглощению большей части дозы здоровыми тка­нями, а не глубоко расположенным патологическим очагом. Необходимо добавить, что рентгеновское излучение дает много рассеянных лучей, которые также поглощаются здоровыми тка­нями. Кроме этого рентгеновы лучи активно поглощаются костной тканью, что может вызвать ее лучевые повреждения.

Гамма-установки, заряжающиеся радиоактивным кобальтом (Со 60), дают почти однородный пучок излучения боль­шой энергии (1,17-1,33 Мэе) значительной проникающей способ­ности. Гамма-излучение сопровождается меньшим рассеиванием лучей, чем рентгеновское. Период полураспада кобальта равняется 5,3 года, что создает необходимость периодической перезарядки установки.

Линейные ускорители и бетатроны испускают частицы, обла­дающие высокой энергией и проникающей способностью, в силу чего при их использовании возникает мало рассеянных лучей. В зависимости от источника облучения меняется также глубина так называемого пика дозы. При облучении рентгеновыми луча­ми пик дозы располагается на поверхности кожи, при телегамматерапии - на глубине 0,6 см под кожей, а при облучении на линей­ном ускорителе пик дозы перемещается на глубину 1,8 см. Это обстоятельство должно быть учтено с тем, чтобы избежать луче­вых повреждений кожи и получить высокие глубинные дозы. Сечению пучка лучей на линейном ускорителе можно придавать различные размеры, причем имеется возможность выбирать ма­лые поля облучения.

Для близкофокусной лучевой терапии используются рентгено-терапевтические аппараты или установки с малым зарядом радио­активного кобальта, цезия или иридия. Расстояние источника до кожи равняется 3-7 см. Близкофокусной терапии подлежат па­тологические образования, расположенные не далее 5 см от по­верхности кожи. Этот вид лечения применяется часто при злока­чественных новообразованиях кожи, а также для внутриполостного облучения во время .

При контактном методе лучевой терапии радиоактивные препа­раты располагают на поверхности кожи или слизистых оболочек или их фиксируют в соответствующих аппликаторах. В лечебной практике имеются бета-аппликаторы, содержащие Р 32 и гамма-аппликаторы, содержащие Со 60 .

Одной из неотложных и весьма важных задач радиевой тера­пии рака являются конструкции соответствующих приспособлений, в которых размещаются препараты, вводимые в послеоперационное ложе.

Такими приспособлениями могут служить аппликаторы с ли­нейным источником излучения, плоскостным и объемным.

В зависимости от анатомических данных и размеров поражения препараты устанавливаются так, чтобы излучающее поле имело форму прямоугольника, квадрата или куба; длина и ширина его (если для этого представляется возможность) должна превышать диаметр поражения на 1-2 см. Радиоактивные препараты могут быть подведены в любой нуж­ный отрезок аппликатора.

При расчете доз могут быть использованы таблицы А. И. Шраменко. Дозу в рентгенах можно также определить по линейке В. А. Петрова, номограмме Вольфа.

Внутриполостная лучевая терапия

Внутриполостной метод имеет несколько разновидностей. К ним относится внутриполостная близкофокусная рентгенотерапия, ко­торая применяется при заболеваниях полости рта, прямой кишки, влагалища и других локализаций.

С целью профилактики рецидивов и метастазов разра­ботан метод внутриполостной близкофокусной рентгенотерапии, применяемый во время операции на желудке, легких, кишечнике, лимфатических узлах и других органах.

Для лечения больных в полость ее вводят аппликаторы, содержащие трубочки с радиоактивным кобальтом, или радием-мезоторием. Для этой цели разработаны усовершенствованные аппликаторы. Для лечения рака мочевого пузыря в него вводят резиновый баллон, наполненный макросуспензией радиоактивного кобальта.

Производят также впрыскивания растворов или взвесей радио­активных веществ непосредственно в полость тела. Например, при раке мочевого пузыря вводят раствор радиоактивного натрия. При диссеминированном поражении раковой опухолью плевры или брюшины вводят коллоидный раствор радиоактивного золота или фосфата хрома.

За последние годы получил развитие внутритканевой метод лучевой терапии. При этом в патологически измененные ткани непосредственно вводят радиоактивные препараты. В некоторых случаях в патологический очаг вводят иглы с радиоактивным ко­бальтом или иридием.

Применяется также прошивание опухоли полыми нейлоновыми нитями, заполненными стерженьками Со 60 или проволокой, содержащей Та 182 .

Другим видом внутритканевой терапии является инфильтрация опухоли коллоидными растворами радиоактивного золота и фос­фата хрома.

При некоторых заболеваниях вводят радиоактивные вещества (Р 32) через пищеварительный тракт.

Как видно из изложенного, арсенал лучевой терапии весьма значителен, что положительно сказывается на ее возможностях. Поэтому диапазон ее применения широкий. Ионизирующая радиа­ция как лечебный метод часто сочетается с хирургическим, гормо­нальным и медикаментозным лечением.

Наиболее часто применяется лучевая терапия при лечении злокачественных опухолей различных локализаций.

Выбор метода лучевой терапии

Приступая к проведению курса лучевой терапии, должен быть уверенным в диагнозе заболевания, выяснить, проводилось ли раньше и когда лучевое лечение, какая была суммарная доза, не имеется ли в данный момент противопоказаний к лучевому ле­чению, обусловленных тяжелым состоянием больного ( , лейкопенией, значительными нарушениями функции сердечно­сосудистой системы, печени и почек).

После выбора метода лучевой терапии определяются очаговая доза и распределение ее во времени, а также технические условия облучения. При облучении злокачественной опухоли с целью по­давления роста и девитализации опухолевых элементов применяют очаговые дозы не меньше 5000-7200 рад. При лучевой терапии острых воспалительных процессов используют дозы 50-300 р, а при лечении хронических - 700-800 р.

Применяется: а) одномоментное, б) дробное, в) дробно-протя­женное, г) непрерывное облучение. Одномоментное облучение в онкологической практике применяется только субоперационно.

Самым распространенным в лучевой терапии является дробный метод облучения. При нем облучение производят обычно ежеднев­но в течение нескольких недель.

В процессе лучевого лечения необходимо помнить о взаимоот­ношениях между опухолью и так называемым опухолевым ложем, состоящим из здоровых тканей, которые играют большую роль в заживлении. Обычно во время интервалов между облучениями здоровые ткани восстанавливают свои функции, в то время как опухолевые клетки подвергаются девитализации.

Непрерывное облучение происходит при введении в организм радиоактивных веществ, внутреннем применении радиоактивных изотопов и внутритканевой терапии.

При лечении злокачественных опухолей сеансы лучевой тера­пии проводят ежедневно, подводя к очагу дозу 150-300 р (135- 270 рад).

Основным стремлением врача-радиолога во время проведения курса лучевой терапии должно быть максимальное подведение дозы к патологическому очагу с одновременным щажением кожи и окружающих здоровых тканей. Так как подвести достаточно эффективную дозу с одного поля невозможно, то обычно приме­няют многопольное перекрестное облучение.

Между полями оставляют промежутки шириной 1 -1,5 см. Применение решетки из просвинцованной резины снижает реак­цию кожи на облучение, позволяет подвести большую очаговую дозу и уменьшить общую интегральную дозу.

Более перспективными являются лучевая терапия подвижными источниками и применение излучений высоких энергий. При маятниковом облучении источник излучения движется, относительно расположения больного по дуге, а при ротационном-по окружности.

При облучении подвижными источниками обеспечивается под­ведение большой очаговой дозы при одновременном щажении кожи. Однако серьезным недостатком этого метода является весь­ма значительная общая интегральная доза. Терапевтическое зна­чение имеет лишь та часть лучистой энергии, которая поглощается патологическим образованием.

При глубоко расположенных опухолях особенно целесообраз­но применение линейных ускорителей и бетатронов, которые дают возможность подвести через небольшое количество полей максимум дозы к патологическому очагу.

Многими экспериментальными работами доказано, что увели­чение содержания кислорода в опухоли повышает ее радиочув­ствительность. Поэтому мы проводим облучение злокачественных опухолей с одновременным вдыханием больными увлажненного кислорода (8 литров в 1 минуту). Одновременно больные отмечают значительное уменьшение сопутствующих лучевых реакций. Со­храняется также продолжительное время нормальная картина крови. Это особенно важно при облучении органов грудной клет­ки и брюшной полости, так как в конце курса лечения может воз­никнуть легкая форма лучевой болезни. Она проявляется в общей слабости, отсутствии аппетита, тошноте, голово­кружении, иногда зуде кожи и болями в суставах, а также в син­ении количества лейкоцитов. Больному рекомендуют питание, богатое белками и витаминами, фруктовые соки, прогулки на свежем воздухе. Для профилактики лейкопении назначают пре­параты меркамина, цистамина, нуклеиновый натрий, преднизолон и другие. С целью повышения антитоксической функции печени в этих случаях целесообразно применение спленина.

При снижении количества лейкоцитов до 3000 в 1 мм 3 необхо­димо переливать цельную кровь (150-200 мл) или лейкоцитарную массу. Для предупреждения и ослабления лучевых реакций ко­жи применяют смазывания кожи на полях облучения бальзамом Шестоковского с подсолнечным маслом (1: 3), облепиховым мас­лом, оксикортом, прополисом. При явлениях эпителиита в полос­ти рта назначают полоскания фурациллином (1: 5000). При облу­чении пищевода рекомендуют проглатывать несколько раз в день кусочки сливочного масла или столовую ложку растительного. При наличии лучевого цистита - питье минеральных вод и про­мывания мочевого пузыря с последующими масляными инстиляциями. В случае возникновения ректита делают ежедневно мас­ляные клизмочки.

Для лечения поздних лучевых повреждений кожи и располо­женных под ней тканей применяется разработанный в нашем ин­ституте ионофорез с железом или новокаином.

При дистанционном либо контактном применении ионизирую­щего излучения всегда отмечается в той пли иной степени лучевая реакция в зависимости от мощности разовой либо суммарной дозы; применение дозы на поле порядка 3000-5000 рад при на­ружном облучении вызывает выраженные местные лучевые реак­ции в виде эпителиитов, эпидермитов различной степени, а также общие реакции организма, характеризующиеся общей слабостью и изменением гемограммы.

При внутриполостном применении равных доз может наблю­даться кратковременный лейкоцитоз, без общих проявлений реак­ции организма.

Статью подготовил и отредактировал: врач-хирург

Тема 4. Методы лучевой терапии

Контрольные вопросы 1. Дать определение и основную характеристику контактных методов

лучевой терапии.

2. Перечислить основные методы контактной лучевой терапии

3. Дать определение внутриполостных методов лучевой терапии

4. Перечислить виды внутриполостной γ терапии.

6. Дать понятие о внутриполостной β терапии, показания.

7. Дать понятие внутритканевой лучевой терапии, показания.

8. Описать метод внутритканевой γ терапии с использованием радиоактивных игл.

9. Внутритканевая γ терапия гранулами.

10.Внутритканевая γ терапия путём последовательного введения источников (afterloading).

11.Внутритканевая β терапия 12.Радиохирургический способ лечения опухолей, дать определение,

описание.

13.Дать понятие и описание аппликационного метода лучевой терапии, аппликационная γ и β терапия.

14.Близкофокусная рентгентерапия.

15.Метод избирательного накопления изотопов в тканях.

16.Дать понятие дистанционной лучевой терапии.

17.Статическая γ терапия.

18.Дистанционная γ терапия через свинцовую решетку. 19.Дистанционная γ терапия через свинцовый клиновидный фильтр. 20.Дистанционная γ терапия через свинцовую экранирующую диафрагму. 21.Дать характеристику подвижных методов дистанционной γ терапии 22.Ротационная γ терапия.

23.Секторная γ терапия, особенности планирования терапии.

24.Тангенциальное или эксцентрическое секторное облучение.

25.Терапия тормозным излучением высокой энергии.

26.Терапия быстрыми электронами высокой энергии.

27.Лучевая терапия тяжёлыми частицами.

28.Глубокая рентгентерапия.

4.1.Контактные методы лучевой терапии

Лучевая терапия может проводиться при нахождении источника ионизирующего излучения вне тела человека и в этом случае она называется дистанционной, или внутри тела, в таком случае лучевая терапия называется контактной. К контактным относятся следующие методы облучения:

- внутриполостной;

Внутритканевой;

- радиохирургический;

Аппликационный;

- избирательного накопления изотопов;

- близкофокусная рентгентерапия.

Контактные методы характеризуются резким падением величины дозы на ближайшем от источника облучения расстоянии. Поэтому объём облучаемых тканей не может превышать 1,5-2.0 см. Это обстоятельство заставляет сочетать этот метод с дистанционными способами облучения.

4.1.1. Внутриполостные методы облучения.

При ряде злокачественных новообразований (рак прямой кишки, рак шейки матки, рак эндометрия и других полостных органов) источник излучения можно подвести непосредственно в полость органа. Такой метод принято называть внутриполостным. Он может быть применён как самостоятельно, так и в сочетании с дистанционным облучением или оперативным методом лечения. Самостоятельно внутриполостной метод применяют для лечения опухолей, которые не проникают за пределы слизистой оболочки и обладают небольшими размерами (0,5-1,0 см). Возможно использование β или γ излучения для внутриполостного облучения.

4.1.1.1.Внутриполостная γ терапия. Для внутриполостной γ терапии применяются изотопы радия –226, кобальт –60, цезий –137.

Внутриполостная γ терапия может проводиться линейными, объёмными источниками, или по принципу последовательного введения аппликаторов и источников.

Линейный источник представляет собой цилиндр, изготовленный из изотопа, или нитки шаровидных бус, размещённых в одну линию. С целью уменьшения нагрузки на поверхность, источник должен на 0,5-2,0 см отстоять от поверхности. Это достигается путём расположения источника в резиновом зонде, вокруг которого расположен раздутый баллон с воздухом. Общая активность источника-1,8-2,0х10¹ºБк. Дозировка производится путём использования фильтра, меняя расстояние источник – слизистая, изменяя время экспозиции. К положительным характеристикам метода относится быстрое падение величины дозы в направление к оси

источника. Доза и мощность излучения рассчитываются математически. При помощи специальных таблиц.

Внутриполостная γ терапия объёмными источниками обладает более гомогенной характеристикой создаваемого дозного поля. В качестве источника излучения может применяться макросуспензия или взвесь радиоактивных бус Со –60. Бусы изготавливаются из Со-60 и затем гальванически покрываются никелем иди золотом. Покрытие поглощает β излучение.

Орган катетеризруется, после чего длинным пинцетом из контейнера достаётся бусинка на нитке. Бусинка вводится в полость органа индуктором, после чего нитка фиксируется к коже больного лейкопластырем. Больной помещается в «активную» палату. После истечения срока облучения бусинка вынимается потягиванием за нитку, после чего изотоп помещается обратно в контейнер. Расчёт дозы производится по специальным таблицам. Этот метод позволяет сконцентрировать высокую дозу на расстоянии 1-2 см от источника.

Внутриполостная γ терапия макросуспензией Со-60 производят при помощи резиновых баллонов, жидкость внутри которого содержит шарики Со-60 диаметром 2 мм. Макросуспензия изготавливается из желеобразного вязкого раствора, в котором удельный вес шариков примерно равен весу раствора. Резиновый баллон вводится в прямую кишку, после чего баллон присоединяется к аппарату, откуда желеобразная масса вместе с шариками Со-60 поступает в баллон. Расчёт доз производится по таблицам. Дозировка производится по времени, концентрации макросуспензии, объёму вводимой суспензии.

Приведённые выше методики внутриполостного облучения обладают рядом трудно устранимых отрицательных качеств: высокая радиационная опасность источников для персонала, невозможность формирования дозных полей, трудность фиксации источника относительно опухоли, что приводит к серьёзному сужению показаний для их использования, и эти методики рассматриваются только в историческом плане. Эти недостатки можно ликвидировать, при использовании методики с разделённым двухэтапным введением аппликаторов и, затем, изотопа. Методика получила название afterloading. Эта методика широко используется при проведении лучевой терапии рака шейки матки, эндометрия и прямой кишки. В настоящее время в России для лучевой терапии методом afterloading используются аппараты серии «Агат».

Процедура облучения состоит из трёх этапов: введение неактивной системы аппликаторов и фиксация их в месте облучения; рентгенологический контроль правильности введения аппликатора; введение в аппликатор изотопа. После введения аппликатора последний присоединяется к аппарату, откуда при помощи пневматики или тросика подаётся капсула с изотопом. Понятно, что введение изотопа и задача

времени облучения производится автоматически. После окончания облучения источник излучения возвращается в хранилище внутрь аппарата. Дозировку облучения производят по таблицам, доводя суммарную дозу до 50-60 Грей.

4.1.1.2. Внутриполостная β терапия. Для внутриполостной β терапии используют коллоидные растворы золота 198 или йода 90. Область применения ограничена небольшими папилломами не выходящими за пределы слизистой оболочки мочевого пузыря, при опухолевых выпотах в серозных полостях. Это обусловлено незначительной глубиной проникновения β частиц.

При проведении терапии через катетер специальным шприцом вводится коллоидный раствор Au198 на 3-4 часа. Расчёт доз довольно сложен, однако надо учитывать такие переменные факторы:

- объём мочевого пузыря увеличивается за время лучевой терапии с

50 до 250 мл;

- это влечёт за собой уменьшение концентрации изотопа;

- при растяжении тканей мочевого пузыря истончается стенка, и ранее недоступные для облучения слои становятся доступными.

Отрицательной стороной этого метода является непосредственный контакт изотопа с органами человека и вероятность сброса радиоактивных веществ в канализацию. Внутриполостное облучение может проводиться при непрерывном или фракционном режиме. Доза 50-60 Грей может быть подведена за 8-10 фракций (сеансов) по 4-5 Грей.

4.1.2. Внутритканевые методы терапии

Способ лучевой терапии при котором радиоактивное вещество во время лечения находится внутри ткани опухоли называется внутритканевым. Внутритканевая терапия показана при хорошо отграниченных, небольших по объёму опухолях, расположенных в доступном для манипуляций месте. Перспективно использование внутритканевой терапии в подвижных органах: нижняя губа, мужские и женские половые органы, язык, молочная железа. В качестве источника излучения используются изотопы Co 60, Ra-226, Cs 137, I 125. Внутритканевая лучевая терапия может проводиться при использовании изотопов в виде игл, проволоки или гранул. Основной задачей внутритканевой лучевой терапии является создание равномерного дозного поля.

4.1.2.1. Внутритканевая γ терапия с использованием игл содержащих радиоактивный изотоп. Как правило, игла выполняется из нержавеющей стали, диаметр 1,8 мм, внутри расположен штифт из изотопа кобальта, в хвостовой части иглы имеется отверстие для нитки.

Под местной анестезией стерильные иглы с помощью специального набора инструментов вводят в ткань опухоли и окружающие опухоль ткани. Расстояние между иглами составляет 1 см, слоями. Конфигурация зависит от размеров и формы опухоли. Если опухоль имеет толщину более 1 см то иглы располагаются в 2 или несколько слоёв. Нитка, завязанная на ушке фиксируется на коже, или прошивается за кожу. Правильность стояния источников должно подтверждаться рентгенологически. Больной располагается в «активной» палате. После подведения рассчитанной дозы игла удаляется путём простого потягивания за нить и помещается в хранилище радиоактивных веществ. Дозиметрия производится путём расчётов исходя из активности источника. При этом 2/3 всей дозы должно быть распределено по периферии опухоли, а 1/3 равномерно по всей площади. Расчёт доз для каждого слоя производится отдельно, но при расстоянии между слоями в 1,5, 2,0, 2,5 см происходит увеличение дозы на 25, 40, 50 %. Для жесткости фиксации иглы на коже могут располагаться апликаторы в виде пластин с отверстиями, в которых жестко фиксированы иглы.

К недостаткам метода можно отнести сложность расчёта доз, наличие некротического канала вокруг источника, что приводит к смещению и выпадению источников.

4.1.2.2.Внутритканевая γ терапия гранулами. Для внутритканевой γ терапии используются гранулы Со-60 и Au –198. Этот вид терапии лишен тех недостатков которые присущи для радиоактивных игл. Использование изотопа возможно при изготовлении из него гранул и помещение их в нейлоновые трубочки. Положительной стороной метода является минимальная травматизация тканей. Источником излучения являются гранулы Со-60 покрытые золотом, помещённые в нейлоновые трубочки. Золото и нейлон являются фильтрами для β и вторичного γ излучения. Диаметр гранул составляет 0,7 мм, толщина трубочки 1,3 мм. Чередуя активные и неактивные (алюминий) гранулы, можно добиться любой активности линейного источника. Методика внедрения гранул является радиохирургической манипуляцией, и производится в радиологической операционной. После инфильтрации тканей новокаином, производится прошивание опухоли нейлоновыми трубочками содержащими изотоп. Если опухоль толще 1,5 см, то производится прошивание дополнительным рядом швов. После экспозиции необходимой для получения 60 -70 Грей нить удаляют, а гранулы помещают в хранилище.

Внутритканевая γ терапия гранулами золота –198. У золота –198 основной спектр излучения – β и только 5%- излучения испускается в виде γ излучения. Гранулы диаметром 0,8 мм покрываются для фильтрации β излучения платиной. Учитывая незначительный, всего 2,7 дня, период полураспада, гранулы после имплантации в опухоль при помощи можно не извлекать, а оставлять на всю оставшуюся жизнь.

Оптимальной дозой при проведении лучевой терапии является доза 0,2-0,4 Гр/час, что позволяет за 6-7 дней набрать дозу 60-70 Гр.

Понятно, что эти методики внутритканевой терапии представляют опасность для персонала во время манипуляций и процедуры введения. Это сильно ограничивает их применение.

4.1.2.3. Внутритканевая γ терапия путём последовательного введения источников (afterloading). Методика последовательного введения полого инструмента с последующим заполнением последнего радиоактивным препаратом не нова и впервые была применена ещё в 1903 году. В современном исполнении эта методика выглядит как прошивание опухоли полыми нейлоновыми трубками, с последующим введением в них радиоактивной проволоки. Этим решаются главные задачи терапии: строгая геометрическая локализация трубок и сокращение пребывания персонала под действием ионизирующей радиации.

В современном исполнении эта методика представляет определённый интерес в связи с распространением органосохраняющих операций при раке молочной железы. Основным препятствием для их широкого распространения являются местные рецидивы, которые, в свою очередь обусловлены внутрипртоковому опухолевому компоненту. Выход был найден в сочетании органосохраняющего лечения и местной лучевой терапии. Во время операции производится прошивание краёв и дна раны полыми полимерными трубками. После операции в трубочки вводится источник излучения, обычно проволока или бусы из иридия 192(Ir 192). Полимерные, из силиконовой резины трубочки являются фильтром для β излучения. После получения расчётной дозы источник удаляется, трубки вынимаются. Лучевая терапия на парастернальную клетчатку и надключичные лимфоузлы проводится при с использованием дистанционной лучевой терапии.

4.1.2.4. Внутритканевая β терапия.

Внутритканевая β терапия это метод введения в опухоль жидких радиоактивных веществ. При проведении терапии должны учитываться такие факторы как период полураспада, спектр излучения, биологическая органная тропность, удельная активность, токсичность, пути выведения, период выведения изотопа из организма.

Для внутритканевой терапии используются изотопы с коротким периодом полураспада:

Иттрий (Y 90)

Серебро (Ag 111)

Лютеций (Lu 177)

Прометий (Pm 148)

Наиболее часто используются коллоидные растворы, они не вступают в обменные процессы, а значит не токсичны. Раствор вводится в

опухоль шприцом при помощи инъекции. Создаётся объёмное распределение изотопа по опухоли.

Методика введения: после новокаиновой блокады ровными рядами, через равный интервал, вкалываются иглы в опухоль. Для препятствия вытекания коллоидного раствора иглы вводят со смещением. Инфильтрацию производят по 0,5-0,7мл. коллоидного раствора на 1 см длинны канала. Больной располагается в «активной» палате. Решение об окончании терапии и отсутствии опасности для окружающих производится после контрольной дозиметрии.

Отрицательной стороной этого метода является невозможность создания равномерного распределения изотопа по опухоли, выведение изотопа в окружающую среду, опасность облучения для окружающих, сложность изготовления и транспортировки короткоживущих изотопов.

4.1.2.5. Радиохирургический метод. Одной из разновидностей внутритканевой терапии является интраоперационный или радиохирургический метод. Суть метода состоит в том, что во время операции создаётся доступ к опухоли. Этот метод может применяться при большом объёме опухоли, без видимых отдалённых метастазов. В качестве источника излучения используются или коллоидные растворы изотопов с коротким периодом полураспада, однако возможно использование игл, проволоки или полых трубочек с радиоактивными бусами. Понятно что предпочтение отдаётся методикам использующим короткоживущие изотопы, так как нет необходимости их удалять. Цель такой терапии может быть различная в зависимости от объёма выполняемой операции. При полном удалении опухоли, введение источников излучения в ложе патологического образования направлено на уничтожение клеток опухоли, оставшихся в ране. Однако, операция может использоваться и с целью создания подхода к опухоли чтобы внедрить радиоактивные изотопы. Принципиально, второй вариант радиохирургии практически не применяется в связи с тем, что при использовании УЗИ возможен доступ практически к любому органу без кожных разрезов, при помощи пункции. Отрицательной стороной этого метода является наличие лучевой нагрузки на персонал, в основном во время окончания операции.

4.1.3.Аппликационый метод облучения.

При расположении опухоли на поверхности слизистых оболочек, возможна лучевая терапия поверхностно расположенным источником, расположенным непосредственно на поверхности или в некотором отдалении. Такие методы лучевой терапии называются аппликационными.

4.1.3.1. Аппликационная β терапия. При расположении опухоли в поверхностных (до 4 мм) слоях, возможна лучевая терапия фосфором 32, иттрием 90, таллием 204, прометием 147, стронцием 90, ксеноном 144. Пластины изготавливаются из ионообменных смол в виде пластин различных размеров. Радиоактивное вещество располагается на поверхности в виде пластинки толщиной от 0,1 до 0,35 мм. В аппликаторах максимальная мощность располагается на поверхности, и сам аппликатор не должен превышать площадь опухоли более чем на 3-4 мм.

4.1.3.2. Аппликационная γ терапия применяется в случаях если патологический процесс более 4 мм ( 2-3 см). Для такой терапии необходимо изготовление муляжа, моделирующего поверхность опухоли. Чаще муляж изготавливают из парафина или пластмассы, контур опухоли очерчивается. После этого внутри этого контура укладывают радиоактивные изотопы. Облучаемая поверхность должна на 1-2 см превышать видимую границу опухоли. Препараты могут располагаться по одной окружности, по окружности и препаратом в центре, в виде концентрических окружностей. Возможно расположение в виде прямоугольника ил какой либо геометрической фигуры в зависимости от формы опухоли. Аппликационная терапия может проводиться непрерывно или в виде фракционного облучения. Суммарная доза 50-60 Грей, при разовой дозе 5-6 грей. Из отрицательных свойств этого вида лучевой терапии – наличие местной реакции в виде мукозита или влажного дерматита. Отрицательной стороной аппликационной лучевой терапии является контакт персонала с ионизирующим излучением в процессе изготовления аппликатора, а кроме того большую проблему представляет сам аппликаор, его утилизация, так как он опасен в связи с наведением вторичного излучения.

4.1.3. Близкофокусная рентгентерапия.

К близкофокусной рентгенотерапии с 1959 года по рекомендации МАГАТЭ относятся все методы лучевой дистанционной терапии с расстоянием источник – поверхность менее 20 – 30 см. Однако, многие исследователи относят к этому виду терапии только те дистанционные методы, которые имеют РИП (растояние источник-поверхность) менее 10 см. Близкофокусная рентгенотерапия отличается от глубокой тем, что генерирующее напряжение на электродах не превышает 60кв, расстояние от источника до поверхности не более 7,5 см, площадь облучения не более

5х5 см. Чаще всего показанием для этого вида лучевой терапии является опухоли кожи и видимых слизистых оболочек (рак, базалиомы).

Основным лучевым компонентом является коротковолновый, который собственно и обеспечивает терапевтический эффект. Длинноволновое или мягкое излучение убирается при помощи алюминиевого или медного фильтра толщиной 3,5 9, 12 мм. Для того, чтобы ввести количественную характеристику для близкофокусной терапии, то есть учитывать спектральную характеристику и различное расстояние от поверхности до источника вводится такое понятие слой половинной дозы. Этим термином обозначается слой ткани по оси основного луча, где доза излучения в 2 раза меньше, чем на его поверхности.

Дозиметрическая подготовка к близкофокусной терапии включает в себя следующие этапы.

- в зависимости от стадии и локализации выбирается кривая половинного поглощения по Шаулю (Chaoul)

- задаётся суммарная поглощённая доза в греях на глубине, соответствующего слою половинного ослабления

- вычисляется глубинная доза и количество сеансов облучения

- определение суммарной дозы (в 2 раза больше очаговой)

- устанавливается разовая поверхностная доза

- вычисляется время облучения.

К отрицательной стороне этого метода можно отнести высокую частоту лучевых реакций. Лучевые реакции при довольно высоких (100-80 Гр) очень часты, однако они зависят от режима фракционирования, то есть чем выше разовая доза, тем раньше и более выражена будет лучевая реакция.

4.1.4. Метод избирательного накопления изотопов в тканях.

При ряде заболеваний опухоль обладает способностью избирательного накопления в ткани определённые химические элементы, в том числе и радиоактивные изотопы. Для лучевой терапии возможно применение изотопов фосфора (Р - 32), йода (I - 131) и золото (Au - 198).

Радиоактивный фосфор применяется в виде раствора фосфорнокислого натрия (Na2 H P O32 ) применяется при гемобластозах (лимфомы, лейкозы). Вводится в растворе до 740× 10 6 Бк внутривенно1-2 раза в неделю в течении 4-6 недель. Повторные курсы облучения проводятся через 6-7 мес. Пациент в течении 7-8 дней помещается в «активную» палату. Суммарная доза 4000-6000 × 10 6 Бк Выведение изотопа из организма производится в основном через почки. После 7 суток выделяется около 50% изотопа.

Радиоактивное золото применяется в виде коллоидного раствора при лейкозах. Доза составляет 185-370× 10 6 Бк на 1 кг больного, суммарная доза не превышает 1850× 10 6 Бк.

Радиоактивный йод (I-131) применяется как самостоятельный метод лечения при раке щитовидной железы. Клетки рака щитовидной железы сохраняют способность к захвату I-131 даже находясь в отдалённых областях – метастазах. При распространённых формах рака щитовидной железы суммарная доза составляет от 37000× 10 6 до 55000× 10 6 Бк., при неоперабельных формах 18500× 10 6 Бк каждые 2-3 недели до

222000× 10 6 Бк.

4.2. Дистанционные методы лучевой терапии.

Дистанционной терапией по решению МАГАТЭ от 1959 года относят такие виды лучевой терапии, при которых расстояние РИП (расстояние источник-поверхность) более 10 см. Выделяют следующие виды дистанционной лучевой терапии злокачественных новообразований (по И.А. Переслегину и Ю.Х. Саркисяну):

3. Терапия быстрыми электронами А. Статическая Б. Подвижная

4. Рентгенотерапия

А. Статическая Б. Подвижная

4.2.1. Дистанционная γ - терапия.

Главными условиями к источнику для проведения γ терапии является следующие: источник должен обладать высокой энергией γ квантов, иметь большой период полураспада (годы), его получение не должно быть связано со значительными материальными затратами.

Основным источником для γ терапии является Со-60. Размер источника 2× 2 см что удобно для транспортировки изотопа и дозировке лучевой терапии. Активность установки с СО-60 теряет 1,1% активности в месяц, что обусловливает необходимость пересчёта доз 1 раз в 3 месяца.

Основным блоком терапевтической гамма γ является головка аппарата, где внутри свинцового кожуха находится блок изотопа Со-60. В одном месте в кожухе сделано коническое окно, снабжённое затвором из вольфрама. Применение источников большой мощности позволяет быстро проводить сеанс лучевой терапии, однако требует довольно большой толщины стенок кожуха (защиты). Внутри кожуха имеется приспособление для центрации луча.

7673 0

Методики внутриполостной гамма-терапии РШМ

В настоящее время внутриполостное облучение проводится с использованием трех различных вариантов: 1) общепринятая методика; 2) методика по принципу ручного последовательного введения аппликаторов и радионуклидов низкой мощности дозы и 3) методика по принципу автоматизированного введения радионуклидов высокой активности с помощью шланговых гамма-терапевтических аппаратов.

Внутриполостная гамма-терапия по общепринятому варианту

Внутриполостная гамма-терапия прошла значительную эволюцию, что нашло отражение в классических методиках: «парижской», «манчестерской», «стокгольмской». В 60-70-е годы они были усовершенствованы В. П. Тобилевичем, Fletcher.

Подробное описание этих методов и результатов лечения было представлено нами ранее в монографии «Клиника и лечение рака шейки матки» [Бохман Я. В., 1976]. Общепринятые варианты внутриполостной гамма-терапии предполагают введение в полость матки и влагалище радионуклидных источников типа 60Со линейной формы, суммарная активность которых равна 0,91—1,82 МБк. Продолжительность сеанса облучения при этом методе — 24—48 ч.

Для равномерного распределения лучистой энергии в малом тазу предложены различные модели кольпостатов (Г. Флетчера, В. П. Тобилевича и др.). Назначение их сводится к фиксации радионуклидов в определенном положении. Интервалы между сеансами внутриполостного облучения обычно составляют 5-7 дней. Разовые поглощенные дозы при этом в точках А в зависимости от стадии РШМ составляют 10-15 Гр, в точках В — 3—5 Гр, суммарные в точках А — 60—80 Гр, в точках В — 12-18 Гр.

Расчет поглощенных доз при внутриполостной гамма-терапии проводится на анатомические области: зону парацервикального треугольника (точки А) и латеральные отделы параметральной клетчатки (точки В). Точки А расположены в месте пересечения маточной артерии и мочеточника, в верхнем отделе так называемого парацервикального треугольника, захватывающего клетчатку вблизи шейки матки. Они могут занимать различные положения по отношению к костным структурам малого таза.

Определяются эти точки учета на расстоянии 2 см от источников, введенных в полость матки, и па 2 см выше бокового свода влагалища. Точки В соответствуют локализации запирательных лимфатических узлов, расположены на том же уровне, что и точки А, но отстоят на 5 см от центральной оси малого таза, независимо от локализации матки и введенных в нее источников излучения.

В дальнейшем было предложено также проводить дозиметрию в точках V (задняя стенка пузыря в области треугольника Льето) и R (передняя стенка прямой кишки) в проекции внутреннего зева шейки матки. В последние годы в практику клинической дозиметрии введены новые критические точки. В точке Т измеряется поглощенная доза непосредственно в первичной опухоли: она находится на 1 см выше наружного зева и на 1 см латеральнее линейного источника, находившегося в цервикальном канале. Точка С — область наружных подвздошных лимфатических узлов. Точка D находится на 1 см выше конца линейного источника в полости матки.

Врачебный опыт, внимательное изучение динамики регресса опухоли, цитологические исследования в процессе лечения имеют не меньшее значение в определении оптимальных для каждой больной доз, чем их регистрация в точках учета. По остроумному выражению Fletcher, «надо лечить опухоль, а не алфавит».

При внутриполостной гамма-терапии по общепринятому методу доза излучения на непораженные опухолью органы и ткани может оказаться значительной. Вводимые в матку и влагалище радионуклиды обычно не связаны между собой. Поэтому возможность их смещения за длительный сеанс облучения (24— 45 ч) приводит к деформации дозного поля. Это ухудшает условия облучения опухоли и вызывает увеличение дозовых нагрузок на мочевой пузырь и прямую кишку.

Внутриполостная гамма-терапия по принципу ручного последовательного введения радионуклидных источников

Совершенствование метода впутриполостной гамма-терапии было достигнуто за счет разделения во времени всего лечебного процесса на 2 этапа: первый — подготовительный, осуществляемый вне сферы воздействия ионизирующего излучения, и второй — окончательный, представляющий собой непосредственно процесс облучения больной. Этот принцип проведения внутриполостной гамма-терапии получил название 2-этапного последовательного введения аппликаторов и источников излучения (afterloading). Развитие его ведется по двум направлениям. Первое — совершенствуется методика ручного введения источников низкой активности (simple afterloading), второе — разрабатывается методика дистанционного автоматического введения источников излучения высокой активности (remote afterloading).

При методике ручного способа введения источников излучения (simple afterloading) первый этап — подготовительный — осуществляется вне зоны воздействия ионизирующего излучения и состоит из введения эндостатических устройств и фиксации их относительно опухоли; рентгенологического контроля пространственного размещения лечебных наконечников и тонометрических измерений; дозиметрической подготовки и выбора программы облучения.

Препараты 60Со, предназначенные для введения во влагалищные и маточные аппликаторы, укреплены на металлических стержнях пружинками, позволяющими поворачивать их в полости овоидов. Источники излучения для маточного аппликатора помещены в нейлоновую трубку, их число определяется длиной полости матки и цервикального канала.

Сеансы внутриполостной гамма-терапии проводятся 1 раз в 5—6 дней. Цервикальный канал расширяют до 5—6-го номера расширителя Гегара и вводят неактивные маточный и влагалищный аппликаторы. Систему кольпостата фиксируют стерильным тампоном, что обеспечивает устойчивое положение кольпостата и возможно большее расстояние между источниками излучения, прямой кишкой и мочевым пузырем.

Правильность установки системы контролируется рентгенологическим исследованием, проводимым непосредственно на гинекологическом кресле с помощью рентгеновского аппарата. Снимки выполняются в двух проекциях — фронтальной и сагиттальной. При этом 3 трубки кольпостата заполняются имитаторами радиоактивных препаратов, а прямая кишка и мочевой пузырь контрастируются резиновыми катетерами.

Двухплоскостное изображение кольпостата помогает определить лучевые нагрузки на первичную опухоль и смежные органы. В 5% случаев возникает необходимость в соответствующей коррекции установленной системы. Она состоит в изменении положения овоидов или выборе более подходящего количества имитаторов источников, вводимых в матку.

Транспортировка больных в палату производится после завершения рентгеновского исследования и подтверждения правильности размещения неактивной системы метракольпостата. Радионуклидные источники вводятся в трубку, когда больная находится уже в кровати с прикроватной защитной ширмой. Суммарная активность нуклида в радиоактивном источнике равна 0,91—1,82 МБк. Продолжительность сеанса облучения — 22—26 ч. Расчет поглощенных доз осуществляется по данным рентгенограмм с учетом расстояния между источником излучения и точками учета доз в малом тазу.

При одинаковой активности источников, введенных в матку и влагалище, прямая кишка подвергается наибольшему облучению от влагалищных аппликаторов. Разовые поглощенные дозы в прямой кишке варьируют в пределах 5,5—7 Гр. В ряде наблюдений они превышают 10 Гр. Своевременное обнаружение высоких дозовых значений в мочевом пузыре и прямой кишке позволяет изменить набор и экспозицию радионуклидных препаратов или же изменить соотношение активностей источников, вводимых эндоцервикально и эндовагинально. Это предупреждает тяжелые радиационные повреждения смежных с шейкой матки органов.

Сравнительному анализу подвергли непосредственные, ближайшие и отдаленные результаты лучевого лечения 359 больных РШМ, 153 из которых (1-я группа) лечились сочетанным лучевым методом с применением внутриполостной гамма-терапии в общепринятом варианте, 206 (2-я группа) — подвергались внутриполостной гамма-терапии по принципу ручного последовательного введения радиоактивных источников [Вишневская Е. Е., 1983].

Оценка частоты и тяжести ранних лучевых реакций и осложнений, наблюдавшихся у больных двух анализируемых групп, не выявила существенных различий. Однако частота поздних эрозивно-десквамативных и язвенных ректитов во 2-й группе снизилась более чем в 4 раза, катаральных и язвенных циститов — в 1,2 раза, а такие лучевые повреждения, как ректо- или везиковагинальные свищи, вообще не наблюдались.


5-летняя выживаемость больных РШМ I стадии, лечившихся по принципу ручного последовательного введения источников излучения низкой активности, составила 95,7%, II стадии — 75,1%, III стадии — 58,5%. Выживаемость при этом методе значительно выше, чем у лечившихся с помощью общепринятого метода внутриполостной гамма-терапии, где соответственно стадиям она составила 76,2, 65,5 и 39,2%.

Методика виутриполостной гамма-терапии на аппарате АГАТ-В

Применение шланговых аппаратов со специальным устройством, позволяющим дистанционно управлять процессом облучения, существенно улучшило переносимость лечения, почти полностью исключило лучевую опасность для персонала и сократило продолжительность сеанса облучения.

Сеансу лечения больных РШМ на шланговом аппарате АГАТ-В предшествует выполнение следующих процедур: введение метракольпостата и рентгенологический контроль за пространственным размещением его элементов; тонометрические измерения и дозиметрическое определение длительности сеанса облучения. Тщательная, точная установка и фиксация эндостатов с учетом индивидуальных особенностей больной и опухолевого процесса обеспечивает возможность проведения сеанса облучения в оптимальном варианте и определяет его успех.

Загрузка...