Медицинский портал. Щитовидная железа, Рак, диагностика

Явление самоиндукции. Величина самоиндукции

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

1Гн = Вб/А).

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что
получим,
. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой
и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,
. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

Изменяющийся по величине ток всегда создаёт изменяющееся магнитное поле, которое, в свою очередь, всегда индуктирует ЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции, она зависит от скорости изменения тока. Чем больше скорость изменения тока, тем больше ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит также от числа витков катушки и её размеров. Чем больше диаметр катушки и число её витков, тем больше ЭДС самоиндукции. Эта зависимость имеет большое значение в электротехнике. Направление ЭДС самоиндукции определяет Закон Ленца :

ЭДС самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего её тока.

Иначе говоря, убывание тока в катушке влечёт за собой появление ЭДС самоиндукции, направленной по направлению тока, т. е. препятствующей его убыванию. И, наоборот, - при возрастании тока в катушке возникает ЭДС самоиндукции, направленная против тока, т. е. препятствующая его возрастанию. Если ток в катушке не изменяется, то никакой ЭДС самоиндукции не возникает. Явление самоиндукции особенно резко проявляется в цепи, содержащей в себе катушку со стальным сердечником, так как сталь значительно увеличивает магнитный поток катушки, а следовательно, и величину ЭДС самоиндукции.

Продемонстрировать явление самоиндукции можно, проведя следующий эксперимент. Соберём электрическую цепь, состоящую из аккумулятора, разъединителя и двух параллельных цепей: в первой - лампочка и резистор, а во второй - лампочка и катушка, причём сопротивление обеих лампочек одинаковое, и сопротивление резистора и катушки также одинаково.

1. При включении разъединителя лампа Л1 загорится с задержкой, так как ЭДС самоиндукции катушки препятствует быстрому нарастанию тока в цепи лампы Л1 (рис. 1а и 1б).

2. При отключении разъединителя обе лампы кратковременно вспыхнут, так как ЭДС самоиндукции катушки выше ЭДС батареи. Когда ЭДС самоиндукции иссякает, то обе лампы одновременно гаснут (рис. 2а и 2б).

Явление самоиндукции имеет как положительные, так и отрицательные свойства, причём и те и другие проявляются при работе аппаратов и электрических цепей подвижного состава метрополитена:

  • Индуктивный шунт , подключённый параллельно обмоткам возбуждения тяговых электродвигателей, сглаживает колебания высокого напряжения на контактном рельсе (либо при кратковременном отрыве токоприёмников). Индуктивность этого шунта сравнима с индуктивностью обмоток возбуждения, а его ЭДС направлена всегда против ЭДС ОВ ТЭД. Таким образом, при снижении или снятии высокого напряжения с контактного рельса ЭДС индуктивного шунта препятствует снижению тока, а при повышении напряжения – препятствует нарастанию тока, что препятствует возникновению аварийного режима в силовой цепи и образованию кругового огня по коллектору электродвигателей.
  • Если разомкнуть цепь, содержащую катушку с большой индуктивностью, то при размыкании контактов будет образовываться электрическая дуга, способная привести к разрушению коммутационного аппарата, поэтому в подобных случаях необходимо применять устройство дугогашения или (для низковольтных цепей) подключать параллельно контактам конденсатор.

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток Ф через контур из этого проводника пропорционален модулю индукции В магнитного поля внутри контура, а индукция магнитного поля в свою очередь пропорциональна силе тока в проводнике. Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Коэффициент пропорциональности между силой тока I в контуре и магнитным потоком Ф, создаваемым этим током, называется индуктивностью. Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности.

За единицу индуктивности в Международной системе принимается генри Эта единица определяется на основании формулы (55.1):

Индуктивность контура равна если при силе постоянного тока 1 А магнитный поток через контур равен

Самоиндукция.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке. Явление возникновения ЭДС индукции в

электрической цепи в результате изменения силы тока в этой цепи называется самоиндукцией.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока (рис. 197). Резистор должен иметь такое же электрическое сопротивление, как и провод катушки. Опыт показывает, что при замыкании цепи электрическая лггмпа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке. При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции возникающая в катушке с индуктивностью по закону электромагнитной индукции равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Используя выражение (55.3), можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в если при равномерном изменении силы тока в цепи на 1 А за 1 с в нем возникает ЭДС самоиндукции 1 В.

Энергия магнитного поля.

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергию магнитного поля катушки индуктивности можно вычислить следующим способом. Для упрощения расчета рассмотрим такой случай, когда после отключения катушки от источника ток в цепи убывает со временем по линейному закону. В этом случае ЭДС самоиндукции имеет постоянное значение, равное

9.4. Явление электромагнитной индукции

9.4.3. Среднее значение электродвижущей силы самоиндукции

При изменении потока, сцепленного с замкнутым проводящим контуром, через площадь, ограниченную данным контуром, в нем появляется вихревое электрическое поле и течет индукционный ток - явление электромагнитной самоиндукции.

Модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывают по формуле

〈 | ℰ i s | 〉 = | Δ Ф s | Δ t ,

где ΔФ s - изменение магнитного потока, сцепленного с контуром, за время Δt .

Если сила тока в контуре изменяется с течением времени I = I (t ), то

∆Ф s = L ∆I ,

где L - индуктивность контура; ΔI - изменение силы тока в контуре за время Δt ;

〈 | ℰ i s | 〉 = L | Δ I | Δ t ,

где ΔI /Δt - скорость изменения силы тока в контуре.

Если индуктивность контура изменяется с течением времени L = L (t ), то

  • изменение потока, сцепленного с контуром, определяется формулой

∆Ф s = ∆LI ,

где ΔL - изменение индуктивности контура за время Δt ; I - сила тока в контуре;

  • модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывается по формуле

〈 | ℰ i s | 〉 = I | Δ L | Δ t .

Пример 16. В замкнутом проводящем контуре с индуктивностью 20 мГн течет ток силой 1,4 А. Найти среднее значение ЭДС самоиндукции, возникающей в контуре, при равномерном уменьшении в нем силы тока на 20 % за 80 мс.

Решение . Появление ЭДС самоиндукции в контуре вызвано изменением потока, сцепленного с контуром, при изменении в нем силы тока.

Поток, сцепленный с контуром, определяется формулами:

  • при силе тока I 1

Ф s 1 = LI 1 ,

где L - индуктивность контура, L = 20 мГн; I 1 - первоначальная сила тока в контуре, I 1 = 1,4 А;

  • при силе тока I 2

Ф s 2 = LI 2 ,

где I 2 - конечная сила тока в контуре.

Изменение потока, сцепленного с контуром, определяется разностью:

Δ Ф s = Ф s 2 − Ф s 1 = L I 2 − L I 1 = L (I 2 − I 1) ,

где I 2 = 0,8I 1 .

Среднее значение ЭДС самоиндукции, возникающей в контуре, при изменении в нем силы тока:

〈 ℰ s i 〉 = | Δ Ф s Δ t | = | L (I 2 − I 1) Δ t | = | − 0,2 L I 1 Δ t | = 0,2 L I 1 Δ t ,

где ∆t - интервал времени, за который происходит уменьшение силы тока, ∆t = 80 мс.

Расчет дает значение:

〈 ℰ s i 〉 = 0,2 ⋅ 20 ⋅ 10 − 3 ⋅ 1,4 80 ⋅ 10 − 3 = 70 ⋅ 10 − 3 с = 70 мВ.

При изменении силы тока в контуре в нем возникает ЭДС самоиндукции, среднее значение которой равно 70 мВ.

Самоиндукция это процесс возникновения ЭДС в цепи обладающей индуктивностью в результате изменения тока в ней. Рассмотрим этот процесс по подробней. Самоиндукция это частный случай электромагнитной индукции. Для появления ЭДС в цепи обладающей индуктивностью необходимо чтобы эту индуктивность пронизывал переменный магнитный поток. Тогда в цепи появится ЭДС пропорциональное индуктивности и скорости изменения магнитного потока.

Рисунок 1 — ЭДС самоиндукции

ЭДС самоиндукции всегда направлено встречно изменяющемуся току. То есть при увеличении тока в цепи она стремиться препятствовать нарастанию тока. Соответственно при уменьшении тока самоиндукция препятствует этому и стремится сохранить ток в контуре.
Проведем такой эксперимент. Возьмём две одинаковые лампы накаливания, подключённые к источнику тока. Одна лампа подключена к источнику непосредственно, то есть напрямую. Вторая лампа подключена через большую индуктивность.

Рисунок 2 — схема опыта

При замыкании выключателя в цепи появится ток. Первая лампа загорится сразу. Поскольку току в этой цепи ничего не препятствует. Вторая же лампа загорится не сразу, а спустя некоторое время. Так как к источнику она будет подключена через большую индуктивность. Которая будет препятствовать нарастанию тока в цепи.
Хотелось бы уточнить один момент. Вторая лампа, которая должна включиться с задержкой, не вспыхнет резко спустя какое-то время от момента включения. А будет, плавно разгорятся, выходя на полную яркость. Поскольку ток в индуктивности не может измениться скачком. Он в ней изменяется плавно.

Теперь можно предположить, что при размыкании выключателя лампа номер два погаснет со временем, а номер один сразу. Но это не так. Обе лампы вспыхнут ярче, на коротки промежуток времени. Давайте разберемся почему.

При отключении тока в катушке возникнет ЭДС самоиндукции, которая будет стремиться сохранить ток в цепи. Но поскольку обе лампы находятся в одной цепи это видно из рисунка. Они подключены друг к другу через индуктивность. Эта ЭДС будет приложена к обеим лампам. Вследствие чего они обе вспыхнут.

Уточню еще один момент. После выключения лампы вспыхнут несколько ярче, чем они горели при замкнутом выключателе. Это произойдет из-за того что ЭДС самоиндукции пропорционально скорости изменения магнитного потока пронизывающего контур. Магнитный поток вызывается током в контуре. При размыкании выключателя ток изменится резко от максимального значения до нуля. Таки образом ЭДС самоиндукции может превышать ЭДС источника в разы.

Загрузка...