Медицинский портал. Щитовидная железа, Рак, диагностика

Сужающая линза френеля. Парковочная линза Френеля — бюджетная альтернатива парктронику и камере заднего вида? Расчет линз Френеля

ЛИНЗА ФРЕНЕЛЯ

В предыдущем разделе мы определились, что для освещения нашей LCD панели необходима линза Френеля, или "френель". Линза названа по имени ее изобретателя, французского физика Огюстена Жана Френеля. Первоначально использовалась в маяках. Основное свойство френели в том, что она легкая, плоская и тонкая, но при этом обладает всеми свойствами обычной линзы. Френель состоит из концентрических канавок треугольного профиля. Шаг канавок сопоставим с высотой их профиля. Таким образом, получается, что каждая канавка является как бы частью обычной линзы.

Нужно отметить, что в проекторе вместо одной френели используется пара. Если тебе попадется френель от оверхед-проектора, обрати внимание, что она с обеих сторон гладкая, т.е. на самом деле состоит из двух френелей, обращенных ребристыми поверхностями друг к другу и склеенных по периметру.

Зачем использовать две френели и можно ли обойтись одной?

Взгляни на схему и все станет ясно.

Если использовать только одну френель, необходимо, чтобы лампа находилась примерно в двойном фокусе. Лучи от лампы будут также сходиться примерно в двойном фокусе. Минимальное фокусное расстояние у доступных френелей составляет 220 мм. Это означает, что конструкцию придется сильно удлинить. Но самое главное -- при таком расстоянии от лампы до френели эффективный телесный угол лампы оказывается очень мал.

При использовании 2 френелей от обоих недостатков удается избавиться. Источник света располагается чуть ближе фокусного расстояния от левой френели, а она формирует "мнимый" источник за пределами двойного фокусного расстояния правой френели. После прохождения правой френели лучи будут сходится между фокусом и двойным фокусом.

Вернемся к нашей оптической схеме из предыдущего раздела (имеем в виду, что у нас две френели, хотя нарисована одна):

Помнишь, я говорил, что эта схема упрощена? Если бы все было так, как нарисовано, объектив нам был бы не нужен. Каждый луч от источника света проходил бы через единственную точку френели, затем через единственную точку на матрице и летел бы себе дальше, пока не наткнется на экран и не сформирует на нем точку нужного цвета. Для точечного источника и идеальной матрицы это было бы верно. Теперь добавляем реализма - неточечный источник.

В виду того, что у нас в качестве источника света используется лампа, т.е. светящееся тело вполне определенных, конечных размеров, реальная схема прохождения лучей будет выглядеть следующим образом:

1-й этап построения - левая френель формирует "мнимое изображение" электрической дуги лампы. Оно необходимо нам, чтобы правильно построить ход лучей через правую френель.

2-й этап построения - забываем про наличие левой линзы и строим ход лучей для правой линзы, как если бы "мнимое" изображение было реальным.

3-й этап - отбрасываем все лишнее и объединяем две схемы.

Нетрудно догадаться, что именно в той точке, где формируется изображение дуги лампы, нам и нужно установить объектив. Изображение дуги при этом несет в себе информацию о цвете каждого пикселя матрицы, через которую прошел свет (на рисунке не показана).

Какое фокусное расстояние должно быть у френелей?

Френель, обращенная к лампе, берется максимально короткофокусной для большего угла охвата. Фокусное расстояние второй френели должно быть на 10-50% больше фокусного расстояния объектива (1-2 см расстояние от френели до матрицы, сама матрица находится между фокусом и двойным фокусом объектива, в зависимости от расстояния от объектива до экрана). Фактически на рынке наиболее распространены френели с 2 значениями фокусных расстояний: 220 мм и 330 мм.

При выборе фокусного расстояния френелей нужно обращать внимание на тот факт, что, в отличие от обычных линз, френели капризны к углу падения света. Поясню двумя схемами:

Каприз заключается в том, что лучи, падающие на рифленую поверхность френели, должны быть параллельны оптической оси (или иметь минимальное отклонение от нее). В противном случае эти лучи "улетают вникуда". На левой схеме источник света находится приблизительно в фокусе левой линзы, поэтому лучи между линзами идут почти параллельно оптической оси и в итоге сходятся приблизительно в фокусе второй линзы. На правой схеме источник света расположен гораздо ближе фокусного расстояния, поэтому часть лучей попадает на нерабочие поверхности правой линзы. Этот эффект тем больше, чем больше расстояние от фокуса до источника и чем больше диаметр линзы.

1. Линзы должны размещаться рифлеными сторонами друг к другу, а не наоборот.

2. Источник света желательно располагать как можно ближе к фокусу первой линзы, и как следствие:

3. Возможности по перемещению источника света для регулировки точки схождения пучка в объектив ограничены всего несколькими сантиметрами, иначе - потрея яркости картинки по краям и появление муара.

Какого размера должны быть френели?

Из какого материала должны быть френели?

Наиболее доступны в настоящий момент френели из оптического акрила (оргстекла, иначе говоря). Они имеют отличную прозрачность и немного эластичны. Для нашей цели этого достаточно, учитывая, что качество френелей АБСОЛЮТНО НЕ ВЛИЯЕТ на резкость и геометрию картинки (только на яркость).

Как обращаться с френелями?

1. Не оставляй отпечатков пальцев на рифленой стороне френели. Тщательно мой руки с мылом перед любыми операциями над френелями. Лучше всего с момента покупки и до окончания экспериментов обернуть френели полиэтиленовой пленкой для упаковки продуктов.

2. Если отпечатки на рифленой стороне все-таки появились, НЕ ПЫТАЙСЯ их стереть. Никакие моющие средства (в т.ч. средства для мытья окон на основе нашатыря) не помогают, т.к. не проникают достаточно глубоко. Наружные ребра канавок при этом слегка скругляются, а между канавками забиваются частички от салфетки/ваты, используемой для протирки. В итоге френель начинает рассеивать лучи. Лучше оставить с отпечатками. Гладкую сторону протирать можно, но только будучи уверенным, что моющее средство не попадет на рифленую сторону.

3. Следи за температурным режимом. Не допускай нагрева френелей выше 70 градусов. При 90 градусах линзы начинают плыть, а пучок света теряет форму. Лично я запорол один комплект линз из-за этого. Для контроля температуры используй тестер с термопарой. Продается в любом радиомагазине.

ОБЪЕКТИВ

Что такое объектив и зачем он нужен, думаю, ты понял. Самое главное правильно его выбрать, а, выбрав, найти, где купить:) Для выбора нам необходимо знать 4 основные характеристики:

Количество линз

В принципе объективом может служит и одна линза, например лупа. Однако чем дальше от центра картинки, тем хуже будет ее качество. Появятся сферические искажения (абберации), хроматические абберации (за счет разных углов преломления лучей различных длин волн белая точка, например, превращается в кусочек радуги), потеря резкости. Поэтому для достижения максимального качества картинки используются ахроматические объективы из 3 или более линз. Такие использовались в эпидиаскопах, старых фотокамерах, аппаратах для аэрофотосъемки и т.п. В оверхед-проекторах также используются трехлинзовые объективы, но такие модели проекторов дороже, чем модели с однолинзовыми объективами.

Фокусное расстояние

От фокусного расстояния объектива зависит, на каком расстоянии от исходного объекта (матрицы) его нужно расположить и какого размера изображение на экране ты получишь. Чем больше фокусное расстояние, тем меньше размер экрана, тем дальше от экрана можно разместить проектор, тем длиннее корпус проектора. И наоборот.

Угол зрения

Показывает, какого размера исходное изображение может охватить объектив, сохраняя приемлемую яркость, резкость (разрешающую способность) и т.п. "Приемлемое" - понятие растяжимое. Если для аэрофотообъектива в паспорте указан угол зрения, например, 30 градусов, это может означать, что реально он охватит и 50 градусов, но резкость по краям для аэрофотосъемки уже не годится, зато для нашего проектора, где не нужна большая разрешающая способность, вполне подойдет.

Светосила и относительное отверстие

Относительное отверстие, если упрощенно -- отношение диаметра объектива к его фокусному расстоянию. Обозначается в виде дроби, например 1:5,6, где 5,6 - "диафрагменное число". Если у нас есть объектив с диаметром внутренней линзы 60 мм и фокусным расстоянием 320 мм, его относительное отверстие будет равно 1:5,3. Чем больше относительное отверстие (меньше диафрагменное число), тем больше светосила объектива - способность передавать яркость объекта - и тем обычно хуже резкость/разрешающая способность.

Каким должно быть относительное отверстие?

Относительное отверстие можно найти, зная диаметр линз и фокусное расстояние. Применительно к нашей оптической схеме можно сказать, что диаметр линз объектива должен быть не меньше размера изображения дуги лампы, формируемого френелями. Иначе часть света лампы будет потеряна.

Тут настало время сделать еще одно уточнение к нашей оптической схеме.

Очевидно, что матрица рассеивает проходящие сквозь нее лучи. Т.е. каждый луч, попадающий на матрицу, выходит из нее уже в виде пучка лучей с различным угловым отклонением. В итоге изображение дуги лампы в плоскости объектива оказывается "расплывчатым", увеличивается в размерах, однако продолжает нести в себе информацию о цветах пикселей матрицы.

Наша задача - собрать это "расплывчатое изображение дуги" объективом полностью.

Отсюда вывод: относительное отверстие объектива должно быть таким, чтобы собрать изображение лампы, но не более того.

Какими должны быть фокусное расстояние и угол зрения?

Эти параметры определяются размером исходного изображения (матрицы), расстояния от объектива до экрана и размером желаемого изображения на экране.

F объектива=L*(d/(d+D)), где

L-расстояние до экрана

d-диагональ матрицы

D-диагональ экрана

Вот калькулятор для расчетов (содранный с www.opsci.com , слегка адаптированный и переведенный на понятный язык)

Крупными буквами печатались слова совершенно несущественные, а все существенное изображалось самым мелким шрифтом.
М.Е. Салтыков-Щедрин

Всякий раз, перечитывая Михаила Евграфовича, поражаешься прозорливости тверского вице-губернатора. Вот откуда он узнал про продукты сырные , напитки пивные и прочий притворившийся едой корм, с крошечными буковками на упаковках?! Да, буковки разглядеть в 20 лет без проблемы. Но молодость - недуг, что проходит сам собой. И если у вас свои глаза ещё позволяют микротексты жёлтым по розовому читать, вашим старикам может очень пригодиться.

В принципе, наштамповать такие штуки (называется линза Френеля) не сложно. Штука сделать годную. Я опасался гораздо худшего. Но с качеством явно повезло.

Предварительный тест

На упаковке иероглифами написано «Увеличительное стекло высокой чёткости в формате визитки». Взял первую попавшуюся листовку. Кстати, можно грубо оценить увеличение.


Видим, что изображение не как в хорошем объективе - по направлению от центра к периферии чёткость немного падает. Но остаётся вполне приличным. В самой нижней части, где линза прикреплена к рамке - искажение. Но радужных разводов (хроматическая аберрация) и дисторсии (превращения квадрата в подушку или бочку) не заметно

Иллюстрации про аберрации

Дисторсия

Хроматическая аберрация

И пример

Как линза Френеля устроена

Дополнительная информация

Линза Френеля из экспозиции музея маяков в Пойнт Арена, Калифорния


Обычно для понимания идеи линзы Френеля приводят подобные картинки.


."… давайте разрежем плоско-выпуклую линзу на кольца и сложим их к плоскости." Конечно, это лишь упрощённая модель. Во-первых, в таком варианте разные зоны не соберут свет в одной точке, будет сдвиг вдоль оптической оси. Во-вторых, чтобы линза работала для наклонных пучков, переход от зоны к зоне делают не отвесным, а наклонным. В третьих, приходится искать компромисс между узкими и широкими кольцами… В результате расчёт получается достаточно сложным. Но нам, к счастью, считать и не надо:) Надо изготовителю.

Доставка и упаковка

Заказ 19 июля 2018, отгрузка 22 июля, получено 06 августа. Полный трек

Транспортная упаковка - серый ПЭ пакет. Коммерческая упаковка - прозрачный ПЭ пакет. Оба не заслуживают личных портретов.

Спецификация

Прозрачная лупа RIMIX
Цвет: Случайный
Материал: ПВХ
Размер: 85x55x1
Увеличение: 3 X

Внешний вид

Линза укомплектована пластиковым чехлом-кармашком, защищающим оптическую поверхность от царапин и загрязнений. Надпись иероглифами на чехле «Увеличительное стекло высокой чёткости в формате визитки» (Карта Тройка - для масштаба. Соответствует по размерам пластиковой банковской карте, но не палит номера карты.


Размеры карточки (не чехла) точно соответствуют размерам пластиковых карт


Увеличение на глаз я бы оценил раза в два, вот и проверим.

Фокусное расстояние

Проверяемых характеристик, кроме размеров всего одна - 3X увеличение
На бытовом уроне под увеличением понимают частное от деления расстояния оптимального зрения (принимается 250 мм, хотя у разных глаз - разное) и фокусного расстояния линзы. Приблизительно* измерить его проще всего, построив изображение от удалённого источника и измерив дистанцию от линзы до изображения. В качестве удалённого источника идеально подходит солнце за облаком - на листе бумаги появляется изображение не только солнца, но и облаков. То, что линза Френеля построила вполне чёткое изображение меня приятно удивило. Это на обычной линзе получается почти всегда. Линзы Френеля вроде нашей часто делают грубее и вместо изображения облаков получается туман. К сожалению, сфотать это дело мне это не удалось - диапазона яркостей камеры смартфона не хватило:(

*Прим. для зануд

На самом деле измерять нужно не от края лупы, а от т.н. задней главной плоскости. Но с нашей точностью разницей можно пренебречь. Тем более, что у линзы Френеля строго говоря столько же пар главных плоскостей, сколько кольцевых зон:)

Так вот, фокусное расстояние я намерил грубо 140 мм. То есть увеличение реально около 2Х крат (при 3, напомню, обещанных). А оптическая сила - около 7D. 7 диоптрий - это много по меркам очков. Характерная оптическая сила очков для пенсионеров 2-2.5-3 диоптрии. Хотя бывает и много больше, конечно.

В магазине

Это, конечно, главное применение. Линза нашла постоянное место в моём кошельке и пользуюсь ежедневно. Пример - типа сыр в Пятёрочке


Страшное слово ХИМОЗИН на проверку оказалось вполне законным составляющим - сычужным ферментом (хоть и вряд ли натуральным). А вот соли цианистой кислоты меня как-то напрягли.
Е536 – Ферроцианид калия
Само вещество - ферроцианид калия - очень слаботоксично, но при взаимодействии его с водой в процессе реакции выделяются ядовитые газы. Но их количество, как правило, не представляет серьезной опасности для здоровья. При взаимодействии гексацианоферрата с некоторыми кислотами может выделятся большое количество сильно-токсичного газа цианистого водорода. В пищевой промышленности используется, в основном, для предотвращения комкования и слеживания, в качестве добавки к поваренной соли. Так же применяется при производстве колбас, о чем всегда незамедлительно сообщает белый налет на оболочке продукта.

Собираем солнечный свет

Для детей такая штука тоже может быть забавной игрушкой, прежде всего жечь что-то солнечными лучами. Опыты ниже ставили в деревне на подручных подножных материалах, не стреляйте в пианиста. От чёрного шланга сразу идёт дым и воняет. На чек от термопринтера сфокусировать труднее, но получается, тк при нагреве он чернеет. А вот прожечь листок из школьной тетрадки я смог только со второй попытки и только около полудня


В процессе выяснилось, что у линзы огромная кома. На практике это означает, что держать для выжигания её нужно довольно точно перпендикулярно направлению на солнце. У меня это не вызывало проблем, а вот у дочери всё время получалось примерно вот так. (внимание на изображение на шланге)

Детские стихи: Подарил мне папа лупу

Подарил мне папа лупу
(Мне ужасно повезло!),
Всё рассматривать я буду
В это толстое стекло.

Увеличивает лупа
Всё, что только видит глаз,
Я теперь узнал, что в супе
Мама варит каждый раз.

У капусты вид ужасный -
Всё, пропал мой аппетит…
А второе съел я сразу,
И теперь мне не влетит.

Я поймал на кухне кошку,
Чтобы рассмотреть усы,
А она тотчас - в окошко,
Хоть страшней не лупа - псы!

Солнце светит в окна ярко,
Лучик мне в ладонь упал…
Лупу я навёл… как жарко!
Луч рассматривать я стал…

Точка обожгла ладошку
Я невольно вскрикнул… ой!..
Но поплакал я немножко,
Пряча лупу под тахтой.

Чтобы мама не ругала
Папу, лупу и меня,
Эту маленькую ранку
Смажу сам зеленкой я.

Олля Лукоева

Достоинства и недостатки

+ Неожиданно качественная картинка для такого типа линз. Говорит о качественном материале, правильном конструкторском расчёте и соблюдении технологии.
+ Лёгкая и компактная, умещается в кошельке и окажется в нужное время под рукой
+ Можно использовать в образовательных целях и как игрушку, поджигать солнечным светом
+ На длинной стороне небольшая линейка

Не дешёвый вариант. Линзы этого типоразмера есть и в разы дешевле
- Недодали кратности - 2 при заявленных 3
- В чехле не лезет в отделение для пластиковых карт. А без чехла нельзя, быстро придёт в негодность.

Итого

Линза мне понравилась больше, чем я ожидал. Ещё раз уточню, то полно предложений во много раз дешевле. Сильно сомневаюсь, что аналогичного качества. Но для целей изучения состава фальш-сыра в магазине радужные разводы по краям не смертельны. Так что каждый может выбрать под себя дешевле или качественнее. С оптикой постоянно такая петрушка.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +22 Добавить в избранное Обзор понравился +61 +96

Линзы Френеля

Линза Френеля -- сложная составная линза. Состоит не из цельного шлифованного куска стекла со сферической или иными поверхностями (как обычные линзы), а из отдельных, примыкающих друг к другу концентрических колец небольшой толщины, которые в сечении имеют форму призм специального профиля. Предложена Огюстеном Френелем.

Эта конструкция обеспечивает малую толщину (а следовательно, и вес) линзе Френеля даже при большой угловой апертуре. Сечения колец у линзы строятся таким образом, что сферическая аберрация линзы Френеля невелика, лучи от точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля).

Расчет линз Френеля

Линза Френеля - один из первых приборов, действие которого основано на физическом принципе дифракции света.

Данный прибор, и по сей день не утерял своего практического значения. Общая схема физической модели, на которой основано его действие, представлена на (рис. 1).

Рис. 1 Схема построения зон Френеля для бесконечно удаленной точки наблюдения (плоская волна)

Примем, что в точке О расположен точечный источник оптического излучения длины волны l. Естественным образом, как всякий точечный источник, он излучает сферическую волну, волновой фронт которой и изображен на рисунке окружностью. Зададимся условием изменить данную волну на плоскую, которая будет распространяться вдоль пунктирной оси. Несколько волновых фронтов этой изменяемой волны, отстающих друг от друга на l/2, изображены на (рис. 1). Для начала отметим, что рассматриваем изменяемую плоскую волну из имеющейся сферической в свободном пространстве. Поэтому, в соответствие с принципом Гюйгенса-Френеля, “источниками” данной изменяемой волны могут служить лишь электромагнитные колебания в имеющейся. И если это не устраивает пространственное распределение фазы этих колебаний, то есть волновой фронт (сферический) исходной волны. Давайте попробуем его подкорректировать. Проведем все по действиям.

Действие первое: заметим, что с точки зрения вторичных волн Гюйгенса - Френеля (которые сферические) пространственное смещение на целую длину волны в любом направлении не меняет фазы вторичных источников. Поэтому мы можем позволить себе например “разорвать” волновой фронт исходной волны как показано на (рис. 2).

Рис. 2 Эквивалентное распределение фазы вторичных излучателей в пространстве

Таким образом, мы “разобрали” исходный сферический волновой фронт на “кольцевые запчасти” номер 1, 2... и так далее. Границы этих колец, называемых зонами Френеля, определяются пересечением волнового фронта исходной волны с последовательностью смещенных друг относительно друга на l/2 волновых фронтов “проектируемой волны”. Получившаяся картинка уже существенно “попроще”, и представляет собой 2 слегка “шероховатых” плоских вторичных излучателя (зеленый и красный на рис. 2), которые однако, гасят друг друга из-за упомянутого полуволнового взаимного смещения.

Итак, мы видим, что зоны Френеля с нечетными номерами не только не способствуют выполнению поставленной задачи, но даже активно вредительствуют. Способов борьбы с этим два.

Первый способ (амплитудная линза Френеля). Можно данные нечетные зоны просто геометрически закрыть непрозрачными кольцами. Так и делается в крупногабаритных фокусирующих системах морских маяков. Конечно, этим можно не добиться идеальной коллимации пучка. Можно увидеть, что оставшаяся, зеленая, часть вторичных излучателей во-первых, не совсем плоская, а во-вторых разрывная (с нулевыми провалами на месте бывших нечетных зон Френеля).

Поэтому строго коллимированная часть излучения (а ее амплитуда - ни что иное как нулевая двумерная Фурье-компонента пространственного распределения фазы зеленых излучателей по плоскому волновому фронту с нулевым смещением, см. (рис. 2) будет сопровождаться широкоугловым шумом (все остальные Фурье-компоненты кроме нулевой). Поэтому линзу Френеля почти нереально использовать для построения изображений - только для коллимации излучения. Однако, тем не менее коллимированная часть пучка будет существенно мощнее, чем в отсутствие линзы Френеля, поскольку мы по крайней мере избавились от отрицательного вклада в нулевую Фурье-компоненту от нечетных зон Френеля.

Второй способ (фазовая линза Френеля). Можно сделать кольца, закрывающие нечетные зоны Френеля, прозрачными, с толщиной, соответствующей дополнительному фазовому набегу l/2. В таком случае волновой фронт “красных” вторичных излучателей сместится и станет “зеленым”, см. рис. 3.

Рис.3 Волновой фронт вторичных излучателей за фазовой линзой Френеля

Реально фазовые линзы Френеля имеют два варианта исполнения. Первый представляет собой плоскую подложку с напыленными полуволновыми слоями в областях нечетных зон Френеля (более дорогостоящий вариант). Второй - это объемная токарная деталь (или даже полимерная штамповка по единожды сделанной матрице, вроде грампластинки), исполненная в виде “ступенчатого конического пьедестала” со ступенькой в полдлины волны фазового набега.

Таким образом, Френелевские линзы позволяют справиться с колимацией пучков большой поперечной апертуры, одновременно являясь плоскими деталями небольшого веса и относительно небольшой сложности изготовления. Эквивалентная по эффективности обычная стеклянная линза для маяка весит с полтонны и стоит немногим дешевле, чем линза для астрономического телескопа.

Обратимся теперь к вопросу о том, что произойдет при смещении источника света вдоль оси относительно линзы Френеля, спроектированной исходно для коллимации излучения источника в положении О (рис. 1). Исходное расстояние от источника до линзы (то есть исходную кривизну волнового фронта на линзе) заранее условимся называть фокусным расстоянием F по аналогии с обычной линзой, см. (рис. 4).

Рис. 4 Построение изображения точечного источника линзой Френеля

Итак, чтобы при смещении источника из положения О в положение А линза Френеля продолжала быть линзой Френеля, нужно, чтобы границы зон Френеля на ней остались прежними. А эти границы - это расстояния от оси, на котором пересекаются волновые фронты падающей и “проектируемой” волны. Исходно падающая имела фронт с радиусом кривизны F, а “проектируемая” была плоской (красным цветом на рис. 4). На расстоянии h от оси эти фронты пересекаются, задавая границу какой-то из зон Френеля,

где n - номер зоны, начинающейся на этом расстоянии от оси.

При перемещении источника в точку А радиус падающего волнового фронта увеличился и стал R1 (синий цвет на рисунке). Значит, нам надо придумать новую поверхность волнового фронта, такую, чтобы она пересеклась с синей на том же расстоянии h от оси, дав то же MN на самой оси. Мы подозреваем, что такой поверхностью проектируемого волнового фронта может быть сфера с радиусом R2 (зеленый цвет на рисунке). Докажем это.

Расстояние h легко рассчитывается из “красной” части рисунка:


Здесь мы пренебрегаем малым квадратом длины волны по сравнению с квадратом фокуса - приближение, полностью аналогичное параболическому приближению при выводе обычной формулы тонкой линзы. С другой стороны, мы хотим найти новую границу n-й зоны Френеля в результате пересечения синего и зеленого волновых фронтов, назовем ее h1. Исходя из того, что мы требуем прежней длины отрезка MN:


Наконец, требуя h=h1, получаем:

Это уравнение совпадает с обычной формулой тонкой линзы. Более того, оно не содержит номера n рассматриваемой границы зон Френеля, а значит, справедливо для всех зон Френеля.

Таким образом, мы видим, что линза Френеля может не только коллимировать пучки, но и строить изображения. Правда, нужно иметь ввиду, что линза все-таки ступенчатая, а не непрерывная. Поэтому качество изображения будет заметно ухудшено за счет примеси высших Фурье-компонент волнового фронта, обсуждавшихся в начале этого раздела.

То есть линзу Френеля можно использовать для фокусирования излучения в заданную точку, но не для прецизионного построения изображений в микроскопических и телескопических устройствах.

Все вышесказанное относилось к монохроматическому излучению. Однако можно показать, что путем аккуратного выбора диаметров обсуждавшихся колец можно добиться разумного качества фокусировки и для естественного света.

В былые времена приближение к берегу для моряков было самой опасной частью их пути. Из-за неблагоприятных климатических условий мели или прибрежные скалы могли стать причиной кораблекрушения. Спасали моряков маяки, лучшие навигационные конструкции того времени. Долгое время на их вершинах просто разжигали костры, позже источниками света служили пока не стали применять электричество. В XIX веке светом, спасающим жизнь, стала линза Френеля, делающая свет маяка наиболее ярким и видимым издалека.

Составная сложная линза была создана Огюстеном Френелем, французским физиком, создателем волновой теории света. Линза Френеля составлена из отдельных небольшой толщины концентрических колец, примыкающих друг к другу и образующих цилиндр с источником света внутри. В сечении кольца имеют форму призм. Каждое из колец собирает свет в параллельный узкий пучок лучей, расходящийся от центра. При вращении цилиндра вокруг источника света лучи света простираются до самого горизонта. Цвет лучей, их число, временной промежуток между ними составляют особый неповторимый почерк маяка. Сводка с характеристиками различных маяков имелась на борту кораблей, и именно по ней моряки узнавали, какой маяк перед ними.

Линзы Френеля, установленные на маяках, стали важнейшим шагом в оснащении их мощными источниками света. Данные сложные составные линзы позволили увеличить концентрацию силы света до 80 000 свечей. До изобретения Френеля сфокусировать свет горящего фитиля или фонаря можно было, только поместив фонарь в фокус достаточно большого диаметра или вогнутого зеркала. Для этих целей был необходим цельный оптический элемент большого размера, который под воздействием собственной тяжести мог лопнуть. Поэтому использовались десятки вогнутых зеркал, в фокусе каждого из них находился отдельный фонарь. Это решение было неудобным.

Составная линза Френеля помогла достигнуть увеличения силы света, его концентрации в заданном направлении. Сборка отдельных оптических элементов не отражала свет, а работала на просвет, вращаясь вокруг излучающего во всех направлениях постоянного по интенсивности источника света.

С тех пор конструкции Френеля остаются непревзойденным техническим устройством, используемым не только для речных бакенов и маяков. В виде линз Френеля сначала делали стекла различных сигнальных фонарей, светофоров, автомобильных фар, деталей лекционных проекторов. Затем были созданы лупы в виде линеек, изготовленных из с малозаметными круговыми бороздками, каждая из которых являлась миниатюрной кольцевой призмой, а в целом они являли собой собирающую линзу. Полученная линза применяется как лупа для увеличения предмета, как объектив фотоаппарата, создающий перевернутое изображение.

Со временем сфера применения линз Френеля значительно расширилась. Она включает в себя разработку фототехники, различных осветительных приборов, датчиков слежения охранных систем, концентратора энергии для зеркал, применяемых в телескопах. Оптические свойства линз также используются в сфере мультимедиа. Так, компанией DNP, крупнейшим производителем высокотехнологичных проекционных экранов, на основе линзы создаются экраны Supernova. А в экранах обратной проекции применяется не только линза Френеля, но и другие оптические технологии, что позволяет получить уникальнейшие средства отображения.

В зависимости от области применения линзы могут иметь разный диаметр, различаться по типу. Известны два типа линз: кольцевые и поясные. Первые созданы для направления потока световых лучей в одну сторону. Кольцевые линзы нашли применение при ручной работе с мелкими деталями, вытеснив обычные лупы. Поясные линзы, способные пропускать пучки света в любых заданных направлениях, используются в промышленной отрасли.

Линза Френеля может быть положительной (собирающей) и отрицательной (рассеивающей). Отрицательная поливиниловая линза с коротким фокусом заметно увеличивает Она известна как линза Френеля парковочная. Расширение угла обзора, которое она дает, позволяет увидеть препятствия, находящиеся внизу за автомобилем, не входящие в поле зрения боковых зеркал или зеркало заднего обзора. Такая линза существенно облегчает маневрирование при парковке, буксировке прицепа и позволяя избежать наезда на играющих детей, животных или другие объекты.

Линза Френеля стала многофункциональным средством, ее изобретение сыграло немаловажную роль в развитии технологической сферы.

Представляет собой конструкцию из примыкающих друг к другу концентрических колец, которую придумал физик Огюстен Френель. Линза такой формы изначально использовалась в осветительных системах, экранах проекционных телевизоров, линзовых антеннах, датчиках движения и др. Это один из первых приборов, основанных на принципе дифракции света. Сегодня существует линза Френеля для чтения, хобби и прочих вариантов бытового использования. Бывают даже карманные варианты, которые удобно брать с собой.

Если вы интересуетесь увеличительной оптикой, вас наверняка заинтересует Линза Френеля. Купить в Москве ее можно у нас. Мы предлагаем низкие цены и только качественные товары. Чтобы сделать заказ, просто отправьте товар в корзину. По всем интересующим вопросам обращайтесь к нашим консультантам по телефону.

Линза Френеля Kromatech гибкая"Линейка", арт. 23149ac204

Бифокальная гибкая линза с удобной разметкой-шкалой по краям. Увеличение основной линзы – 3х, дополнительной – 6х. Размер – 19 х 6,5 см. Цвет рукоятки – синий, белый, красный, розовый, зеленый (уточняйте при покупке).

102,00 руб

Что такое линза Френеля?

Из-за маленькой сферической аберрации, преломленные световые лучи выходят практически единым параллельным пучком. То есть линзу можно представить как набор тонких колец из отдельных призм треугольного сечения, преломляющих параллельные лучи и отклоняют под таким углом, что после преломления они сойдутся в единой фокусной точке.

Бывает не только собирающая или положительная линза, но и рассеивающая (отрицательная). В отрицательной кольцевые призмы-бороздки сделаны другой формы. За счет короткого фокусного расстояние поле зрения – широкое и в нем может в уменьшенном виде поместиться участок изображения в 2-3 раза больший, чем можно охватить невооруженным глазом.

История создания

В начале 19 века во Франции была собрана комиссия, задачей работы которой было усовершенствование конструкции маяков. В то время маяк являлся незаменимым навигационным устройством, поэтому в их улучшении были заинтересованы морские европейские государства.

Чтобы свет маяка был виден на большом расстоянии, фонарь нужно не только разместить на высокой башне, но и собрать его свет в лучи. Для этого свет помещался в фокусе вогнутого зеркала или большой собирающей линзы, но у этих способов был ряд недостатков. С помощью зеркала получается лишь один луч, а так как свет должен быть виден везде, приходилось устанавливать множество зеркал с отдельными фонарями в каждом. Если отмести вариант с зеркалами, вокруг одного фонаря можно установить несколько линз, размер которых должен быть весьма внушительным. Массивная линза может попросту потерять форму или лопнуть от нагрева, а также велика вероятность неоднородности материала.

Для изящного решения этой проблемы в комиссию был приглашен выдающийся французский физик Огюст Жан Френель. Им в 1819г была предложена составная линза, исключающая недостатки обычной: это легкая конструкция в виде тонких колец из отдельных призм треугольного сечения. Френелем не только была рассчитана идеальная форма. Он разработал технологию создания, проконтролировал производство и порой даже сам выступал в роли рабочего. Результат был блестящим, а полученная яркость света впечатлила моряков. Так французские маяки стали лучшими, что было признано даже давними морскими конкурентами – англичанами.

Применение устройства

Непревзойденное устройство, созданное почти 200 лет назад, до их пор остается актуальным. Оно используется не только в маяках, но и для изготовления фар, сигнальных фонарей, деталей проекторов, светофоров. Небольшой вес позволяет встраивать ее в качестве детали переносных осветительных приборов.

Существует и множество вариантов этого удивительного изобретения, которые предназначены для бытового использования. Например, линза Френеля для чтения, сделанная из легкого прозрачного пластика с практически невидимыми круглыми бороздами. Эти приспособления бывают любой формы, многие из них даже можно сгибать.

Достаточно популярна парковочная линза Френеля, которая используется вместо панорамного зеркала заднего вида в автомобиле. В виде тонкого покрытия она наклеивается на заднее стекло и тем самым дает широкий угол обзора, уменьшая визуальную «мертвую зону». Это сделано с целью безопасности, удобства парковки задним ходом, контроля над прицепом или буксиром.

Покрытые алюминиевым зеркальным слоем грани призм могут использоваться в телескопах с рентгеновским диапазоном. Подобные зеркала и линзы изготавливаются очень активно: например, из гибкого пластика их можно выпускать чуть ли не километрами и затем использовать для дизайнерских задумок.

Линза Френеля бывает настольная и с подсветкой, по аналогии с любыми другими увеличительными приборами для домашнего использования. Она пригодится для небольшого (в 2-2,5 крат) увеличения изображения мелких деталей в процессе занятий рукоделием или хобби.

Многими путешественниками также используется линза Френеля. Цена и вес достаточно скромные, поэтому такой девайс всегда можно прихватить с собой. Зачем она нужна в путешествии? Эта линза может собрать солнечный свет в небольшое пятнышко, способное разжечь огонь из сухих материалов – бумаги, досок. Некоторые опытные туристы приспосабливают ее для нагревания небольших количеств воды в полевых условиях.

Загрузка...