Медицинский портал. Щитовидная железа, Рак, диагностика

От него зависит путь и перемещение. Траектория

С понятием пути вы уже неоднократно сталкивались. Познакомимся теперь с новым для вас понятием – перемещением , которое более информативно и полезно в физике, чем понятие пути.

Допустим, из пункта А в пункт В на другом берегу реки нужно переправить груз. Это можно сделать на автомобиле через мост, на катере по реке или на вертолёте. В каждом из этих случаев путь, пройденный грузом, будет разным, но перемещение будет неизменным: из точки А в точку В.

Перемещением называют вектор, проведённый из начального положения тела в его конечное положение. Вектор перемещения показывает расстояние, на которое переместилось тело, и направление перемещения. Обратите внимание, что направление перемещения и направление движения – два разных понятия. Поясним это.

Рассмотрим, например, траекторию движения автомобиля от пункта А до середины моста. Обозначим промежуточные точки – В1, В2, В3 (см. рисунок). Вы видите, что на отрезке АВ1 автомобиль ехал на северо-восток (первая синяя стрелка), на отрезке В1В2 – на юго-восток (вторая синяя стрелка), а на отрезке В2В3 – на север (третья синяя стрелка). Итак, в момент проезда моста (точки В3) направление движения характеризовалось синим вектором В2В3, а направление перемещения – красным вектором АВ3.

Итак, перемещение тела – векторная величина , то есть имеющая пространственное направление и числовое значение (модуль). В отличие от перемещения, путь – скалярная величина , то есть имеющая только числовое значение (и не имеющая пространственного направления). Путь обозначают символом l , перемещение обозначают символом (важно: со стрелочкой). Символом s без стрелочки обозначают модуль перемещения. Примечание: изображение любого вектора на чертеже (в виде стрелки) или упоминание его в тексте (в виде слова) делает необязательным наличие стрелочки над обозначением.

Почему в физике не ограничились понятием пути, а ввели более сложное (векторное) понятие перемещения? Зная модуль и направление перемещения, всегда можно сказать, где будет находиться тело (по отношению к своему начальному положению). Зная путь, положение тела определить нельзя. Например, зная лишь, что турист прошёл путь 7 км, мы ничего не можем сказать о том, где он сейчас находится.

Задача. В походе по равнине турист прошёл на север 3 км, затем повернул на восток и прошел ещё 4 км. На каком расстоянии от начальной точки маршрута он оказался? Начертите его перемещение.

Решение 1 – с измерениями линейкой и транспортиром.

Перемещение – это вектор, соединяющий начальное и конечное положения тела. Начертим его на клетчатой бумаге в масштабе: 1 км – 1 см (чертёж справа). Измерив линейкой модуль построенного вектора, получим: 5 см. Согласно выбранному нами масштабу, модуль перемещения туриста равен 5 км. Но напомним: знать вектор – значит знать его модуль и направление. Поэтому, применив транспортир, определим: направление перемещения туриста составляет 53° с направлением на север (проверьте сами).

Решение 2 – без использования линейки и транспортира.

Поскольку угол между перемещениями туриста на север и на восток составляет 90°, применим теорему Пифагора и найдём длину гипотенузы, так как она одновременно является и модулем перемещения туриста:

Как видите, это значение совпадает с полученным в первом решении. Теперь определим угол α между перемещением (гипотенузой) и направлением на север (прилежащим катетом треугольника):

Итак, задача решена двумя способами с совпадающими ответами.

Траектория - непрерывная линия, вдоль которой движется материальная точка в заданной системе отсчета. В зависимости от формы траектории различают прямолинейное и криволинейное движение материальной точки.
лат.Trajectorius - относящийся к перемещению
Путь - длина участка траектории материальной точки, пройденного ею за определенное время.

Пройденный путь - длина участка траектории от начальной до конечной точки движения.

Перемеще?ние (в кинематике)- изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка - это модуль перемещения, измеряется в метрах (СИ).

Можно определить перемещение, как изменение радиус-вектора точки: .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление скорости не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Мгновенная скорость точки определяется как предел отношения перемещения к малому промежутку времени, за которое оно совершено. Более строго:

Средняя путевая скорость. Вектор средней скорости. Мгновенная скорость.

Средняя путевая скорость

Средняя (путевая) скорость- это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:

Средняя путевая скорость, в отличие от мгновенной скорости не является векторной величиной.

Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело двигалось с этими скоростями одинаковые промежутки времени.

В то же время если, например, половину пути автомобиль двигался со скоростью 180 км/ч, а вторую половину со скоростью 20 км/ч, то средняя скорость будет 36 км/ч. В примерах, подобных этому, средняя скорость равна среднему гармоническому всех скоростей на отдельных, равных между собой, участках пути.

Средняя скорость-это отношение длины участка пути к промежутку времени, в течение которого этот путь пройден.

Средняя скорость тела

При равноускоренном движении

При равномерном движении

Тут мы использовали:

Средняя скорость тела

Начальная скорость тела

Ускорение тела

Время движения тела

Скорость тела через некоторый промежуток времени

Мгновенная скорость есть первая производная пути по времени =
v=(ds/dt)=s"
где символы d/dt или штрих справа вверху у функции обозначают производную этой функции.
Иначе - это скорость v =s/t при t, стремящимся к нулю... :)
При отсутствии ускорения в момент измерения - мгновенная равна средней за время периода движения без ускорений Vмгн. = Vср. =S/t за этот период.

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Перемещение», которая входит в школьный курс физики за 9 класс. Из этой лекции учащиеся смогут углубить знания о движении. Учитель напомнит о первой характеристике движения - пройденном пути, а затем перейдет к определению перемещения в физике.

Первой характеристикой движения, введенной нами ранее, был пройденный путь. Напомним, что обозначается он буквой S (иногда встречается обозначение L) и измеряется в СИ в метрах.

Пройденный путь – это скалярная величина, т. е. величина, которая характеризуется только числовым значением. А значит, предсказать, где тело окажется в нужный нам момент времени, мы не сможем. Можно говорить только о пройденном телом общем расстоянии (рис. 1).

Рис. 1. Зная только пройденный путь, нельзя определить положение тела в произвольный момент времени

Чтобы охарактеризовать местоположение тела в произвольный момент, вводится величина, которая называется перемещение. Перемещение – векторная величина, т. е. это величина, которая характеризуется не только числовым значением, но и направлением.

Перемещение обозначается так же, как пройденный путь, буквой S , но, в отличие от пройденного пути, над буквой ставится стрелочка, подчеркивая тем самым, что это величина векторная: .

То, что перемещение и пройденный путь обозначаются одной буквой, вводит в некоторое заблуждение, но мы должны четко понимать разницу между пройденным путем и перемещением. Еще раз отметим, что иногда путь обозначается L. Это позволяет избежать путаницы.

Определение

Перемещение – это вектор (направленный отрезок прямой), который соединяет начальную точку движения тела с его конечной точкой (рис. 2).

Рис. 2. Перемещение – векторная величина

Напомним, что пройденный путь – это длина траектории . А значит, путь и перемещение – это совершенно разные физические величины, хотя иногда случаются ситуации, когда они численно совпадают.

Рис. 3. Путь и модуль перемещения совпадают

На рис. 3 рассмотрен самый простой случай, когда тело движется вдоль прямой (оси Ох ). Тело начинает свое движение из точки 0 и попадает в точку А. В этом случае мы можем говорить о том, что модуль перемещения равен пройденному пути: .

Примером такого движения может служить перелет самолета (например, из Санкт-Петербурга в Москву). Если движение было строго прямолинейным, то тогда модуль перемещения будет равен пройденному пути.

Рис. 4. Величина пути больше модуля перемещения

На рис. 4 тело движется вдоль кривой линии, т. е. движение криволинейное (из точки А в точку В). Из рисунка видно, что модуль перемещения (прямая линия) будет меньше пройденного пути, т. е. длина пройденного пути и длина вектора перемещения не равны.

Рис. 5. Замкнутая траектория

На рис. 5 тело движется по замкнутой кривой. Выходит из точки А и в эту же точку возвращается. Модуль перемещения равен , а пройденный путь - это длина всей кривой, .

Данный случай можно характеризовать следующим примером. Ученик вышел из дома утром, пошел в школу, целый день отзанимался, кроме этого, побывал еще в нескольких местах (магазин, спортзал, библиотека) и вернулся домой. Обратите внимание: в итоге ученик оказался дома, а значит, его перемещение равно 0 (рис. 6).

Рис. 6. Перемещение ученика равно нулю

Когда речь идет о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение.


Рис. 7. Определение модуля перемещения тела

Тело движется в плоскости XOY . Точка А - начальное положение тела. Ее координаты . Тело перемещается в точку . Вектор - это перемещение тела: .

Рассчитать модуль перемещения можно как гипотенузу прямоугольного треугольника , используя теорему Пифагора: . Для нахождения же вектора перемещения необходимо найти угол между осью Ох и вектором перемещения.

Мы можем выбрать систему произвольно, то есть направить координатные оси так, как нам удобно, главное - проекции всех векторов в дальнейшем рассматривать в одной и той же выбранной системе координат.

Заключение

В заключение можно отметить, что мы познакомились с важной величиной - перемещением. Еще раз обратите внимание на то, что перемещение и путь могут совпадать только в случае прямолинейного движения, без смены направления такого движения.

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: учебник для 9 класса средней школы. - М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А. В. Перышкин, Е. М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300.
  3. Соколович Ю.А., Богданова Г.С . Физика: Справочник с примерами решения задач. - 2-е издание передел. - X .: Веста: Издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «vip8082p.vip8081p.beget.tech» ()
  2. Интернет-портал «foxford.ru» ()

Домашнее задание

  1. Что такое путь и перемещение? Чем они отличаются?
  2. Мотоциклист выехал из гаража и направился на север. Проехал 5 км, затем повернул на запад и проехал также 5 км. На каком расстоянии от гаража он будет находиться?
  3. Минутная стрелка прошла полный круг. Определите перемещение и пройденный путь для точки, которая находится на конце стрелки (радиус часов - 10 см).
У этого термина существуют и другие значения, см. Перемещение (значения).

Перемеще́ние (в кинематике) - изменение положения физического тела в пространстве с течением времени относительно выбранной системы отсчёта.

Применительно к движению материальной точки перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Обычно обозначается символом S → {\displaystyle {\vec {S}}} - от итал. s postamento (перемещение).

Модуль вектора S → {\displaystyle {\vec {S}}} - это модуль перемещения, в Международной системе единиц (СИ) измеряется в метрах; в системе СГС - в сантиметрах.

Можно определить перемещение, как изменение радиус-вектора точки: Δ r → {\displaystyle \Delta {\vec {r}}} .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление скорости не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Мгновенная скорость точки определяется как предел отношения перемещения к малому промежутку времени, за которое оно совершено. Более строго:

V → = lim Δ t → 0 Δ r → Δ t = d r → d t {\displaystyle {\vec {v}}=\lim \limits _{\Delta t\to 0}{\frac {\Delta {\vec {r}}}{\Delta t}}={\frac {d{\vec {r}}}{dt}}} .

III. Траектория, путь и перемещение

Положение материальной точки определяется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета . С ним связывается система отсчета – совокупность системы координат и часов, связанных с телом отсчета.

В декартовой системе координат положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r вектор, проведенный из начала системы координат в данную точку. При движении материальной точки ее координаты с течением времени изменяются.r =r (t) или x=x(t), y=y(t), z=z(t) – кинематические уравнения материальной точки .

Основная задача механики – зная состояние системы в некоторый начальный момент времени t 0 , а также законы, управляющие движением, определить состояния системы во все последующие моменты времени t.

Траектория движения материальной точки – линия, описываемая этой точкой в пространстве. В зависимости от формы траектории различают прямолинейное и криволинейное движение точки. Если траектория точки – плоская кривая, т.е. целиком лежит в одной плоскости, то движение точки называют плоским.

Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной пути Δs и является скалярной функцией времени: Δs=Δs(t). Единица измерения – метр (м)– длина пути, проходимого светом в вакууме за 1/299792458 с.

IV . Векторный способ задания движения

Радиус-вектор r вектор, проведенный из начала системы координат в данную точку. Вектор Δr =r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени называется перемещением (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

Вектором средней скорости v> называется отношение приращения Δr радиуса-вектора точки к промежутку времени Δt: (1). Направление средней скорости совпадает с направлением Δr.При неограниченном уменьшении Δt средняя скорость стремиться к предельному значению, которое называется мгновенной скоростью v. Мгновенная скорость это скорость тела в данный момент времени и в данной точке траектории: (2). Мгновенная скоростьv есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени.

Для характеристики быстроты изменения скорости v точки в механике вводится векторная физическая величина, называемая ускорением.

Средним ускорением неравномерного движения в интервале от t до t+Δt называется векторная величина, равная отношению изменения скорости Δv к интервалу времени Δt:

Мгновенным ускорением а материальной точки в момент времени t будет предел среднего ускорения: (4). Ускорениеа есть векторная величина, равная первой производной скорости по времени.

V. Координатный способ задания движения

Положение точки М можно характеризовать радиус – вектором r или тремя координатами x, y и z: М(x,y,z). Радиус - вектор можно представить в виде суммы трех векторов, направленных вдоль осей координат: (5).

Из определения скорости (6). Сравнивая (5) и (6) имеем: (7). Учитывая (7) формулу (6) можно записать (8). Модуль скорости можно найти: (9).

Аналогично для вектора ускорения:

(10),

(11),

    Естественный способ задания движения (описание движения с помощью параметров траектории)

Движение описывается формулой s=s(t). Каждая точка траектории характеризуется своим значением s. Радиус – вектор является функцией от s и траектория может быть задана уравнением r =r (s). Тогда r =r (t) можно представить как сложную функцию r . Продифференцируем (14). Величина Δs – расстояние между двумя точками вдоль траектории, |Δr | - расстояние между ними по прямой линии. По мере сближения точек разница уменьшается. , гдеτ – единичный вектор, касательный к траектории. , тогда (13) имеет видv =τ v (15). Следовательно скорость направлена по касательной к траектории.

Ускорение может быть направлено под любым углом к касательной к траектории движения. Из определению ускорения (16). Еслиτ - касательный к траектории, то - вектор перпендикулярный этой касательной, т.е. направлен по нормали. Единичный вектор, в направлении нормали обозначаетсяn . Значение вектора равно 1/R, где R – радиус кривизны траектории.

Точка, отстоящая от траектории на расстоянии и R в направлении нормали n , называется центром кривизны траектории. Тогда (17). Учитывая вышеизложенное формулу (16) можно записать: (18).

Полное ускорение состоит из двух взаимно перпендикулярных векторов: , направленного вдоль траектории движения и называемого тангенциальным, и ускорения , направленного перпендикулярно траектории по нормали, т.е. к центру кривизны траектории и называемого нормальным.

Абсолютное значение полного ускорения найдем: (19).

Лекция 2 Движение материальной точки по окружности. Угловое перемещение, угловая скорость, угловое ускорение. Связь между линейными и угловыми кинематическими величинами. Векторы угловой скорости и ускорения.

План лекции

    Кинематика вращательного движения

При вращательном движении мерой перемещения всего тела за малый промежуток времени dt служит вектор элементарного поворота тела. Элементарные повороты (обозначаются или) можно рассматривать какпсевдовекторы (как бы).

Угловое перемещение - векторная величина, модуль которой равен углу поворота, а направление совпадает с направлением поступа­тельного движения правого винта (направленный вдоль оси вращения так, что если смотреть с его конца, то вращение тела кажется происходящим против часовой стрелки). Единица углового перемещения – рад.

Быстроту изменения углового перемещения с течением времени характеризует угловая скорость ω . Угловая скорость твердого тела – векторная физическая величина, характеризующая быстроту изменения углового перемещения тела с течением времени и равная угловому перемещению, совершаемому телом за единицу времени:

Направлен вектор ω вдоль оси вращения в ту же сторону, что и (по правилу правого винта).Единица угловой скорости- рад/с

Быстроту изменения угловой скорости с течением времени характеризует угловое ускорение ε

(2).

Направлен вектор ε вдоль оси вращения в ту же сторону, что и dω, т.е. при ускоренном вращении , при замедленном .

Единица углового ускорения – рад/с2 .

За время dt произвольная точка твердого тела А переместиться на dr , пройдя путь ds . Из рисунка видно, что dr равно векторному произведению углового перемещения на радиус – вектор точки r : dr =[ · r ] (3).

Линейная скорость точки связана с угловой скоростью и радиусом траектории соотношением:

В векторном виде формулу для линейной скорости можно написать как векторное произведение: (4)

По определению векторного произведения его модуль равен , где - угол между векторами и , а направление совпадает с направлением поступательного движения правого винта при его вращении от к .

Продифференцируем (4) по времени:

Учитывая, что - линейное ускорение, - угловое ускорение, а - линейная скорость, получим:

Первый вектор в правой части направлен по касательной к траектории точки. Он характеризует изменение модуля линейной скорости. Следовательно, этот вектор – касательное ускорение точки: a τ =[ ε · r ] (7). Модуль касательного ускорения равен a τ = ε · r . Второй вектор в (6) направлен к центру окружности и характеризует изменение направления линейной скорости. Этот вектор – нормальное ускорение точки:a n =[ ω · v ] (8). Модуль его равен a n =ω·v или учитывая, что v = ω· r , a n = ω 2 · r = v 2 / r (9).

    Частные случаи вращательного движения

При равномерном вращении: , следовательно .

Равномерное вращение можно характеризовать периодом вращения Т - временем, за которое точка совершает один полный оборот,

Частота вращения - число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени: (11)

Единица частоты вращения - герц (Гц).

При равноускоренном вращательном движении :

(13), (14) (15).

Лекция 3 Первый закон Ньютона. Сила. Принцип независимости действующих сил. Результирующая сила. Масса. Второй закон ньютона. Импульс. Закон сохранения импульса. Третий закон Ньютона. Момент импульса материальной точки, момент силы, момент инерции.

План лекции

    Первый закон Ньютона

    Второй закон Ньютона

    Третий закон Ньютона

    Момент импульса материальной точки, момент силы, момент инерции

    Первый закон Ньютона. Масса. Сила

Первый закон Ньютона: Существуют такие системы отсчета, относительно которых тела движутся прямолинейно и равномерно или покоятся, если на них не действуют силы или действие сил скомпенсировано.

Первый закон Ньютона выполняется только в инерциальной системе отсчёта и утверждает существование инерциальной системе отсчёта.

Инерция – это свойство тел стремиться сохранять скорость неизменной.

Инертностью называют свойство тел препятствовать изменению скорости под действием приложенной силы.

Масса тела – это физическая величина являющаяся количественной мерой инертности, это скалярная аддитивная величина. Аддитивность массы состоит в том, что масса системы тел всегда равна сумме масс каждого тела в отдельности. Масса – основная единица системы «СИ».

Одной из форм взаимодействия является механическое взаимодействие . Механическое взаимодействие вызывает деформацию тел, а также изменение их скорости.

Сила – это векторная величина являющаяся мерой механического воздействия на тело со стороны других тел, или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры (деформируется). Сила характеризуется модулем, направлением действия, точкой приложения к телу.

Общие методы определения перемещений

 1 =Х 1  11 +Х 2  12 +Х 3  13 +…

 2 =Х 1  21 +Х 2  22 +Х 3  23 +…

 3 =Х 1  31 +Х 2  32 +Х 3  33 +…

Абота постоянных сил: А=Р Р, Р – обобщенная сила – любая нагрузка (сосредоточенная сила, сосредоточенный момент, распределенная нагрузка),  Р – обобщенное перемещение (прогиб, угол поворота). Обозначение  mn означает перемещение по направлению обобщенной силы "m" , которое вызвано действием силы обобщенной "n". Полное перемещение, вызванное несколькими силовыми факторами:  Р = Р P + Р Q + Р M . Перемещения вызванные единичной силой или единичным моментом:  – удельное перемещение . Если единичная сила Р=1 вызвала перемещение  Р, то полное перемещение вызванное силой Р, будет:  Р =Р Р. Если силовые факторы, действующие на систему, обозначить Х 1 ,Х 2 ,Х 3 и т.д., то перемещение по направлению каждого из них:

где Х 1  11 =+ 11 ; Х 2  12 =+ 12 ; Х i  m i =+ m i . Размерность удельных перемещений:
, Дж- джоули размерность работы 1Дж = 1Нм.

Работа внешних сил, дейст-щих на упругую систему:
.

–действительная работа при статическом действии обобщенной силы на упругую систему равна половине произведения окончательного значения силы на окончательное значение соответствующего перемещения. Работа внутренних сил (сил упругости) в случае плоского изгиба:
,

k – коэффициент, учитывающий неравномерность распределения касательных напряжений по площади поперечного сечения, зависит от формы сечения.

На основании закона сохранения энергии: потенциальная энергия U=A.

Теорема о взаимности работ (теорема Бетли) . Два состояния упругой ситемы:

 1
1 – перемещение по направл. силы Р 1 от действия силы Р 1 ;

 12 – перемещение по направл. силы Р 1 от действия силы Р 2 ;

 21 – перемещение по направл. силы Р 2 от действия силы Р 1 ;

 22 – перемещение по направл. силы Р 2 от действия силы Р 2 .

А 12 =Р 1  12 – работа силы Р 1 первого состояния на перемещении по ее направлению, вызванном силой Р 2 второго состояния. Аналогично: А 21 =Р 2  21 – работа силы Р 2 второго состояния на перемещении по ее направлению, вызванном силой Р 1 первого состояния. А 12 =А 21 . Такой же результат получается при любом числе сил и моментов. Теорема о взаимности работ : Р 1  12 =Р 2  21 .

Работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния.

Теорема о взаимности перемещений (теорема Максвелла) Если Р 1 =1 и Р 2 =1, то Р 1  12 =Р 2  21 , т.е.  12 = 21 , в общем случае  mn = nm .

Для двух единичных состояний упругой системы перемещение по направлению первой единичной силы, вызванное второй единичной силой, равно перемещению по направлению второй единичной силы, вызванному первой силой.

Ниверсальный метод определения перемещений (линейных и углов поворота) –метод Мора . К системе прикладывают единичную обобщенную силу в точке, для которой ищется обобщенное перемещение. Если определяется прогиб, то единичная сила представляет собой безразмерную сосредоточенную силу, если определяется угол поворота, то – безразмерный единичный момент. В случае пространственной системы действуют шесть компонентов внутренних усилий. Обобщенное перемещение определяется формулой (формула или интеграл Мора):

Черта над М, Q и N указывает на то, что эти внутренние усилия вызваны действием единичной силы. Для вычисления входящих в формулу интегралов надо перемножить эпюры соответствующих усилий. Порядок определения перемещения: 1) для заданной (действительной или грузовой) системы находят выражения M n , N n и Q n ; 2) по направлению искомого перемещения прикладывают соответствующую ему единичную силу (силу или момент); 3) определяют усилия
от действия единичной силы; 4) найденные выражения подставляют в интеграл Мора и интегрируют по заданным участкам. Если полученное mn >0, то перемещение совпадает с выбранным направлением единичной силы, если

Для плоской конструкции:

Обычно при определении перемещений пренебрегают влиянием продольных деформаций и сдвигом, которые вызываются продольной N и поперечной Q силами, учитываются только перемещения, вызываемые изгибом. Для плоской системы будет:
.

В
ычисление интеграла Мора
способом Верещагина . Интеграл
для случая, когда эпюра от заданной нагрузки имеет произвольное очертание, а от единичной – прямолинейное удобно определять графо-аналитическим способом, предложенным Верещагиным.
, где – площадь эпюры М р от внешней нагрузки, y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М р. Результат перемножения эпюр равен произведению площади одной из эпюр на ординату другой эпюры, взятой под центром тяжести площади первой эпюры. Ордината должна быть обязательно взята из прямолинейной эпюры. Если обе эпюры прямолинейны, то ординату можно взять из любой.

П
еремещение:
. Вычисление по этой формуле производится по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Сложную эпюру М р разбивают на простые геометрические фигуры, для которых легче определить координаты центров тяжести. При перемножении двух эпюр, имеющих вид трапеций, удобно использовать формулу:
. Эта же формула годится и для треугольных эпюр, если подставить соответствующую ординату = 0.

П
ри действии равномерно распределенной нагрузки на шарнирно опертую балку эпюра строится в виде выпуклой квадратичной параболы, площадь которой
(для рис.
, т.е.
, х С =L/2).

Д
ля "глухой" заделки при равномерно распределенной нагрузке имеем вогнутую квадратичную параболу, для которой
;
,
, х С =3L/4. Тоже можно получить, если эпюру представить разностью площади треугольника и площади выпуклой квадратичной параболы:
. "Отсутствующая" площадь считается отрицательной.

Теорема Кастильяно .
– перемещение точки приложения обобщенной силы по направлению ее действия равно частной производной от потенциальной энергии по этой силе. Пренебрегая влиянием на перемещение осевых и поперечных сил, имеем потенциальную энергию:
, откуда
.

Что такое перемещение в физике определение?

Грустный роджер

В физике перемещение есть абсолютная величина вектора, проведённого из начальной точки траектории тела в конечную. При этом форма пути, по которому проходило перемещение (то есть собсно траектория), как и величина этого пути, никакого значения не имеет. Скажем, перемещение кораблей Магеллана - ну по крайней мере того, который в итоге вернулся (один из трёх), - равно нулю, хотя пройденный путь ого-го какой.

Трифон ли

Перемещение можно рассматривать в двух ипостасях. 1. Изменение положения тела в пространстве. Причем независимо от с-мы координат. 2. Процесс перемещения, т.е. изменение положения в течение времени. По п.1 можно поспорить, но для этого нужно признать существование абсолютной (первоначальной) с-мы координат.

Перемещение -- изменение местоположения определенного физического тела в пространстве относительно используемой системы отсчета.

Данное определение задается в кинематике -- подразделу механики, изучающему движение тел и математическое описание движения.

Перемещение - это абсолютная величина вектора (то есть прямая), соединяющего две точки пути (из точки А в точку Б). Перемещение отличается от пути тем, что это векторное значение. Это значит, что если объект пришёл в ту же самую точку из которой начал, то перемещение равно нулю. А путь нет. Путь - это расстояние, которое преодолел объект вследствие своего движения. Чтобы лучше понимать посмотрите на картинку:

Что такое путь и перемещение,с точки зрения физика?и в чем между ними разница....

очень нужно)прошу ответить)

Пользователь удален



Александр калапац

Путь - скалярная физическая величина, которая определяет длину участка траектории, пройденого телом в течение заданного времени. Путь - неотрицательная и неубывающая функция времени.
Перемещение - направленный отрезок (вектор) , соединяющий положение тела в начальный момент времени с его положением в конечный момент времени.
Поясняю. Если ты выйдешь из дома, сходишь в гости к другу, и вернешся обратно домой, то твой путь будет равен расстоянию между твоим домом и домом друга, умноженному на два (туда и обратно) , а перемещение твое будет равно нулю, т. к. в конечный момент времени ты окажешься там же, где и в начальный, т. е. у себя дома. Путь - это расстояние, длина, т. е. величина скалярная, не имеющая направления. Перемещение - направленная, векторная величина, причем направление задается знаком, т. е. перемещение может быть отрицательным (Если считать, что дойдя от своего дома до друга ты совершил перемещение s, то когда ты дойдешь от друга до дома, ты совершишь перемещение -s, где минус обозначает, что ты шел в направлении противоположном тому, в котором шел от дома к другу).

Forserr33 v

Путь - скалярная физическая величина, которая определяет длину участка траектории, пройденого телом в течение заданного времени. Путь - неотрицательная и неубывающая функция времени.
Перемещение - направленный отрезок (вектор) , соединяющий положение тела в начальный момент времени с его положением в конечный момент времени.
Поясняю. Если ты выйдешь из дома, сходишь в гости к другу, и вернешся обратно домой, то твой путь будет равен расстоянию между твоим домом и домом друга, умноженному на два (туда и обратно) , а перемещение твое будет равно нулю, т. к. в конечный момент времени ты окажешься там же, где и в начальный, т. е. у себя дома. Путь - это расстояние, длина, т. е. величина скалярная, не имеющая направления. Перемещение - направленная, векторная величина, причем направление задается знаком, т. е. перемещение может быть отрицательным (Если считать, что дойдя от своего дома до друга ты совершил перемещение s, то когда ты дойдешь от друга до дома, ты совершишь перемещение -s, где минус обозначает, что ты шел в направлении противоположном тому, в котором шел от дома к другу).

Положение материальной точки определяется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета . С ним связывается система отсчета – совокупность системы координат и часов, связанных с телом отсчета.

В декартовой системе координат положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r вектор, проведенный из начала системы координат в данную точку. При движении материальной точки ее координаты с течением времени изменяются.r =r (t) или x=x(t), y=y(t), z=z(t) – кинематические уравнения материальной точки .

Основная задача механики – зная состояние системы в некоторый начальный момент времени t 0 , а также законы, управляющие движением, определить состояния системы во все последующие моменты времени t.

Траектория движения материальной точки – линия, описываемая этой точкой в пространстве. В зависимости от формы траектории различают прямолинейное и криволинейное движение точки. Если траектория точки – плоская кривая, т.е. целиком лежит в одной плоскости, то движение точки называют плоским.

Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной пути Δs и является скалярной функцией времени: Δs=Δs(t). Единица измерения – метр (м)– длина пути, проходимого светом в вакууме за 1/299792458 с.

IV . Векторный способ задания движения

Радиус-вектор r вектор, проведенный из начала системы координат в данную точку. Вектор Δr =r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени называется перемещением (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

Вектором средней скорости < v > называется отношение приращения Δ r радиуса-вектора точки к промежутку времени Δt: (1). Направление средней скорости совпадает с направлением Δr .При неограниченном уменьшении Δt средняя скорость стремиться к предельному значению, которое называется мгновенной скоростью v . Мгновенная скорость это скорость тела в данный момент времени и в данной точке траектории: (2). Мгновенная скоростьv есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени.

Для характеристики быстроты изменения скорости v точки в механике вводится векторная физическая величина, называемая ускорением.

Средним ускорением неравномерного движения в интервале от t до t+Δt называется векторная величина, равная отношению изменения скорости Δv к интервалу времени Δt:

Мгновенным ускорением а материальной точки в момент времени t будет предел среднего ускорения:(4). Ускорениеа есть векторная величина, равная первой производной скорости по времени.

V. Координатный способ задания движения

Положение точки М можно характеризовать радиус – вектором r или тремя координатами x, y и z: М(x,y,z). Радиус - вектор можно представить в виде суммы трех векторов, направленных вдоль осей координат: (5).

Из определения скорости (6). Сравнивая (5) и (6) имеем:(7). Учитывая (7) формулу (6) можно записать(8). Модуль скорости можно найти:(9).

Аналогично для вектора ускорения:

(10),

(11),

    Естественный способ задания движения (описание движения с помощью параметров траектории)

Движение описывается формулой s=s(t). Каждая точка траектории характеризуется своим значением s. Радиус – вектор является функцией от s и траектория может быть задана уравнением r =r (s). Тогда r =r (t) можно представить как сложную функцию r . Продифференцируем (14). Величина Δs – расстояние между двумя точками вдоль траектории, |Δr | - расстояние между ними по прямой линии. По мере сближения точек разница уменьшается. , гдеτ – единичный вектор, касательный к траектории. , тогда (13) имеет видv =τ v (15). Следовательно скорость направлена по касательной к траектории.

Ускорение может быть направлено под любым углом к касательной к траектории движения. Из определению ускорения (16). Еслиτ - касательный к траектории, то - вектор перпендикулярный этой касательной, т.е. направлен по нормали. Единичный вектор, в направлении нормали обозначаетсяn . Значение вектора равно 1/R, где R – радиус кривизны траектории.

Точка, отстоящая от траектории на расстоянии и R в направлении нормали n , называется центром кривизны траектории. Тогда (17). Учитывая вышеизложенное формулу (16) можно записать:(18).

Полное ускорение состоит из двух взаимно перпендикулярных векторов: , направленного вдоль траектории движения и называемого тангенциальным, и ускорения, направленного перпендикулярно траектории по нормали, т.е. к центру кривизны траектории и называемого нормальным.

Абсолютное значение полного ускорения найдем: (19).

Лекция 2 Движение материальной точки по окружности. Угловое перемещение, угловая скорость, угловое ускорение. Связь между линейными и угловыми кинематическими величинами. Векторы угловой скорости и ускорения.

План лекции

    Кинематика вращательного движения

При вращательном движении мерой перемещения всего тела за малый промежуток времени dt служит вектор элементарного поворота тела. Элементарные повороты (обозначаются или) можно рассматривать какпсевдовекторы (как бы).

Угловое перемещение - векторная величина, модуль которой равен углу поворота, а направление совпадает с направлением поступа­тельного движения правого винта (направленный вдоль оси вращения так, что если смотреть с его конца, то вращение тела кажется происходящим против часовой стрелки). Единица углового перемещения – рад.

Быстроту изменения углового перемещения с течением времени характеризует угловая скорость ω . Угловая скорость твердого тела – векторная физическая величина, характеризующая быстроту изменения углового перемещения тела с течением времени и равная угловому перемещению, совершаемому телом за единицу времени:

Направлен вектор ω вдоль оси вращения в ту же сторону, что и (по правилу правого винта). Единица угловой скорости- рад/с

Быстроту изменения угловой скорости с течением времени характеризует угловое ускорение ε

(2).

Направлен вектор ε вдоль оси вращения в ту же сторону, что и dω, т.е. при ускоренном вращении , при замедленном.

Единица углового ускорения – рад/с 2 .

За время dt произвольная точка твердого тела А переместиться на dr , пройдя путь ds . Из рисунка видно, что dr равно векторному произведению углового перемещения на радиус – вектор точки r : dr =[ · r ] (3).

Линейная скорость точки связана с угловой скоростью и радиусом траектории соотношением:

В векторном виде формулу для линейной скорости можно написать как векторное произведение: (4)

По определению векторного произведения его модуль равен , где - угол между векторами и, а направление совпадает с направлением поступательного движения правого винта при его вращении от к .

Продифференцируем (4) по времени:

Учитывая, что - линейное ускорение,- угловое ускорение, а- линейная скорость, получим:

Первый вектор в правой части направлен по касательной к траектории точки. Он характеризует изменение модуля линейной скорости. Следовательно, этот вектор – касательное ускорение точки: a τ =[ ε · r ] (7). Модуль касательного ускорения равен a τ = ε · r . Второй вектор в (6) направлен к центру окружности и характеризует изменение направления линейной скорости. Этот вектор – нормальное ускорение точки:a n =[ ω · v ] (8). Модуль его равен a n =ω·v или учитывая, что v = ω· r , a n = ω 2 · r = v 2 / r (9).

    Частные случаи вращательного движения

При равномерном вращении: , следовательно .

Равномерное вращение можно характеризовать периодом вращения Т - временем, за которое точка совершает один полный оборот,

Частота вращения - число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени: (11)

Единица частоты вращения - герц (Гц).

При равноускоренном вращательном движении :

Лекция 3 Первый закон Ньютона. Сила. Принцип независимости действующих сил. Результирующая сила. Масса. Второй закон ньютона. Импульс. Закон сохранения импульса. Третий закон Ньютона. Момент импульса материальной точки, момент силы, момент инерции.

План лекции

    Первый закон Ньютона

    Второй закон Ньютона

    Третий закон Ньютона

    Момент импульса материальной точки, момент силы, момент инерции

    Первый закон Ньютона. Масса. Сила

Первый закон Ньютона: Существуют такие системы отсчета, относительно которых тела движутся прямолинейно и равномерно или покоятся, если на них не действуют силы или действие сил скомпенсировано.

Первый закон Ньютона выполняется только в инерциальной системе отсчёта и утверждает существование инерциальной системе отсчёта.

Инерция – это свойство тел стремиться сохранять скорость неизменной.

Инертностью называют свойство тел препятствовать изменению скорости под действием приложенной силы.

Масса тела – это физическая величина являющаяся количественной мерой инертности, это скалярная аддитивная величина. Аддитивность массы состоит в том, что масса системы тел всегда равна сумме масс каждого тела в отдельности. Масса – основная единица системы «СИ».

Одной из форм взаимодействия является механическое взаимодействие . Механическое взаимодействие вызывает деформацию тел, а также изменение их скорости.

Сила – это векторная величина являющаяся мерой механического воздействия на тело со стороны других тел, или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры (деформируется). Сила характеризуется модулем, направлением действия, точкой приложения к телу.

Загрузка...