Медицинский портал. Щитовидная железа, Рак, диагностика

Медиаторы антиноцицептивных систем. Ноцицептивная и антиноцицептивная системы Локальный и нисходящий контроль боли физиология

С помощью медиаторов ноцицептивной системы информация передается с клетки на клетку.

§ Субстанция Р (от англ. pain – «боль») – главная.

§ Нейротензин.

§ Брадикинин.

§ Холецистокинин.

§ Глютамат.

22. – Теории возникновения боли. Механизм возникновения боли согласно теории воротного контроля. Механизмы функционирования антиноцептивной системы.

Теории возникновения боли.

Теория специфичности утверждает, что боль представляет собой отдельную сенсорную систему, в которой любой повреждающий стимул активирует специальные болевые рецепторы (ноцицепторы), передающие болевой импульс по специальным нервным путям в спинной мозг и в болевые центры головного мозга, вызывая ответную защитную реакцию, направленную на удаление от раздражителя.

Основой для создания в теории специфичности послужило учение французского философа и физиолога Р. Декарта о рефлексе. В 20-ом столетии правомерность концепции боли, как специфической проекционной сенсорной системы, была подтверждена многочисленными исследованиями и открытиями в анатомии и экспериментальной физиологии. Были обнаружены болепроводящие нервные волокна и болепроводящие пути в спинном мозге, болевые центры в различных отделах головного мозга, медиаторы боли (брадикинин, субстанция Р, ВИП и др.).

Согласно теории специфичности, психологическое ощущение боли, её восприятие и переживание признаются адекватными и пропорциональными физической травме и периферическому повреждению. В практической медицинской деятельности это положение привело к тому, что пациенты, страдающие болью и не имеющие очевидных признаков органической патологии, стали считаться "ипохондриками", "невротиками" и, в лучшем случае, направлялись на лечение к психиатру или психотерапевту.

Теория интенсивности утверждает, что ощущение боли возникает при раздражении любого рецептора избыточным стимулом (шум, свет).

Теория воротного контроля (Melzack, Wall, 1965). Поток болевой импульсации с периферии идет в задний рог спинного мозга по большим миелинизированным (А-дельта) и малым немиелинизированным (С-волокнам) нервным волок­нам. Оба типа волокон образуют синапсы с нейронами второго порядка (Т) ("передача/проекция"). Когда Т-нейроны активированы, они поставляют ноцицептивную информацию в мозг.

Периферичес­кие нервные волокна также образуют синапсы с интернейронами желатинозной сустанции (ЖС), которые при стимуляции угне­тают Т-нейроны. А-дельта волокна стимулируют, а С-волокна угнетают интернейроны ЖС, соответ­ственно снижая и повышая центральную передачу ноцицептивных входящих сигналов.

Кроме того, стимуляция интернейронов ЖС на подавление активности Т-нейронов происходит через нисходя­щие пути, начинающиеся в центральной нервной системе (это происходит при акти­вации различными факторами). Баланс между возбуждающими и угнетающими сигналами определяет степень передачи ноцицептивной информации в головной мозг («+» - возбуждающий сигнал; «-» - угнетающий сигнал).

Рис. 8.2. Схема теории «воротного контроля» по R. Melzack, 1999 (объяснение в тексте).

Примечание. ЖС - желатинозная субстанция задних рогов спинного мозга, Т - трансмиссивные нейроны.

Основное научно-медицинское значение теории "входных ворот" заключалось в признании спинного и головного мозга активной системой, фильтрующей, отбирающей и воздействующей на входные сенсорные сигналы. Теория утвердила центральную нервную систему ведущим звеном в болевых процессах.

Теория «генератора патологически усиленного возбуждения » в центральной нервной системе подчеркивает значение центральных механизмов в патогенезе боли и определяет роль периферических факторов.

Генератор патологически усиленного возбуждения (ГПУВ, ге­нератор) - это агрегат гиперактивных нейронов, продуци­рующий чрезмерный неконтролируемый поток импульсов.

ГПУВ образуется в поврежденной нервной системе из первично и вторично измененных нейро­нов и представляет собой новую, необычную для деятельности нормальной нервной системы патологическую интеграцию, возникающую на уровне межнейрональных отношений. Осо­бенностью генератора является его способность развивать самоподдерживающуюся активность. ГПУВ может образовы­ваться практически во всех отделах ЦНС, его формирование и деятельность относятся к типовым патологическим процес­сам.

При создании генератора в системе болевой чувствительности появляются различные болевые синдромы: болевой синдром спинального происхождения (генератор в дорсальных рогах спинного мозга), тригеминальная невралгия (генератор в каудальном ядре тройничного нерва), таламический болевой синдром (генератор в ядрах таламуса).

Невромы, повреждения нервов, смещения межпозвонковых дисков вызывают боль и приводят к возникновению патологических центральных процессов. В ЦНС формируется "генератор патологически усиленного возбуждения", в результате значение периферических факторов уменьшается. Поэтому при сильной фантомной невралгической и поясничной боли после удаления невром нервов, грыж диска и т.п. устранение периферических факторов может не привести к прекращению боли.

Возникновение генератора начинается либо с первичной гипер­активации нейронов , либо с первичного нарушения их тормо­жения . При первичной гиперактивации нейронов тормозные меха­низмы сохранены, но они функционально недостаточны. В этом случае имеет место вторичная недостаточность торможе­ния, которая возрастает по мере развития генератора, при пре­обладании возбуждения. При первичной недостаточности тор­мозных механизмов появляются растормаживание и вторичная гиперактивация нейронов.

Первичная гиперактивация нейронов возникает вследствие усиленных и длительных возбуждающих воздейст­вий: при синаптической стимуляции, при действии возбуждаю­щих аминокислот, К + и др. Роль синаптической стимуляции отчетливо видна на приме­ре формирования генератора в ноцицептивной системе. Хрони­чески раздражаемые рецепторы в тканях, эктопические очаги в поврежденных нервах, неврома (хаотически разросшиеся аф­ферентные волокна) являются источником постоянной импульсации. Под влиянием этой импульсации в центральном аппара­те ноцицептивной системы формируется генератор.

Первичное нарушение торможения нейронов формиру­ется в условиях действия веществ, избирательно повреждаю­щих тормозные процессы. Такой эффект имеет место при дей­ствии столбнячного токсина, нарушающего выделение пресинаптическими окончаниями тормозных медиаторов; при действии стрихнина, блокирующего глициновые рецепторы на постсинаптических нейронах спинного мозга, где глицин оказывает тормозной эффект; при действии некоторых конвульсантов, нарушающих постсинаптическое торможение.

Поскольку деятельность генераторных механизмов определяется множественными взаимодействиями, влиять на нее можно путем одновременного использования антидепрессантов, раздражения триггерных точек электрическим током, физиотерапией и др.

Понятие антиноцицептивной системы. Ее уровни, медиаторы.

Антиноцицептивная система

Комплекс ноцицептивной системы в равной степени сбалансирован в организме комплексом антиноцицептивной системы, обеспечивающей контроль за активностью структур, участвующих в восприятии, проведении и анализе болевых сигналов.

В настоящее время установлено, что болевые сигналы, поступающие с периферии, стимулируют активность различных отделов центральной нервной системы (околопроводное серое вещество, ядра шва ствола мозга, ядра ретикулярной формации, ядра таламуса, внутренней капсулы, мозжечка, интернейроны задних рогов спинного мозга и др.), оказывающих нисходящее тормозное действие на передачу ноцицептивной афферентации в дорзальных рогах спинного мозга.

Основные нейроны антиноцецептивной системы локализованы в околоводопроводном сером веществе (сильвиев водопровод соединяет III и IV желудочки). Их аксоны образуют нисходящие пути к продолговатому и спинному мозгу и восходящие пути к ретикулярной формации, таламусу, гипоталамусу, лимбической системе, базальным ганглиям и коре.

Медиаторами этих нейронов являются пентапептиды: метэнкефалин и лейэнкефалин. Энкефалины возбуждают опиатные рецепторы. Опиатные рецепторы возбуждаются не только медиаторами-энкефалинами, но и другими компонентами антиноцецептивной системы – гормонами головного мозга - эндорфинами (бета-эндорфин, динорфин).

В механизмах развития анальгезии наибольшее значение придаётся серотонинергической, норадренергической, ГАМКергической и опиоидергической системам мозга.

Основная из них, опиоидергическая система, образована нейронами, тело и отростки которых содержат опиоидные пептиды (бета-эндорфин, мет-энкефалин, лей-энкефалин, динорфин).

Связываясь с определёнными группами специфических опиоидных рецепторов (мю-, дельта- и каппа-опиоидные рецепторы), 90% которых расположено в дорзальных рогах спинного мозга, они способствуют высвобождению различных химических веществ (гамма-аминомасляная кислота), тормозящих передачу болевых импульсов.

Энкефалины и эндорфины возбуждают опиатные рецепторы. В энкефалинергических синапсах опиатные рецепторы находятся на постсинаптической мембране, но эта же мембрана является пресинаптической для других синапсов. Опиатные рецепторы ассоциированы с аденилатциклазой и вызывают ее ингибирование, нарушая в нейронах синтез цАМФ. В итоге уменьшается вход кальция и освобождение медиаторов, включая медиаторы боли (субстанция P, холецистокинин, соматостатин, глутаминовая кислота).

К медиаторам антиноцецептивной системы относятся также катехоламины. Они возбуждают тормозные a 2 -адренорецепторы, осуществляя тем самым постсинаптическое торможение боли.

Виды клеточного торможения

· Пресинаптическое направленно на торможение выделения медиатора из-за гиперполяризации всего нейрона.

· Постсинаптическое – гиперполяризация следующего нейрона.

Говоря об антиноцицептивной системе, первым компонентом следует ставить:

1. Желатинозную субстанцию спинного мозга (в чувствительных ядрах тригеминуса видимо, есть нечто подобное).

2. Нисходящие гипоталамо-спинальные пути (возможность обезболивания путем гипноза, внушения и самовнушения). С аксонов в спинном мозгу или на ядрах тригеминуса тоже выделяются тормозные медиаторы.

Естественная болеутоляющая система так же важна для нормальной жизнедеятельности, как и болесигнализирующая система. Благодаря ей, незначительные повреждения типа ушиба пальца или растяжения связок вызывают сильные болевые ощущения только на короткое время - от несколько минут до нескольких часов, не заставляя нас страдать в течение дней и недель, что случилось бы в условиях сохранения боли до полного заживления.

Таким образом, физиологическая ноцицепция включает четыре основных процесса:

1. Трансдукцию - процесс, при котором повреждающее воздействие трансформируется в виде электрической активности в свободных неинкапсулированных нервных окончаниях (ноцицепторах). Их активация происходит либо вследствие прямых механических или термических стимулов, либо под воздействием эндогенных тканевых и плазменных алгогенов, образующихся при травме или воспалении (гистамин, серотонин, простагландины, простациклины, цитокины, ионы К + и Н + , брадикинин).

2. Трансмиссию - проведение возникших импульсов по системе чувствительных нервных волокон и путей в центральную нервную систему (тонкие миелиновые А-дельта и тонкие безмиелиновые С-афференты в составе аксонов спинномозговых ганглиев и задних спинномозговых корешков, спиноталамические, спиномезенцефалические и спиноретикулярные пути, идущие от нейронов задних рогов спинного мозга к образованиям таламуса и лимбико-ретикулярного комплекса, таламокортикальные пути к соматосенсорным и фронтальной зонам коры головного мозга).

3. Модуляцию - процесс изменения ноцицептивной информации нисходящими, антиноцицептивными влияниями центральной нервной системы, мишенью которых являются преимущественно нейроны задних рогов спинного мозга (опиоидергические и моноаминовые нейрохимические антиноцицептивные системы и система воротного контроля).

4. Перцепцию - субъективное эмоциональное ощущение, воспринимаемое как боль и формирующееся под воздействием фоновых генетически детерминированных свойств центральной нервной системы и ситуационно меняющихся раздражений с периферии.

23. - Экстремальные состояния. Отличия обморака, колапса, шока и комы. общий патогенез шока.

Экстремальные состояния - состояния, сопровождающиеся грубыми расстройствами метаболизма и жизненно важных функций и представляющие непосредственную опасность для жизни.

Экстремальные состояния часто связаны с действием сверхсильных патогенных факторов.

Различают несколько видов АНС, располагающихся и взаимодействующих на разных уровнях нервной системы.

Одной из наиболее важных АНС является эндогенная опиатная система . Опиатные рецепторы обнаружены в терминалях тонких А-дельта и С-афферентов, в нейронах задних рогов спинного мозга, а также в ретикулярных ядрах ствола головного мозга, таламусе и лимбической системе. Вскоре после обнаружения опиатных рецепторов были идентифицированы эндогенные морфиноподобные вещества — эндорфины, воздействующие на эти рецепторы. Наиболее изученными среди эндорфинов являются бета-эндорфин (фрагмент гипофизарного гормона бета-липотропина) и два других пептида — энкефалин и динорфин. Зона среднего мозга содержит наибольшее количество эндорфинов. В спинном мозге главным эндорфином является энкефалин. Считается, что эндорфины, которых называют также эндогенными опиатами, вызывают аналитический эффект, освобождаясь из депозитов и присоединяясь к специфическим рецепторам нейронов, вовлеченных в передачу болевых импульсов. Их освобождение может быть стимулировано как периферическими ноцицептивными, так и нисходящими, контролирующими боль, системами. Например, аналгезия, вызванная экспериментально при электрической стимуляции определенных стволовых ядер, вызывается благодаря освобождению и действию энкефалинов в задних рогах спинного мозга. Как указывалось выше, при активации тонких А-дельта- и С-волокон субстанция P выделяется из терминален и участвует в трансмиссии болевых сигналов в заднем роге спинного мозга. При этом энкефалины ингибируют действие субстанции Р, уменьшая болевые проявления. Кроме того, показано, что дефицит эндорфинов в мозге может отражаться на снижении толерантности к боли или усилению ее выраженности. С помощью антагониста опиатных рецепторов налоксона продемонстрировано участие эндорфинов в феномене стресс-индуцированной аналгезии, в обезболивающем эффекте плацебо и акупунктуры. В этих случаях введение налоксона провоцировало появление или усиление боли, указывая на то, что обезболивающий эффект указанных воздействий реализуется эндорфинами через опиатные рецепторы.

Существенным для развития положений об АНС было изучение и открытие нисходящих цереброспинальных путей, контролирующих боль. Нисходящий контроль боли осуществляется различными церебральными системами, которые при помощи коллатералей связаны с восходящими ноцицептивными путями, образуя таким образом важную систему «обратной связи». Среди них ведущее место занимает околоводопроводное, или центральное, серое вещество (ОСВ) и ядра шва ствола и среднего мозга. Именно при электрическом раздражении ОСВ впервые был получен феномен селективного обезболивания . Аналгетическое действие при активации этой системы реализуется за счет угнетения восходящего ноцицептивного потока на сегментарном уровне. При этом происходит торможение ноцицептивных нейронов заднего рога спинного мозга, активация нейронов желатинозной субстанции, участвующих в пресинаптическом торможении ноцицептивной информации, стимулируется выброс эндогенных пептидов, действующих на опиатные рецепторы. Анатомически эти нисходящие системы представлены в основном связями ОСВ с большим ядром шва и крупноклеточным ядром ретикулярной формации продолговатого мозга, от которых идут соответственно рафеспинальный и ретикулоспинальный пути. Особая роль в антиноцицепции в этих системах принадлежит серотонину, нейротрансмитгеру с широким спектром действия. В области ствола головного мозга сосредоточено наибольшее количество серотонинергических нейронов: в ОСВ, большом, центральном и дорсальном ядрах шва. Снижение содержания серотонина приводит к ослаблению аналгетического эффекта, понижению болевых порогов, большей частоте развития болевых синдромов. Использование препаратов, усиливающих серотонинергическую активность, способствует регрессу хронического болевого синдрома. Ингибиторы обратного захвата серотонина являются препаратами выбора для лечения хронических болей. Полагают также, что аналгетическое действие серотонина отчасти может опосредоваться эндогенными опиатами, поскольку серотонин способствует высвобождению бета-эндорфина из клеток передней доли гипофиза.

Другой АНС является система нисходящих связей ядер ретикулярной формации ствола головного мозга . По некоторым данным, стимуляция ретикулярных ядер ствола в значительно большей степени, чем раздражение ядер шва, угнетает передачу ноцицептивной информации в спинном мозге. В отличие от волокон, нисходящих из ядер шва, ретикулоспинальные пути оканчиваются не только в I-V пластинах заднего рога, но и в боковом и передних рогах, что, по-видимому, имеет существенное значение для сопряженной регуляции вегетативной и моторной деятельности при формировании болевого феномена.

Относительно недавно было обнаружено, что высокая активность нейронов заднего рога, вызванная стимуляцией тонких болевых волокон, резко подавляется при одновременной стимуляции таких же болевых волокон на любом другом участке тела (гетеросегментарная стимуляция). Этот феномен получил название — диффузный ноцицептивный ингибирующий контроль (ДНИК) . Доказано, что этот эффект реализуется посредством спинально-стволово-спинальных связей. Восходящие пути идут в составе вентролатеральных, а нисходящие — в составе дорсолатеральных канатиков. Наиболее важной структурой в реализации ДНИК оказалось ядро subnucleus reticularis dorsalis , разрушение которого резко ослабляет ноцицептивный ингибирующий контроль. Причем стимуляция или разрушение ОСВ, ядер шва, других ретикулярных ядер никак не влияет на ДНИК. Показано, что ДНИК активируется исключительно ноцицептивными стимулами, не реагируя на слуховые, зрительные и проприоцептивные раздражители. Механизмы ДНИК вероятно лежат в основе хорошо известного эмпирического наблюдения, когда «одна боль подавляет другую».

Еще одной антиболевой системой является норадренергическая АНС. Мощным ядром ствола мозга, оказывающим ингибирующее влияние на болевую передачу, является locus coeruleus (LC), имеющий диффузные проекции в спинной мозг и, в частности, в задние рога. Стимуляция LC ингибирует ноцицептивные ответы в нейронах заднего рога. Эти эффекты блокируются α-адреноблокаторами, что позволило сделать вывод о реализации антиболевых реакций через α-адренорецепторы ноцицептивных нейронов задних рогов. Медиатором этой АНС является норадреналин, который опосредует ингибиторные эффекты не только нейронов LC, но и большого ядра шва и некоторых ретикулярных ядер.

В настоящее время также определена гипоталамоспинальная АНС, которая берет начало в паравентрикулярном и медиальном преоптическом ядрах гипоталамуса и заканчивается на нейронах желатинозной субстанции, участвующих в «воротном контроле» боли на сегментарном уровне.

До настоящего времени остается не совсем ясным, какими медиаторами обеспечиваются все нисходящие пути АНС. Одни авторы полагают, что опиатная система имеет собственный вход на «воротный контроль», другие считают, что нисходящие влияния реализуются через норадренергические, серотонинергические, даже дофаминегические системы. Вероятнее всего, в нисходящих АНС имеет место множественность медиаторных влияний.

Реализация функций нисходящих АНС происходит главным образом на нейронах заднего рога спинного мозга. Можно сказать, что именно в заднем роге расположена первая линия защиты от боли, которая представлена воротным контролем: усиление активности толстых хорошомиелинизированных сенсорных волокон через релейные интернейроны тормозит передачу ноцицептивной афферентации. На этом основаны аналгетические эффекты чрескожной электронейростимуляции, акупунктуры, определенных видов массажа и других стимуляционных воздействий, способствующих усилению афферентации по хорошомиелинизорованным толстым сенсорным волокнам. Однако следует подчеркнуть, что на нейронах заднего рога спинного мозга расположены различные рецепторы (опиатные, серотониновые, глутаматные и др.), посредством которых осуществляется действие различных вышеописанных АНС. В последние годы увеличивается количество экспериментальных и клинических работ, показывающих роль пуриновой системы и, в частности, нуклеозида аденозина в контроле боли. Полагают, что при стимуляции сенсорных волокон крупного калибра из их терминалей в заднем роге спинного мозга высвобождается аденозин-трифосфат (АТФ), который затем экстраклеточно трансформируется в аденозин. Последний, действуя на специфические рецепторы (А1), блокирует ноцицептивную передачу в синапсах тонких сенсорных волокон. Однако оказалось, что в зависимости от дозы аденозин может, напротив, усиливать ноцицепцию. Таким образом, аденозин можно вероятно рассматривать, как нейротрансмиттер, оказывающий модулирующее влияние на механизмы формирования боли.

В качестве АНС рассматривают афферентные связи ретикулярного таламического ядра, стимуляция которого вызывает тормозные импульсы, идущие к другим ядрам зрительного бугра. Увеличение потока афферентной импульсации по таламо-кортикальным путям активирует тормозно-модулирующую систему таламуса.

Исключительную роль в интеграции специфической и неспецифической сенсорной информации играет соматосенсорная область коры, ее ассоциативные связи, контролирующие деятельность как НС, так и АНС разных уровней. Регресс боли при положительных эмоциях, аутотренинге, гипнозе, плацебо-аналгезия, возможность внушения боли, появления ее в отсутствии реальных болевых факторов — эти и другие многочисленные факты свидетельствуют о важном значении психического фактора в восприятии боли (см. Психосоциальные аспекты боли) .

Таким образом, можно заметить, что в отличие от НС, влияние АНС является более мощным на центральном, нежели на периферическом уровне. Наиболее весомый вклад в противодействие боли оказывают АНС ствола головного мозга, используя широкую сеть нисходящих и восходящих нейронных проекций.

В работе АНС следует обратить внимание на некоторые особенности. В отсутствие болевого раздражителя функциональная активность АНС невысока. Пусковым фактором, включающим в работу АНС на разных уровнях, является боль. Другими словами, для функционирования АНС необходимо появление ноцицептивной афферентации. Ноцицептивные воздействия являются основными факторами, запускающими или активирующими АНС. В физиологических условиях АНС обеспечивают оптимальную модуляцию перцепции болевых стимулов, защищая от боли и поддерживая болевые пороги на определенном уровне. В патологических условиях от активности АНС во многом зависит выраженность, длительность и, в целом, тяжесть болевого синдрома. К примеру, синдром врожденной аналгезии, когда люди не испытывают чувства боли, обусловлен гиперактивностью опиатной АНС, характеризующейся избыточной продукцией эндорфинов. Напротив, недостаточная функциональная активность АНС может способствовать развитию хронической интенсивной боли даже при слабых ноцицептивных раздражителях (комплексный регионарный болевой синдром, таламический синдром) или даже без них (головная боль напряжения, мигрень, хроническая пароксизмальная гемикрания).

Таким образом, АНС являются важнейшими образованиями нервной системы, через которые реализуются механизмы контроля боли. Очевидна их широкая представленность в головном мозге и включение в различные нейротрансмиттерные механизмы. Различные эти системы работают не изолированно, а взаимодействуя между собой и с другими системами, регулируют не только болевую чувствительность, но и сопряженные с болью вегетативные, моторные, нейроэндокринные, эмоциональные и поведенческие проявления боли. Иными словами, имеется тесное взаимодействие АНС с интегративными неспецифическими церебральными системами, что позволяет рассматривать их как важнейшую систему, определяющую не только характеристики болевого ощущения, но и его многообразные психофизиологические и поведенческие корреляты.

Ноцицептивная система имеет свой функциональный антипод - антиноцицептивную систему, которая контролирует деятельность структур ноцицептивной системы.

Антиноцицептивная система состоит из разнообразных нервных образований, относящихся к разным отделам и уровням организации ЦНС, начиная с афферентного входа в спинном мозге и кончая корой головного мозга.

Антиноцицептивная система играет существенную роль в механизмах предупреждения и ликвидации патологической боли. Включаясь в реакцию при чрезмерных ноцицептивных раздражениях, она ослабляет поток ноцицептивной стимуляции и интенсивность болевого ощущения, благодаря чему боль остается под контролем и не приобретает патологического значения. При нарушении же деятельности антиноцицептивной системы ноцицептивные раздражения даже небольшой интенсивности вызывают чрезмерную боль.

Антиноцицептивная система имеет свое морфологическое строение, физиологические и биохимические механизмы. Для нормального его функционирования необходим постоянный приток афферентной информации, при ее дефиците функция антиноцицептивной системы ослабляется.

Антиноцицептивная система представлена сегментарным и центральным уровнями контроля, а также гуморальными механизмами - опиоидной, моноаминергической (норадреналин, дофамин, серотонин), холин-ГАМК-эргическими системами.

Кратко остановимся на вышеуказанных механизмах.

Опиатные механизмы обезболивания. Впервые в 1973 г. было установлено избирательное накопление веществ, выделенных из опия, например морфина или его аналогов, в определенных структурах мозга. Эти образования получили название опиатных рецепторов. Наибольшее их количество находится в отделах мозга, передающих ноцицептивную информацию. Показано, что опиатные рецепторы связываются с веществами типа морфина или его синтетическими аналогами, а также с аналогичными веществами, образующимися в самом организме. В последние годы доказана неоднородность опиатных рецепторов. Выделены Мю-, дельта-, каппа-, сигма-опиатные рецепторы. Так, например, морфиноподобные опиаты соединяются с Мю-рецепторами, опиатные пептиды- с дельта рецепторами.

Эндогенные опиаты. Выяснено, что в крови и спинномозговой жидкости человека имеются вещества, обладающие способностью соединяться с опиатными рецепторами. Они выделены из мозга животных, имеют структуру олигопептидов и получили название энкефалинов (мет- и лей-энкефалин). Из гипоталамуса и гипофиза были получены вещества с еще большей молекулярной массой, имеющие в своем составе молекулы энкефалина и названные большими эндорфинами. Эти соединения об- разуются при расщеплении бета-липотропина, а учитывая, что он является гормоном гипофиза, можно объяснить гормональное происхождение эндогенных опиоидов. Из других тканей получены вещества с опиатными свойствами и иной химической структуры- это лей-бета-эндорфин, киторфин, динорфин и др.


Различные области ЦНС имеют неодинаковую чувствительность эндорфинам и энкефалинам. Например, гипофиз в 40 раз чувствительнее к эндорфинам, чем к энкефалинам. Опиатные рецепторы обратимо соединяются с наркотическими аналгетиками, и последние могут быть вытеснены их антагонистами с восстановлением болевой чувствительности.

Каков же механизм обезболивающего действия опиатов? Считается, что они соединяются с рецепторами (ноцицепторами) и, так как имеют большие размеры, препятствуют соединению с ними нейротрансмиттера (субстанции P). Известно также, что эндогенные опиаты обладают и пресинаптическим действием. В результате этого уменьшается выделение дофамина, ацетилхолина, субстанции P, а также простагландинов. Предполагают, что опиаты вызывают угнетение в клетке функции аденилатциклазы, уменьшение образования цАМФ и, как следствие, торможение выделения медиаторов в синаптическую щель.

Адренэргические механизмы обезболивания. Установлено, что норадреналин тормозит проведение ноцицептивных импульсов как на сегментарном (спинной мозг), так и стволовом уровнях. Этот его эффект реализуется при взаимодействии с альфа-адренорецепторами. При болевом воздействии (равно как и стрессе) резко активируется симпатоадреналовая система (САС), мобилизуются тропные гормоны, бета-липотропин и бета-эндорфин как мощные аналгетические полипептиды гипофиза, энкефалины. Попадая в спинномозговую жидкость, они влияют на нейроны таламуса, центрального серого вещества мозга, задние рога спинного мозга, тормозя образование медиатора боли- субстанции Р и обеспечивая таким образом глубокую анальгезию. Одновременно с этим усиливается образование серотонина в большом ядре шва, который также тормозит реализацию эффектов субстанции Р. Считается, что эти же механизмы обезболивания включаются при акупунктурной стимуляции не болевых нервных волокон.

Для иллюстрации многообразия компонентов антиноцицептивной системы следует сказать, что выявлено много гормональных продуктов, оказывающих аналгетический эффект без активации опиатной системы. Это вазопрессин, ангиотензин, окситоцин, соматостатин, нейротензин. Причем, аналгетический эффект их может быть в несколько раз сильнее энкефалинов.

Есть и другие механизмы обезболивания. Доказано, что активация холинэргической системы усиливает, а блокада ее ослабляет морфийную систему. Предполагают, что связывание ацетилхолина с определенными центральными М- рецепторами стимулирует высвобождение опиоидных пептидов. Гамма-аминомасляная кислота регулирует болевую чувствительность, подавляя эмоционально-поведенческие реакции на боль. Боль, активируя ГАМК и ГАМК- эргическую передачу, обеспечивает адаптацию организма к болевому стрессу.

Виды боли Острая боль. В современной литературе можно встретить несколько теорий, объясняющих происхождение острой боли. Наибольшее распространение получила т.н. "воротная" теория Р. Мельзака и П. Уолла. Она заключается в том, что желатинозная субстанция заднего рога, которая обеспечивает контроль поступающих в спинной мозг афферентных импульсов, выступает в роли ворот, пропускающих ноцицептивные импульсы вверх. Причем, важное значение принадлежит Т-клеткам желатинозной субстанции, где происходит пресинаптическое торможение терминалей, в этих условиях болевые импульсы не проходят дальше в центральные мозговые структуры и боль не возникает. По современным представлениям, закрытие "ворот" связано с образование энкефалинов, которые тормозят реализацию эффектов важнейшего медиатора боли - субстанции Р. Если увеличивается приток афферентации по А-дельта и С-волокнам, активируются Т- клетки и ингибируются клетки желатинозной субстанции, что снимает ингибиторный эффект нейронов желатинозной субстанции на терминали афферентов с Т-клетками. Поэтому активность Т-клеток превышает порог возбуждения и возникает боль вследствие облегчения передачи болевых импульсов в мозг. "Входные ворота" для болевой информации в этом случае открываются.

Важным положением этой теории является учет центральных влияний на "воротный контроль" в спинном мозге, ибо такие процессы, как жизненный опыт, внимание, оказывают влияние на формирование боли. ЦНС осуществляет контроль сенсорного входа за счет ретикулярных и пирамидных влияний на воротную систему. Например, Р. Мельзак приводит такой пример: женщина неожиданно обнаруживает у себя уплотнение в груди и, беспокоясь, что это рак, может вдруг почувствовать боль в груди. Боль может усиливаться и даже распространяться на плечо и руку. Если врачу удастся убедить ее, что это уплотнение не представляет опасности, может наступить моментальное прекращение боли.

Хроническая боль.При длительном повреждении тканей (воспаление, переломы, опухоли и т.д.) формирование боли происходит так же, как и при острой, только постоянная болевая информация, вызывая резкую активацию гипоталамуса и гипофиза, САС, лимбических образований мозга, сопровождается более сложными и продолжительными изменениями со стороны психики, поведения, эмоциональных проявлений, отношения к окружающему миру (уход в боль).

По теории Г.Н. Крыжановского хроническая боль возникает в результате подавления тормозных механизмов, особенно на уровне задних рогов спинного мозга и таламуса. При этом в мозге формируется генератор возбуждения. Под влиянием экзогенных и эндогенных факторов в определенных структурах ЦНС вследствие недостаточности тормозных механизмов возникают генераторы патологически усиленного возбуждения (ГПУВ), активирующие положительные связи, вызывая эпилептизацию нейронов одной группы и повышение возбудимости других нейронов.

Фантомные боли (боли в ампутированных конечностях) объясняются в основном дефицитом афферентной информации и в результате этого тормозное влияние Т-клеток на уровне рогов спинного мозга снимается, а любая афферентация из области заднего рога воспринимается как болевая.

Отраженная боль. Ее возникновение связано с тем, что афференты внутренних органов и кожи связаны с одними и теми же нейронами заднего рога спинного мозга, которые дают начало спинно-таламическому тракту. Поэтому афферентация, идущая от внутренних органов (при их поражении), повышает возбудимость и соответствующего сегмента кожи, что воспринимается как боль в этом участке кожи.

Основные различия проявлений острой и хронической боли.

1. При хронической боли автономные рефлекторные реакции постепенно уменьшаются и в конечном счете исчезают, а превалируют вегетативные расстройства.

2. При хронической боли, как правило, не бывает самопроизвольного купирования боли, для ее нивелирования требуется вмешательство врача.

3. Если острая боль выполняет защитную функцию, то хроническая вызывает более сложные и длительные расстройства в организме и приводит (J.Bonica,1985) к прогрессивному "изнашиванию", вызванному нарушением сна и аппетита, снижением физической активности, часто избыточным лечением.

4 .Кроме страха, характерного для острой и хронической боли, для последней свойственны также депрессия, ипохондрия, безнадежность, отчаяние, устранение больных от социально-полезной деятельности (вплоть до суицидальных идей).

Нарушения функций организма при боли. Расстройства функций Н.С. при интенсивной боли проявляются нарушением сна, сосредоточенности, полового влечения, повышенной раздражительностью. При хронической интенсивной боли резко уменьшается двигательная активность человека. Больной находится в состоянии депрессии, повышается болевая чувствительность в результате снижения болевого порога.

Небольшая боль учащает, а очень сильная замедляет дыхание вплоть до его остановки. Может увеличиться частота пульса, системное АД, развиться спазм периферических сосудов. Кожные покровы бледнеют, а если боль непродолжительна, спазм сосудов сменяется их расширением, что проявляется покраснением кожи. Изменяется секреторная и двигательная функция ЖКТ. За счет возбуждения САС сначала выделяется густая слюна (в целом слюноотделение увеличивается), а затем за счет активации парасимпатического отдела нервной системы- жидкая. В последующем уменьшается секреция слюны, желудочного и панкреатического сока, замедляется моторика желудка и кишечника, возможна рефлекторная олиго- и анурия. При очень резкой боли появляется угроза развития шока.

Биохимические изменения проявляются в виде повышения потребления кислорода, распада гликогена, гипергликемии, гиперлипидемии.

Хронические боли сопровождаются сильными вегетативными реакциями. Например, кардиалгии и головные боли сочетаются с подъемом АД, температуры тела, тахикардией, диспепсией, полиурией, повышенным потоотделением, тремором, жаждой, головокружением.

В практике врача встречаются случаи, когда люди страдают врожденным отсутствием чув­ства боли (врожденная аналгия) при полном сохранении проводящих ноцицептивных путей. Кроме того, имеют место клинические наблюдения спонтанных болевых ощущений у людей при отсутствии внешних поврежде­ний или заболеваний. Объяснение этих и по­добных факторов стало возможным с появле­нием в 70-х годах XX в. представления о су­ществовании в организме не только ноци-цептивной, но и антиноцицептивной, анти­болевой, или обезболивающей, эндогенной системы. Существование антиноцицептив­ной системы было подтверждено экспери­ментами, когда электростимуляция некото­рых точек ЦНС приводила к отсутствию спе­цифических реакций на болевые раздраже­ния. При этом животные оставались в бодр­ствующем состоянии и адекватно реагирова­ли на сенсорные стимулы. Следовательно, можно было заключить, что электростимуля­ция в таких экспериментах приводила к фор­мированию состояния аналгезии, подобно врожденной аналгии у людей.

С труктурно - функциональная характе­ристика. Антиноцицептивная система выполняет функцию «ограничителя» болевого воз­буждения. Эта функция заключается в кон­троле за активностью ноцицептивных систем и предотвращении их перевозбуждения. Про­является ограничительная функция в увели­чении тормозного влияния антиноцицептивной системы в ответ на нарастающий по силе ноцицептивный стимул. Однако это ограни­чение имеет предел и при активность нейронов на ноцицептивную импульсацию, формируя у людей состояние анальгезии. Одновременно эндорфины активизируют антиноцицептивную систему. НАЛОКСОН- блокирует действие опиатной системы.

В настоящее время известно четыре типа опиатных рецепторов : мю-, дельта-, каппа- и сигма. В организме вырабатываются собственные эндогенные опиоидные вещества в виде олигопептидов, получивших название эндорфинов (эндоморфинов), энкефалинов и динорфинов . Эти вещества связываются с опиатными рецепторами и приводят к возникнове­нию пре- и постсинаптического торможения в ноцицептивной системе , следствием чего являются состояния аналгезии или гипалгезии. Такая гетерогенность опиатных рецепто­ров и соответственно избирательная к ним чувствительность (аффинитет) опиоидных пептидов отражает различные механизмы болей разного происхождения.

Кроме пептидов эндогенной антиноцицептивной природы, установлены и непептидные вещества , участ­вующие в купировании определенных видов боли, например серотонин, катехоламины . Возможно, что существуют и другие нейро­химические вещества антиноцицептивной эндогенной системы организма, которые предстоит открыть.

II. Нейротензины. Помимо механизмов антиноцицепции связанных с опиоидами, известен механизм имеющий отношение к функциям других пептидов - нейротензина, окситоцина, ангиотензина. Установлено н-р, что интерцистернальное введение нейротензина вызывает снижение болевой чувствительности в 100-1000 раз сильнее, чем у энкефалинов.

III. Серотонинергическая регуляция болевого ощущения. Электростимуляция нейронов шва, большинство которых является серотонинергическими, вызывает состояние аналгезии. При стимуляции ядер происходит выделение серотонина в терминалях волокон, направляющихся к нейронам заднего рога спинного мозга. Аналгезия, вызванная активацией серотонина, не блокируется антагонистом опиатных рецепторов - налоксоном. Это позволяет сделать заключение о самостоятельном, отличном от опиоидного, серотонинергическом механизме болевой чувствительности, связанном с функциями ядер шва ствола мозга.

IY. Норадренергическая система (главная роль принадлежит Голубому пятну) Включается при отрицательных стенических реакциях (ярость, гнев- при драке)

Y. ГАМК-ергическая - может работать самостоятельно и в синергизме с опиоидной системой (является нейромодулятором- т.к. ГАМК вызывает ТПСП).

Т.о. в механизме регуляции болевой чувстви­тельности участвуют и неопиоидные пепти­ды - нейротензин, ангиотензин II , кальцитонин, бомбезин, холецистокинин, которые также оказывают тормозной эффект на про­ведение ноцицептивной импульсации. Эти вещества образуются в различных областях ЦНС и имеют соответствующие рецепторы на «станциях переключения» ноцицептивной импульсации. Их аналгетический эффект за­висит от генеза болевого раздражения. Так, нейротензин блокирует висцеральную боль , а холецистокинин оказывает сильное анальгетическое действие при боли, вызванной тер­мическим раздражителем .

В деятельности антиноцицептивной сис­темы различают несколько механизмов, от­личающихся друг от друга по длительности действия и по нейрохимической природе ме­диаторов.

Срочный механизм активируется непо­средственно действием болевых стимулов и реализуется с участием структур нисходящего тормозного контроля. Этот механизм осу­ществляется через активацию серотонин – и опиоидергических нейронов , входящих в со­став серого околоводопроводного вещества и ядер шва, а также адренергических нейронов ретикулярной формации. Благодаря срочно­му механизму обеспечивается функция огра­ничения афферентного ноцицептивного по­тока на уровне нейронов задних рогов спин­ного мозга и каудальных отделов ядер тригеминального комплекса. За счет срочного ме­ханизма реализуется конкурентная аналгезия, т.е. подавление болевой реакции на сти­мул в том случае, когда одновременно дейст­вует другой, более сильный стимул на другую рецептивную зону.

Короткодействующий механизм активиру­ется при кратковременном действии на орга­низм ноцицептивных факторов. Центр этого механизма локализуется в гипоталамусе, пре­имущественно в вентромедиальном ядре . По нейрохимической природе этот механизм адренергический . Он вовлекает в активный процесс систему нисходящего тормозного контроля (I уровень антиноцицептивной сис­темы) с его серотонин - и опиоидергическими нейронами. Данный механизм выполняет функцию ограничения восходящего ноци­цептивного потока, как на уровне спинного мозга, так и на супраспинальном уровне. Этот механизм включается также при сочета­нии действия ноцицептивного и стрессогенного факторов и так же, как срочный меха­низм, не имеет периода последействия.

Длительно действующий механизм активи­руется при длительном действии на организм ноцигенных факторов. Центром его являют­ся латеральное и супраоптическое ядра гипо­таламуса. По нейрохимической природе этот механизм опиоидный. При этом вовлекаются системы нисходящего тормозного контроля, поскольку между этими структурами и гипо­таламусом имеются хорошо выраженные дву­сторонние связи. Длительно действующий механизм имеет хорошо выраженный эффект последействия. Функции этого механизма за­ключаются в ограничении восходящего но­цицептивного потока на всех уровнях ноци-цептивной системы и регуляции активности системы нисходящего тормозного контроля. Данный механизм обеспечивает также выде­ление ноцицептивной афферентации из об­щего потока афферентных возбуждений, их оценку и эмоциональную окраску.

Тонический механизм поддерживает посто­янную активность антиноцицептивной сис­темы. Центры расположены в орбитальной и фронтальной областях коры большого мозга, а также в гипоталамусе. Основными нейро­химическими механизмами являются опиоидные и пептидергические. Его функция за­ключается в постоянном тормозном влиянии на активность ноцицептивной системы на всех уровнях ЦНС даже в отсутствие ноци-цептивных воздействий.

Боль - это неприятное ощущение и эмоциональное переживание, возникающее в связи с настоящей или потенциальной угрозой повреждения тканей или описываемое в терминах такого повреждения (определение боли, данное Международной Ассоциацией по изучению боли).

В данном определении очень интересна та ее часть, которая содержит следующее: «…или потенциальной угрозой повреждения тканей…». Видимо авторы внесли это нагруженное большим смыслом словосочетание, имея большое количество примеров из клинической практики, когда пациенты не имея явного или скрытого повреждения тканей в настоящий момент или в прошлом - испытывают боль (которая чаще всего имеет дефиницию «психогенная боль»). Экстраполируя данное определение на практическую деятельность можно сделать следующие рекомендации – пациент может испытывать психогенную хроническую боль, если он находится в состоянии хронического ожидания возможной «катастрофы» в его телесной и/или социальной сферах. Иными словами, если пациент предвидит неизбежное повреждение его тканей или социума, которое в любом случае скажется на его телесном благополучии – он «заблаговременно» начинает испытывать боль. Вероятно в этой реализации имеет большое значение личность и психическая организация индивида, ибо только обладая определенными специфическими чертами психической организаии, возможно реализовать болевой феномен, причина которого еще находится в сфере воображаемого.

Рассмотрим в общих чертах нейрофизиологию и нейроанатомию ноцицептивной и антиноцицептивной систем.

Болевые рецепторы

Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами, расположенными по всему телу, за исключением головного мозга.

Анатомически выделяют два типа ноцицепторов:
1.Свободные нервные окончания , разветвлённые в виде дерева (миелиновые волокна). Они представляют собой быстрые А-дельта волокна, проводящие раздражение со скоростью 6 - 30 м\с. Эти волокна возбуждаются высокоинтенсивными механическими (булавочный укол) и, иногда, термическими раздражениями кожи. А - дельта ноцицепторы располагаются, преимущественно, в коже, включая оба конца пищеварительного тракта. Находятся они также и в суставах.
2.Плотные некапсулированные гломерулярные тельца (немиелиновые С-волокна, проводящие раздражение со скоростью 0,5 - 2 м\с). Эти афферентные волокна представлены полимодальными ноцицепторами, поэтому реагируют как на механические,так на температурные и химические раздражения. Они активируются химическими веществами, возникающими при повреждении тканей, являясь одновременно и хеморецепторами, и считаются со своей эволюционной примитивностью оптимальными тканеповреждающими рецепторами. С - волокна распределяются по всем тканям за исключением центральной нервной системы. Однако они присутствуют в периферических нервах, как nervi nervorum. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера. Такой тип ноцицепторов также содержит calcitonin ген - связанный пептид, а волокна из внутренних органов - вазоактивный интестинальный пептид.

Задние рога спинного мозга

Большинство «болевых волокон» достигают спинного мозга через спинномозговые нервы (в случае, если они отходят от шеи, туловища и конечностей) или входят в продолговатый мозг в составе тройничного нерва.
Проксимально от спиномозгового ганглия перед вхождением в спинной мозг задний корешок разделяется на медиальную, содержащую толстые миелиновые волокна, и латеральную части, в состав которой входят тонкие миелиновые (А-дельта) и немиелиновые (С) волокна. Примерно 30% С-волокон после выхода из спинномозгового ганглия возвращаются обратно к месту совместного хода чувствительных и двигательных корешков (канатик) и входят в спинной мозг через передние корешки. Этот феномен, вероятно, объясняет причину неэффективности попыток дорзальной ризотомии, предпринимаемой для облегчения боли. При вхождении ноцицептивных волокон в спинной мозг, они разделяются на восходящие и нисходящие ветви. Перед своим окончанием в сером веществе задних рогов эти волокна могут направляться к нескольким сегментам спинного мозга. Разветвляясь, они формируют связи с другими многочисленными нервными клетками. Таким образом, термин «заднероговой комплекс» используется для обозначения данной нейроанатомической структуры.

Ноцицептивной информацией прямо или косвенно активируются два основных класса релейных заднероговых клеток:
"ноцицептивные специфические» нейроны, активируемые только ноцицептивными стимулами
«конвергентные» (wide dynamic range) нейроны, активируемые также и не ноцицептивными стимулами

На уровне задних рогов спинного мозга большое число первичных афферентных раздражений передаются через интернейроны или ассоциативные нейроны, чьи синапсы облегчают, либо препятствуют передаче импульсов. Периферический и центральный контроль локализуется в желатинозной субстанции, примыкающей к клеточному слою.

Восходящие пути боли

Восходящие «болевые пути» находятся в составе переднебоковых канатиков белого вещества спинного мозга и идут контрлатерально стороне вхождения болевых стимулов. Часть волокон спиноталамического и спиноретикулярного трактов, проводящих болевое раздражение, присутствует в заднебоковом канатике.

Спиноталамический тракт может быть, разделён на две части:
Неоспиноталамический тракт - быстрое проведение, моносинаптическая передача, хорошо локализованная (эпикритическая) боль, А - волокна. Этот тракт направляется к специфическим латеральным ядрам таламуса (вентрозаднелатеральное и вентрозаднемедиальное ядра).
Палеоспиноталамическая система - полисинаптическая передача, медленное проведение, плохо локализованная (протопатическая) боль, С - волокна. Данные пути восходят к неспецифическим медиальным таламическим ядрам (медиальное ядро, интраламинарное ядро, срединный центр). На своём пути к медиальным ядрам таламуса тракт направляет часть волокон к ретикулярной формации.

Существует баланс между медиальным (в основном nucl.centralis lateralis) и латеральным (nucl. ventroposterior) ядрами таламуса, нарушение которого ведёт к сверхторможению их обоих ретикулярным таламическим ядром, а затем к парадоксальной активации корковых полей, связанных с болевым ощущением.

Импульсы входящие через неоспиноталамическую систему
переключаются на волокна, передающие сигналы через заднее бедро внутренней капсулы
проецируются на первой соматосенсорной зоне коры, постцентральной извилине и второй соматосенсорной зоне (operculum parietal)

Высокая степень топической организации внутри латерального ядра таламуса делает возможным пространственную локализацию боли. Изучения тысяч корковых поражений в обеих мировых войнах демонстрируют, что повреждения постцентральной извилины никогда не вызывает потери болевой чувствительности, хотя ведут к потере соматотопически организованной низкопороговой механорецептивной чувствительности, также как и ощущения укола иглой.

Импульсы, входящие через палеоспиноталамический тракт
переключаются на медиальное ядро таламуса
проецируются на неокортекс диффузным способом

Проекция в лобной области отражает аффективные компоненты боли. Повреждающие стимулы активируют нейроны цингулярной извилины и орбитальной фронтальной коры.
Таким образом, в головном мозге нет «болевого центра», а восприятие и реакция на боль являются функцией ЦНС в целом.

Модуляция и нисходящий контроль боли

Воротный контроль - внутренний спинальный механизм антиноцицептивной системы.
Импульсы, проходящие по тонким «болевым» периферическим волокнам открывают «ворота» в нервную систему, чтобы достичь её центральных отделов.

Два обстоятельства могут закрыть ворота:
1.импульсы , проходящие по толстым «тактильным» волокнам
2.импульсы , нисходящие из высших отделов нервной системы

Механизм действия толстых периферических волокон, закрывающих ворота , заключается в том, что боль, возникающая в глубоких тканях, таких как мышцы и суставы, уменьшается контрраздражением, - механическим растиранием поверхности кожи или использованием раздражающих мазей. Эти свойства имеют терапевтическое применение, например использование высокочастотного, низко интенсивного электрического раздражения толстых кожных волокон, известного, как чрезкожная электронейростимуляция (ЧЭНС), или вибрационной стимуляции.

Второй механизм (закрытие ворот изнутри) вступает в действие в случае активации нисходящих тормозных волокон из ствола мозга, либо их прямой стимуляцией, либо гетеросегментарной акупунктурой (низкочастотная высокоинтенсивная периферическая стимуляция). В этом случае нисходящие волокна активируют интернейроны, расположенные в поверхностных слоях задних рогов, постсинаптически ингибирующих желатинозные клетки, предотвращая тем самым передачу информации выше.

Опиоидные рецепторы и механизмы

Клиническое значение имеют три класса опиоидных рецепторов: мю-, каппа- и дельта- рецепторы. Их распределение внутри ЦНС очень вариабильно. Плотное размещение рецепторов обнаружено в задних рогах спинного мозга, в среднем мозге и таламусе. Иммуноцитохимические исследования показали наибольшую концентрацию спинальных опиоидных рецепторов в поверхностных слоях задних рогов спинного мозга. Эндогенные опиоидные пептиды (энкефалин, эндорфин, динорфин) взаимодействуют с опиоидными рецепторами всякий раз, когда в результате преодоления болевого порога возникают болевые раздражения. Факт расположения множества опиоидных рецепторов в поверхностных слоях спинного мозга означает, что опиаты могут легко проникать в него из окружающей спинномозговой жидкости.

Вся система нисходящего контроля боли представляется следующим образом.

Аксоны группы клеток, использующих В-эндорфин в качестве трансмиттера, расположенные в области nucl.arcuatus гипоталамуса (который сам находится под контролем префронтальной и островковой зон коры головного мозга) пересекают перивентрикулярное серое вещество в стенке третьего желудочка, оканчиваясь в периакведуктальном сером веществе (PAG). Здесь они ингибируют местные интернейроны, освобождая, таким образом, от их тормозного влияния клетки, чьи аксоны проходят вниз к области nucleus raphe magnum в середине ретикулярной формации продолговатого мозга. Аксоны нейронов этого ядра, преимущественно серотонинергических (трансмиттер - 5 - гидрокситриптамин), направляются вниз по дорсолатеральному канатику спинного мозга, заканчиваясь в поверхностных слоях заднего рога. Некоторая часть raphe - спинальных аксонов и значительное число аксонов из ретикулярной формации являются норадренергическими. Таким образом, как серотонинергические, так и норадренергические нейроны ствола мозга выступают как структуры, блокирующие ноцицептивную информацию в спинном мозге.

Теперь перейдем к феноменологии боли.

Выделяют следующие виды боли.

Два вида болевой чувствительности с эволюционной точки зрения:
Протопатическая - возникает под действием любого неповреждающего фактора (прикосновение, температура). Это сильная боль тянущего характера, не имеет точной локализации не вызывает адаптации (т. е. к ней нельзя привыкнуть). Это наиболее примитивный вид болевой чувствительности.
Эпикритическая болевая чувствительность - возникает только под действием повреждающего фактора: носят острый режущий характер, обладают точной локализацией, но к ней можно приспособиться (явление адаптации). Это более новый путь болевой чувствительности.

По причине возникновения болевых ощущений:
физиологическая - возникает как адекватная ответная реакция на действия повреждающего фактора
патологическая - возникает при поражении нервной системы или на действие неповреждающего фактора (каузалгия)

По времени возникновения и продолжительности болевых ощущений:
острая - кратковременная, в виде приступов
хроническая - более длительная

По локализации болевых ощущений:
местная - в месте действия повреждающего фактора
проэкционная - возникает в зоне иннервации повреждённого волокна
иррадиирующая – возникает при распространение болевого сигнала с одной ветви данного нерва на другую
отраженная – формируется с участием сегментарных структур спинного мозга

По месту возникновения болевого ощущуения (если это нейропатическая боль):
центральная (если очаг болевой ирритации находится в пределах спинного или головного мозга)
периферическая (если источник возникновения боли находится в пределах периферического отдела нервной системы)

По виду раздражаемых рецепторов:
интероцентивная
экстроцентивная
проприоцентивная

Выделяют боль соматическую и висцеральную.
Соматическая боль подразделяется на:
поверхностную - возникает при поражении кожи и слизистых оболочек, подкожной жировой клетчатки - от экстерорецепторов - характеризуется свойствами эпикритической болевой чувствительности
глубокую - возникает при поражении мышц, суставов, суставных сумок, других глубоко расположенных образований - от проприорецепторов - характеризуется всеми свойствами протопатической болевой чувствительности
Висцеральная боль возникает при поражении внутренних органов - от интерорецепторов. При максимальном растяжении полых органов, действии химических веществ, нарушения гемодинамики. Характеризуется свойствами протопатической болевой чувствительности.

По морфологическму субстрату боли:
Тканевая боль:
Кожная
Фасциальная
Фасциально-капсулярная
Мышечная
Миофасциальная
Лигаментная
Надкостничная (периостальная)
Висцеральная
Гематогенная (химическая)

Суставная (артрогенная) боль:
Синовиальная (воспалительная либо склеротическая)

Внутрикостная (интраоссальная) боль:
Трабекулярная
Костномозговая (остеомедуллярная)

Сосудистая ("ишемическая") боль:
Черепно-лицевая
Церебральная
Органная (сердца и других органов)
Сегментарная (при нарушении кровообращения в конечностях)

Ангионевротическая – ангиосклеротическая боль

Нейрогенная боль:
Невральная
Плекситная
Ганглионарная
Ганглионарно-невральная
Ганглионарно-радикулярная
Радикулярная
Спинальная
Интракраниальная

Наиболее полезной может быть следующая классификация боли (так как является отправной точкой для первоначальной терапии):
Ноцицептивная
Нейропатическая
Психогенная

Ноцицептивная боль

Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли. Боль от внутренних органов возникает вследствие быстрого сокращения, спазма или растяжения гладких мышц, поскольку сами гладкие мышцы нечувствительны к жару, холоду или рассечению. Боль от внутренних органов, особенно имеющих симпатическую иннервацию, может ощущаться в определённых зонах на поверхности тела. Такая боль называется отражённой.

Нейропатическая боль

Этот тип боли может быть, определён, как боль вследствие повреждения периферической или центральной нервной системы и не объясняется раздражением ноцицепторов.

Такая боль имеет ряд особенностей , отличающих её, как клинически, так и патофизиологически от ноцицептивной боли:
Нейрогенная боль имеет характер дизестезии. Хотя дескрипторы: тупая, пульсирующая или давящая являются наиболее частыми для подобной боли, патогномоничными характеристиками для неё считаются определения: обжигающая и стреляющая.
В огромном большинстве случаев нейрогенной боли отмечается частичная потеря чувствительности.
Характерны вегетативные расстройства, такие как снижение кровотока, гипергидроз и гипогидроз в болевой области. Боль часто усиливает или сама вызывает эмоционально-стрессовые нарушения.
Обычно отмечается аллодиния - болевое ощущение в ответ на низко интенсивные, в нормальных условиях не вызывающие боли раздражители.
Необъяснимой характерной чертой даже резкой нейрогенной боли является то, что она не мешает засыпанию пациента. Однако если даже больной засыпает, он внезапно просыпается от сильной боли.
Нейрогенная боль невосприимчива к морфину и другим опиатам в обычных анальгетических дозах. Это демонстрирует то, что механизм нейрогенной боли отличен от опиоид-чувствительной ноцигенной боли.

Нейрогенная боль имеет много клинических форм. К ним можно отнести некоторые поражения периферической нервной системы, такие как постгерпетическая невралгия, диабетическая невропатия, неполное повреждение периферического нерва, особенно срединного и локтевого (рефлекторная симпатическая дистрофия), отрыв ветвей плечевого сплетения. Нейрогенная боль вследствие поражения центральной нервной системы обычно бывает обусловлена цереброваскулярной катастрофой. Это то, что известно под классическим названием “таламического синдрома”, хотя недавние исследования показывают, что в большинстве случаев очаги поражения расположены в иных областях, чем таламус.

Многие боли клинически проявляются смешанными - ноцигенными и нейрогенными элементами. Например, опухоли вызывают повреждение тканей и компрессию нервов; при диабете ноцигенная боль возникает вследствие поражения периферических сосудов, нейрогенная - вследствие нейропатии; при грыжах межпозвонкового диска, компримирующих нервный корешок, болевой синдром включает жгучий и стреляющий нейрогенный элемент.

Невропатическая боль при поражении периферической нервной системы может быть подразделена на два типа:
дизестезическую
трункальную

Поверхностная дизестезическая или деафферентационная боль описывается пациентами, как жгучая, саднящая, вызывающая ощущение ожога, зуда, ползания мурашек, стянутости, прохождения электрического тока различной длительности (перемежающиеся, колющие, пронзающие или стреляющие).

Дизестезические боли обычно наблюдаются у пациентов с преимущественным вовлечением малых С–волокон (вызывающие поражение поверхностной болевой и температурной чувствительности и вегетативную дисфункцию).

Невропатическая дизестезическая боль представлена двумя основными компонентами:
спонтанной (стимулонезависимой) болью
вызванной (стимулозависимой) гипералгезией

В свою очередь, спонтанная боль подразделяется на:
симпатически независимую боль - как правило, стреляющая, дёргающая, подобная чувству прохождения электрического тока – возникает за счёт генерации эктопических разрядов С–афферентами при активации тетродотоксин–нечувствительных натриевых каналов
симпатически поддерживаемую боль - как правило носит стреляющий, ланцирующий характер, жгучая, сопровождающаяся трофическими изменениями, нарушением терморегуляции и потоотделения – возникает за счёт накопления a–адренорецепторов на мембранах С–афферентов и прорастания симпатических волокон в узел заднего корешка.

Глубокая трункальная боль характеризуется , как ноющая, временами режущая, ломящая. К этому же типу можно отнести и мышечную боль, проявляющуюся судорогами, тянуще–давящими ощущениями и болезненностью мышц при пальпации. Она обычно протекает длительно, может менять интенсивность.

Трункальная боль встречается при компрессии спинномозговых корешков, туннельных невропатиях и связана, по–видимому, с дисфункцией Аd–волокон.

Оба типа невропатической боли редко встречаются в чистом виде, при большинстве болевых форм периферических невропатий имеются признаки как дизестетической, так и трункальной боли.

Психогенная боль

Утверждение что боль может быть исключительно психогенного происхождения, является дискуссионным. Широко известно, что личность пациента формирует болевое ощущение. Оно усилено у истерических личностей, и более точно отражает реальность у пациентов неистероидного типа.Люди различных этнических групп отличаются по восприятию послеоперационной боли. Пациенты европейского происхождения отмечают менее интенсивную боль, чем американские негры или латиноамериканцы. У них также отмечается низкая интенсивность боли по сравнению с азиатами, хотя эти отличия не очень значительны.

Загрузка...