Медицинский портал. Щитовидная железа, Рак, диагностика

Опорные поверхности осей и валов называются. Валы и оси

19.11.2015

Валы и оси используются в машиностроении для фиксации различных тел вращения (это могут быть шестерни, шкивы, роторы и другие элементы, устанавливаемые в механизмах).

Есть принципиальное отличие валов от осей: первые осуществляют передачу момента силы, создаваемого вращением деталей, а вторые испытывают напряжение изгиба под действием внешних сил. При этом валы всегда являются крутящимся элементом механизма, а оси могут быть как крутящимися, так и неподвижными.

С точки зрения металлообработки валы и оси – это металлические детали, чаще всего имеющие круглое поперечное сечение.

Виды валов

Валы различаются между собой по конструкции оси. Выделяют следующие виды валов:

  • прямые. Конструктивно не отличаются от осей. В свою очередь, различают гладкие, ступенчатые и фасонные прямые валы и оси. Наиболее часто в машиностроении используются ступенчатые валы, которые отличает простота установки на механизмы
  • коленчатые, состоящие из нескольких колен и коренных шеек, которые опираются на подшипники. Составляют элемент кривошипно-шатунного механизма. Принцип действия заключается в преобразовании возвратно-поступательного движения во вращательное, либо наоборот.
  • гибкие (эксцентриковые). Применяются для передачи момента вращения между валами со смещенными осями вращения.

Производство валов и осей – одно из наиболее динамичных направлений в металлургической промышленности. На основе этих элементов получают следующие изделия:

  1. элементы передачи вращательного момента (детали шпоночного соединения, шлицы, соединений с натягом и т.д.);
  2. опорные подшипники (качения или скольжения);
  3. уплотнения концов валов;
  4. элементы, регулирующие узлы передачи и опоры;
  5. элементы осевой фиксации лопаток роторов;
  6. галтели перехода между элементами разного диаметра в конструкции.

Выходные концы валов имеют форму цилиндра или конуса, соединяемыми при помощи муфт, шкивов, звездочек.

Валы и оси также могут быть полыми и сплошными. Внутри полых валов могут быть вмонтированы другие детали, кроме того, они могут применяться для облегчения общего веса конструкции.

Функцию осевых фиксаторов, устанавливаемых на вал деталей, выполняют ступени (бурты), распорные втулки со съемной осью, кольца, пружинные упорные кольца подшипников.

Предприятие "Электромаш" осуществляет изготовление данной продукции на производственной площадке, оснащенной самым современным оборудованием. У нас вы можете купить валы и оси любого типа под заказ . Рейтинг: 3.02

Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах или осях.

Вал предназначен для передачи вращающего момента вдоль своей оси, для поддержания расположенных на нем деталей и восприятия действующих на них сил. При работе вал испытывает изгиб и кручение, а в некоторых случаях - дополнительно растяжение или сжатие.

Ось только поддерживает установленные на ней детали и воспринимает действующие на них силы. В отличие от вала ось не передает вращающего момента и, следователь­но, не испытывает кручения. Оси могут быть неподвижны­ ми или могут вращаться вместе с насаженными на них дета­лями.

По форме геометрической оси валы делят на прямые (рис.2) и непрямые - коленчатые и эксцентриковые. Непрямые валы относят к специальным деталям.

Оси, как правило, изго­ товляют прямыми (см. рис. 1). По конструк­ции прямые валы и оси мало отличаются друг от друга.

Рис. 1. Ось тележки

Прямые валы и оси мо­гут быть гладкими или сту­ пенчатыми (см. рис. 2).

Рис. 2. Прямой ступенчатый вал:

1 - шип; 2 - шейка; 3 - подшипник; 4 - кольцо с поперечным пазом для размещения тяг съемника подшипника

Ступенчатая форма способствует равной напряженности от­дельных участков, упрощает изготовление и установку деталей на валу.

По форме поперечного сечения валы и оси бывают сплошные и полые (с осевым отверстием). Полые валы при­меняют для уменьшения массы или для размещения внутри другой детали.

По внешнему очертанию поперечного сечения валы раз­деляют на шлицевые и шпоночные, имеющие на некоторой длине шлицевой профиль или профиль со шпоночным пазом.

2. Конструктивные элементы. Материалы валов и осей

Цапфы - опорные участки вала или оси. Их подразделяют на шипы, шейки и пяты.

Шипом называют цапфу, расположенную на конце вала или оси и передающую преимущественно радиальную силу (см. рис. 2). Шейкой называют цапфу в средней части вала или оси. Опорами для шипов и шеек валов служат под­ шипники. Шипы и шейки по форме могут быть цилиндри­ ческими, коническими или сферическими. В большинстве слу­чаев применяют цилиндрические цапфы.

Рис.3. Пяты

Пятой называют цапфу, передающую осевую силу (рис. 3). Опорами для пят служат подпятники. Пяты по форме бывают сплошны­ ми (рис. 3, а), кольце­ выми (рис. 3, б) и гре­ бенчатыми (рис. 3, в). Гребенчатые пяты в на­стоящее время применяют редко.

Посадочные поверхности валов и осей под ступицы наса­живаемых деталей выполняют цилиндрическими и коничес­ кими (см. рис. 2). При посадках с натягом диаметр этих поверхностей принимают больше диаметра соседних участ­ков для удобства напрессовки и снижения концентрации напряжений (см. рис. 2). Диаметры посадочных поверхно­стей и диаметры под подшипники скольжения выбирают из ряда нормальных линейных размеров, диаметры под под­шипники качения - по стандартам на подшипники.

Конические концы валов (см. рис. 2) изготовляют с конусностью 1:10. Их применяют для облегчения монтажа устанавливаемых на вал деталей.

Переходные участки валов и осей между двумя ступеня­ми разных диаметров выполняют:

а) с канавкой со скруглением для выхода шлифовального круга (рис. 4, а);

б) с галтелью постоянного радиуса, рис. 4, б (гал­тель - поверхность плавного перехода от участка меньше­го сечения к большему);

в) с галтелью переменного радиуса (рис.4, в).

Рис. 4. Переходные участки вала

Переходные участки являются концентраторами напря­ жений. Эффективным средством для снижения концентра­ции напряжений в переходных участках является повышение

податливости путем выполнения раз­грузочных канавок (рис.5, а), увеличе­ния радиусов галтелей, выполнения отвер­стий в ступенях большего диаметра (рис.5, б). Деформационное упрочнение (на­ клеп) галтелей повышает несущую спо­ собность валов и осей.

Рис. 5.Способы повышения уставной прочности валов

Материалы валов и осей должны хоро­ шо обрабатываться, быть прочными и иметь высокий модуль упругости. Этим требованиям наиболее полно удовлетво­ряют углеродистые и легированные ста­ли, из которых преимущественно изготав­ливают валы и оси. Для валов и осей без упрочняющей термообработки применяют стали Ст5, Ст6; для валов с термообработкой - стали 45, 40Х. Быстроходные валы, работающие в подшипниках скольжения, изготовляют из сталей 20, 20Х, 12ХНЗА. Цапфы этих валов цементуют для повышения износостойкости.

Валы и оси обрабатывают на токарных станках с после­дующим шлифованием цапф и посадочных поверхностей.

ВАЛЫ И ОСИ

Основные сведения

Детали, на которые насаживают вращающиеся детали машин (например, шкивы, зубчатые колеса), называют валами и осями. Различают валы и оси по условиям нагружения:

· валы передают крутящий момент вдоль своей оси вращения и испытывают напряжения изгиба, сжатия, растяжения и кручения;

· оси не передают крутящий момент и нагружаются только изгибающими напряжениями.

Валы и оси имеют аналогичные формы и одну общую функцию – поддерживать насажанные на них детали (классификация валов пред­ставлена в табл.1.1).

Таблица 1.1

Классификации валов

Следует отметить, что гладкие валы более технологичны, чем ступенчатые, и что иногда валы и оси выполняют полыми как с целью снижения массы, так и с целью установки внутрь вала других деталей вра­щения. Полый вал с соотношением диаметра внутреннего отверстия к наружному диаметру вала, равным 0,75, легче сплошного равнопрочного вала поч­ти в 2 раза.

В массовом производстве иногда используют полые сварные валы из стальной ленты, намотанной по винтовой линии. При этом экономится до 60% металла .

По конструкции оси делят на 2 основные группы:

1) подвижные оси , вращающиеся в опорах вместе с насажанными на них деталями (рис. 1.1, а);

2) неподвижные оси , слу­жащие опорами для вращающихся на них деталей (рис. 1.1, б).

Рис. 1.1. Примеры конструкций осей:

а – подвижная ось; б – неподвижная ось

Оси и валы конструируют обычно в виде брусьев состоящих из ряда цилиндрических участков различных диаметров. Насаживаемые на оси и валы детали крепят посредством шпонок либо шлицев. В осевом направлении детали относительно валов и осей фиксируют при помощи распорных колец (или втулок), а также благодаря нали­чию на валах буртиков и заплечиков.

Ступенчатая форма вала или оси определяется также стремлением приблизить их очертания к форме балки равного соп­ротивления изгибу. Балкой равного сопротивления изгибу называют брус, во всех поперечных сечениях которого наибо­льшие напряжения изгиба одинаковы. Такой брус круглого поперечного сечения имеет форму кубического парабо­лоида вдоль своей оси.

Однако изготовить брус, имеющий форму кубического параболоида, весьма сложно, и эта форма неудоб­на для посадки на вал сопряженных с ним деталей. Поэтому вал (ось) выполняют состоящим из цилиндрических и конических участков разных диаметров (рис.1.2). Это делают для того, чтобы материал вала как можно равно­мернее нагружался по всему своему объему.

Рис. 1.2. Пример конструкции ступенчатого вала

Оси и валы опираются на неподвижные опорные части – подшип­ники и подпятники. Участки осей и валов, непосредственно соприкасающиеся с опорами, называют цапфами . Концевые цапфы называют шипами , а промежуточные цапфы – шейками . Торцы, упирающиеся в неподвижную опору и препятствующие осевому смещению вала (оси), называют пятами. Они могут быть плоскими, шаровыми или коническими.

Перепад двух соседних участков вала называют ступенью , например: одна из ступеней вала – хвостовик диаметром d и соседний участок диаметром D (см. рис.1.2). Минимальная величина ступени составляет 2...3 мм на сторону, т.е. перепад по радиусу. Вместе с тем, величины диаметров D и d должны быть согласованы с нормальными линейными размерами по ГОСТ 6636-69.

Торцевые поверхности ступеней вала (оси) называют заплечи­ками . Различие между диаметрами сосед­них цилиндрических участков вала (оси) должно обеспечивать дос­таточные размеры заплечиков для осевой фиксации насаживаемых на вал (ось) деталей вращения.

Сопряжение двух соседних участков ступени вала (оси), называемое галтелью , желательно выполнять посредством плавного переходаду­гой как можно большего радиуса. Радиус галтели обычно принимают в пределах от 0,05 . d до 0,10 . d (см. рис. 1.2).

Галтель снижает концентрацию напряжений в месте перехода от одного диаметра вала к дру­гому. Особенно это важно при переменных нагрузках на вал.

Рис. 1.3. Виды галтелей на ступени вала:

а – постоянным радиусом; б – двумя радиусами;

в – постоянным радиусом и с проточкой, разгружающей концентрацию напряжений; г – с поднутрением в заплечик вала

Переход от одного диаметра вала к другому, выполненный по рис.1.4, а , нерационален, так как выточка – сильный концентратор напряжений. Влияние выточки можно несколько смягчить, выполнив ее согласно рис. 1.4, б .

Рис. 1.4. Проточки на валу: а – без скруглений; б – со скруглениями

Конструкция валов и осей определяется условиями их эксплуатации. В ряде сельскохозяйственных машин применяют длинные (до 20м) составные валы, используемые для передачи крутящего мо­мента. Такие валы называют трансмиссионными . В поршневых двигателях и компрессорах применяют колен­чатые валы , имеющие ломаную ось вращения.

Для передачи крутящего момента между агрегатами со смещенными в пространстве осями входного и выходного валов применяют гибкие валы, имеющие криволинейную геометрическую ось при работе. Эти валы об­ладают высокой жесткостью на кручение и малой изгибной жесткостью. Примером служит гибкий вал бормашины в стоматологии.

Вращающиеся детали машин устанавливают на валах или осях, обеспечивающих постоянное положение оси вращения этих деталей.

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин.

Валы по назначению можно разделить на валы передач , несущие детали передач – зубчатые колеса, шкивы, звездочки, муфты (рис. ,а и б), и на коренные валы машин и другие специальные валы, несущие кроме деталей передач рабочие органы машин двигателей или орудий – колеса или диски турбин, кривошипы, зажимные патроны и т. д. (рис. ,в и д )

По форме геометрической оси валы разделяют на прямые и коленчатые.

Оси – детали, предназначенные для поддержания вращающихся деталей и не передающие полезного крутящего момента.

Рис. 12.1 Основные типы валов и осей:

а – гладкий трансмиссионный вал; б – ступенчатый вал;

в – шпиндель станка; г - вал паровой турбины; д – коленчатый вал;

е – ось вращающегося вагонная; ж – ось невращающаяся вагонетки.

Опорные части валов и осей называют цапфами . Промежуточные цапфы называют шейками , концевые – шипами .

Прямые валы по форме разделяют на валы постоянного диаметра (валы трансмиссионные и судовые многопролетные, рис. ,а, а также валы, передающие только крутящий момент); валы ступенчатые (большинство валов, рис. б-г ); валы с фланцами для соединения по длине, а также валы с нарезанными шестернями или червяками. По форме сечения валы разделяются на гладкие, шлицевые, имеющие на некоторой длине профиль зубчатого (шлицевого) соединения, и профильные.

Форма вала по длине определяется распределением нагрузок по длине.

Эпюры моментов по длине валов, как правило, существенно неравномерны. Крутящий момент обычно передается не на всей длине вала. Эпюры изгибающих моментов обычно сходят к нулю к концевым опорам или к концам валов. Поэтому по условию прочности допустимо и целесообразно конструировать валы переменного сечения приближающимися к телам равного сопротивления. Практически валы выполняю ступенчатыми. Эта форма удобна в изготовлении и сборке; уступы валов могут воспринимать большие осевые силы.

Перепад диаметров ступеней определяется: стандартными диаметрами посадочных поверхностей под ступицы и подшипники, достаточной опорной поверхностью для восприятия осевых сил при заданных радиусах закругления кромок и размерах фасок и, наконец, условиями сборок.

Цапфы (шейки) валов, работающие в подшипниках скольжения, выполняют: а) цилиндрическими; б) коническими; в) сферическими (рис.). Основное применение имеют цилиндрические цапфы. Концевые цапфы для облегчения сборки и фиксации вала в осевом направлении обычно делают несколько меньшего диаметра, чем соседний участок вала (рис.).

Цапфы валов для подшипников качения (рис.) характеризуются меньшей длиной, чем цапфы для подшипников скольжения.

Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец.

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые в изготовлении.

Рис. 12.4 Конструктивные средства повышения выносливости

валов в местах посадок: а – утолщение подступичной чвсти вала;

б – закругление кромок ступицы; в – утонение ступицы; г – разгрузочные

канавки; д – втулки или заливки в ступице из материала с низким модулем

упругости.

Выносливость валов определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструкторские и технологические мероприятия по повышению выносливости валов.

Конструктивные средства повышения выносливости валов в местах посадок путем уменьшения кромочных давлений показаны на рис. .

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов на 80 – 100%, причем этот эффект распростра- няется на валы диаметром до 500 – 600 мм.

Прочность валов в местах шпоночных, зубчатых (шлицевых) и других разъемных соединений со ступицей может быть повышена: применением эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Осевые нагрузки и на валы от насаженных на них деталей передаются следующими способами. (рис.)

1) тяжелые нагрузки – упором деталей в уступы на валу, посадкой деталей или установочных колец с натягом (рис. ,а и б)

2) средние нагрузки – гайками, штифтами непосредственно или через установочные кольца, клеммовыми соединениями (рис. ,в – д);

3) легкие нагрузки и предохранение от перемещений случайными силами – стопорными винтами непосредственно или через установочные кольца, клеммовыми соединениями, пружинными кольцами (рис. ,д – ж).

Ранее речь шла о передачах, как едином целом механизме, а также рассматривались элементы, непосредственно участвующие в передаче движения от одного звена механизма к другому. В данной теме будут представлены элементы, предназначенные для крепления частей механизма, непосредственно участвующих в передаче движения (шкивы, звёздочки, зубчатые и червячные колёса и т.п.). В конечном итоге, качество механизма, его КПД, работоспособность и долговечность в значительной мере зависят и от тех деталей, о которых будет идти речь в дальнейшем. Первыми из таких элементов механизма рассмотрим валы и оси.

Вал (рис. 17) – деталь машины или механизма предназначенная для передачи вращающего или крутящего момента вдоль своей осевой линии. Большинство валов – это вращающиеся (подвижные) детали механизмов, на них обычно закрепляются детали, непосредственно участвующие в передаче вращающего момента (зубчатые колёса, шкивы, звёздочки цепных передач и т.п.).

Ось (рис. 18) – деталь машины или механизма, предназначенная для поддержания вращающихся частей и не участвующая в передаче вращающего или крутящего момента. Ось может быть подвижной (вращающейся, рис. 18, а) или неподвижной (рис. 18, б).

Классификация валов и осей:

1. По форме продольной геометрической оси:

1.1.прямые (продольная геометрическая ось – прямая линия), например, валы редукторов, валы коробок передач гусеничных и колёсных машин;

1.2. коленчатые (продольная геометрическая ось разделена на несколько отрезков, параллельных между собой смещённых друг относительно друга в радиальном направлении), например, коленвал двигателя внутреннего сгорания;

1.3. гибкие (продольная геометрическая ось является линией переменной кривизны, которая может меняться в процессе работы механизма или при монтажно-демонтажных мероприятиях), часто используются в приводе спидометра автомобилей.

2. По функциональному назначению:

2.1. валы передач , они несут на себе элементы, передающие вращающий момент (зубчатые или червячные колёса, шкивы, звёздочки, муфты и т.п.) и в большинстве своём снабжены концевыми частями, выступающими за габариты корпуса механизма;

2.2. трансмиссионные валы предназначены, как правило, для распределения мощности одного источника к нескольким потребителям;

2.3. коренные валы - валы, несущие на себе рабочие органы исполнительных механизмов (коренные валы станков, несущие на себе обрабатываемую деталь или инструмент называют шпинделями ).

3. Прямые валы по форме исполнения и наружной поверхности:

3.1. гладкие валы имеют одинаковый диаметр по всей длине;

3.2. ступенчатые валы отличаются наличием участков отличающихся друг от друга диаметрами;

3.3. полые валы снабжены сквозным или глухим отверстием, соосным наружной поверхности вала и простирающимся на большую часть длины вала;

3.4. шлицевые валы по внешней цилиндрической поверхности имеют продольные выступы – шлицы, равномерно расположенные по окружности и предназначенные для передачи моментной нагрузки от или к деталям, непосредственно участвующим в передаче вращающего момента;

3.5. валы, совмещённые с элементами, непосредственно участвующими в передаче вращающего момента (вал-шестерня, вал-червяк).

Конструктивные элементы валов представлены на рис. 19.

Опорные части валов и осей, через которые действующие на них нагрузки передаются корпусным деталям, называются цапфами . Цапфу, расположенную в средней части вала, обычно называют шейкой . Концевую цапфу вала, передающую корпусным деталям только радиальную нагрузку или радиальную и осевую одновременно, называют шипом , а концевую цапфу, передающую только осевую нагрузку, называют пятой . С цапфами вала взаимодействуют элементы корпусных деталей, обеспечивающие возможность вращения вала, удерживающие его в необходимом для нормальной работы положении и воспринимающие нагрузку со стороны вала. Соответственно элементы, воспринимающие радиальную нагрузку (а часто вместе с радиальной и осевую) называют подшипниками , а элементы, предназначенные для восприятия только осевой нагрузки – подпятниками .

Кольцевое утолщение вала малой протяжённости, составляющее с ним одно целое и предназначенное для ограничения осевого перемещения самого вала или насаженных на него деталей, называют буртиком .

Переходная поверхность от меньшего диаметра вала к большему, служащая для опирания насаженных на вал деталей, называется заплечиком .

Переходная поверхность от цилиндрической части вала к заплечику, выполненная без удаления материала с цилиндрической и торцевой поверхности (рис. 20. б, в), называется галтелью . Галтель предназначается для снижения концентрации напряжений в переходной зоне, что в свою очередь ведёт к увеличению усталостной прочности вала. Чаще всего галтель выполняют в форме радиусной поверхности (рис. 20. б), однако в отдельных случаях галтель может быть выполнена в форме поверхности переменной двойной кривизны (рис. 20. в). Последняя форма галтели обеспечивает максимальное уменьшение концентрации напряжений, однако требует выполнения специальной фаски в отверстии насаживаемой детали.

Углубление малой протяжённости на цилиндрической поверхности вала, выполненное по радиусу к оси вала, называют канавкой (рис. 20, а, г, е). Канавка, также как и галтель, очень часто используется для оформления перехода от цилиндрической поверхности вала к торцевой поверхности его заплечика. Наличие канавки в этом случае обеспечивает благоприятные условия для формирования цилиндрических посадочных поверхностей, так как канавка является пространством для выхода инструмента, формирующего цилиндрическую поверхность при механической обработке (резец, шлифовальный круг). Однако канавка не исключает возможности образования ступеньки на торцевой поверхности заплечика.

Углубление малой протяжённости на торцевой поверхности заплечика вала, выполненное вдоль оси вала, называют поднутрением (рис. 20, д). Поднутрение обеспечивает благоприятные условия для формирования торцевой опорной поверхности заплечика, так как является пространством для выхода инструмента, формирующего эту поверхность при механической обработке (резец, шлифовальный круг), но не исключает возможности образования ступеньки на цилиндрической поверхности вала при её окончательной обработке.

Обе указанные проблемы решает введение в конструкцию вала наклонной канавки (рис. 20, е), которая совмещает достоинства, как цилиндрической канавки, так и поднутрения.

Рис. 21. Разновидности конфигурации цапф

Цапфы валов могут иметь форму различных тел вращения (рис. 21): цилиндрическую , коническую или сферическую . Шейки и шипы чаще всего выполняют в форме цилиндра (рис. 21, а, б). Цапфы такой формы достаточно технологичны при изготовлении и ремонте и широко применяются как с подшипниками скольжения, так и с подшипниками качения. В форме конуса выполняют концевые цапфы (шипы, рис. 21, в) валов, работающие, как правило, с подшипниками скольжения, с целью обеспечения возможности регулировки зазора и фиксации осевого положения вала. Конические шипы обеспечивают более точную фиксацию валов в радиальном направлении, что позволяет уменьшить биения вала при высоких частотах вращения. Недостатком конических шипов является склонность к заклиниванию при температурном расширении (увеличении длины) вала.

Сферические цапфы (рис. 21, г) хорошо компенсируют несоосности подшипников, а также снижают влияние изгиба валов под действием рабочих нагрузок на работу подшипников. Основным недостатком сферических цапф является повышенная сложность конструкции подшипников, что увеличивает стоимость изготовления и ремонта вала и его подшипника.

Пяты (рис. 22) по форме и числу поверхностей трения можно разделить на сплошные , кольцевые , гребенчатые и сегментные .

Сплошная пята (рис. 22, а) наиболее проста в изготовлении, но характеризуется значительной неравномерностью распределения давления по опорной площади пяты, затруднительным выносом продуктов износа смазочными жидкостями и существенно неравномерным износом.

Кольцевая пята (рис. 22, б) с этой точки зрения более благоприятна, хотя и несколько сложнее в изготовлении. При подаче смазки в приосевую область её поток движется по поверхности трения в радиальном направлении, то есть перпендикулярно направлению скольжения, и таким образом отжимает трущиеся поверхности одна от другой, создавая благоприятные условия для относительного проскальзывания поверхностей.

Рис. 22. Некоторые формы пят.

Сегментная пята может быть получена из кольцевой посредством нанесения на рабочую поверхность последней нескольких неглубоких радиальных канавок, симметрично расположенных по кругу. Условия трения в такой пяте ещё более благоприятные по сравнению с вышеописанными. Наличие радиальных канавок способствует образованию жидкостного клина между трущимися поверхностями, что ведёт к их разделению при пониженных скоростях скольжения.

Гребенчатая пята (рис. 22, в) имеет несколько опорных поясков и предназначена для восприятия осевых нагрузок значительной величины, но в этой конструкции достаточно трудно обеспечить равномерность распределения нагрузки между гребнями (требуется высокая точность изготовления, как самой пяты, так и подпятника). Сборка узлов с такими подпятниками тоже достаточно сложна.

Выходные концы валов (рис. 923) обычно имеют цилиндрическую или коническую форму и снабжаются шпоночными пазами или шлицами для передачи вращающего момента.

Цилиндрические концы валов проще в изготовлении и особенно предпочтительны для нарезания шлицов. Конические концы лучше центрируют насаженные на них детали и в связи с этим более предпочтительны для высокоскоростных валов.

Загрузка...