Медицинский портал. Щитовидная железа, Рак, диагностика

Сенсорные системы, их значение и классификация. Взаимодействие сенсорных систем

Се́нсорная систе́ма - совокупность периферических и центральных структур нервной системы, ответственных за восприятие сигналов различных модальностей из окружающей или внутренней среды. Сенсорная система состоит из рецепторов, нейронных проводящих путей и отделов головного мозга, ответственных за обработку полученных сигналов. Наиболее известными сенсорными системами являются зрение, слух, осязание, вкус и обоняние. С помощью сенсорной системы можно почувствовать такие физические свойства, как температура, вкус, звук или давление.

♦ Зрительная система →

Оптикобиологическая бинокулярная (стереоскопическая) система, эволюционно возникшая у животных и способная воспринимать электромагнитное излучение видимого спектра (света), создавая изображение, в виде ощущения (сенсо́рного чувства) положения предметов в пространстве. Зрительная система обеспечивает функцию зрения.

Процесс психофизиологической обработки изображения объектов окружающего мира, осуществляемый зрительной системой, и позволяющий получать представление о величине, форме (перспект иве) и цвете предметов, их взаимном расположении и расстоянии между ними. Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук - оптики (в том числе биофизики), психологии, физиологии, химии (биохимии).

На каждом этапе восприятия возникают искажения, ошибки, сбои, но мозг человека обрабатывает полученную информацию и вносит необходимые коррективы. Эти процессы носят неосознаваемый характер и реализуются в многоуровневой автономной корректировке искажений. Так устраняются сферическая и хроматическая аберрации, эффекты слепого пятна, проводится цветокоррекция, формируется стереоскопическое изображение и т. д. В тех случаях, когда подсознательная обработка информации недостаточна, или же избыточна, возникают оптические иллюзии.

Сенсорная система, обеспечивающая кодирование акустических стимулов и обусловливающая способность животных ориентироваться в окружающей среде посредством оценки акустических раздражителей. Периферические отделы слуховой системы представлены органами слуха и лежащими во внутреннем ухе фонорецепторами. На основе формирования сенсорных систем (слуховой и зрительной) формируется назывательная (номинативная) функция речи - ребёнок ассоциирует предметы и их названия.

Человеческое ухо состоит из трех частей:

Наружное ухо - латеральная часть периферического отдела слуховой системы, включает ушную раковину и наружный слуховой проход; от среднего уха отделяется барабанной перепонкой. Иногда последнюю рассматривают в качестве одной из структур наружного уха

Среднее ухо - часть слуховой системы млекопитающих (в том числе человека), развившаяся из костей нижней челюсти и обеспечивающая преобразование колебаний воздуха в колебания жидкости, наполняющей внутреннее ухо. Основной частью среднего уха является барабанная полость - небольшое пространство объёмом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

Внутреннее ухо - один из трёх отделов органа слуха и равновесия. Является наиболее сложным отделом органов слуха, из-за своей замысловатой формы называется лабиринтом.

Сенсорная система восприятия раздражений у позвоночных, осуществляющая восприятие, передачу и анализ обонятельных ощущений.

Периферический отдел включает органы обоняния, обонятельный эпителий, содержащий хеморецепторы и обонятельный нерв. В парных проводящих нервных путях отсутствуют общие элементы, поэтому возможно одностороннее поражение обонятельных центров с нарушением обоняния на стороне поражения.

Вторичный центр обработки обонятельной информации - первичные обонятельные центры (переднее продырявленное вещество (лат. substantia perforata anterior), лат. area subcallosa и прозрачная перегородка (лат. septum pellucidum)) и добавочный орган (вомер, воспринимающий феромоны)

Центральный отдел - конечный центр анализа обонятельной информации - находится в переднем мозге. Он состоит из обонятельной луковицы, связанной ветвями обонятельного тракта с центрами, которые расположены в палеокортексе и в подкорковых ядрах.

Сенсорная система, при помощи которой воспринимаются вкусовые раздражения. Вкусовые органы - периферическая часть вкусового анализатора, состоящая из особых чувствительных клеток (вкусовых рецепторов). У большинства беспозвоночных вкусовые органы и органы обоняния ещё не разделены и являются органами общего химического чувства - вкуса и обоняния. У человека вкусовые органы помещаются главным образом на сосочках языка и отчасти на мягком нёбе и задней стенке глотки.

♦ Соматосенсорная система:

Комплексная система, образованная рецепторами и центрами обработки нервной системы, осуществляющая такие сенсорные модальности, как осязание, температура, проприоцепция, ноцицепция. Соматосенсорная система также осуществляет контроль пространственного положения частей тела между собой. Необходима для выполнения сложных движений, управляемых корой головного мозга. Проявлением деятельности соматосенсорной системы является так называемое «мышечное чувство».

♦ Рецептивное поле (поле рецепторов) - это область, в которой находятся специфические рецепторы, посылающие сигналы связанному с ними нейрону (или нейронам) более высокого синаптического уровня той или иной сенсорной системы. Например при определённых условиях рецептивным полем может быть названа и область сетчатки глаза, на которую проецируется зрительный образ окружающего мира, и единственная палочка или колбочка сетчатки, возбуждённая точечным источником света. На данный момент определены рецептивные поля для зрительной, слуховой и соматосенсорной систем.

  • Хеморецепторы - рецепторы, чувствительные к воздействию химических веществ. Каждый такой рецептор представляет собой белковый комплекс, который, взаимодействуя с определённым веществом, изменяет свои свойства, что вызывает каскад внутренних реакций организма. Среди таких рецепторов: рецепторы органов чувств (обонятельные и вкусовые рецепторы) и рецепторы внутреннего состояния организма (рецепторы углекислого газа дыхательного центра, рецепторы рН внутренних жидкостей).
  • Механорецепторы - это окончания чувствительных нервных волокон, реагирующие на механическое давление или иную деформацию, действующую извне, или возникающие во внутренних органах. Среди таких рецепторов: тельца Мейснера, тельца Меркеля, тельца Руффини, тельца Пачини, мышечные веретена, сухожильные органы Гольджи, механорецепторы вестибулярного аппарата.
  • Ноцицепторы - периферические болевые рецепторы. Интенсивная стимуляция ноцицепторов обычно вызывает неприятные ощущения и может причинить вред организму. Ноцицепторы расположены главным образом в коже (кожные ноцирецепторы) или во внутренних органах (висцеральные ноцирецепторы). В окончаниях миелинизированных волокон (А-тип) они обычно реагируют только на интенсивное механическое раздражение; в окончаниях немиелинизированных волокон (С-тип) могут реагировать на различные типы раздражений (механическое, тепловое или химическое).
  • Фоторецепторы - светочувствительные сенсорные нейроны сетчатки глаза. Фоторецепторы содержатся во внешнем зернистом слое сетчатки. Фоторецепторы отвечают гиперполяризацией (а не деполяризацией, как другие нейроны) в ответ на адекватный этим рецепторам сигнал - свет. Фоторецепторы размещаются в сетчатке очень плотно, в виде шестиугольников (гексагональная упаковка).
  • Терморецепторы - рецепторы, отвечающие за температурную рецепцию. Основные из них: колбочки Краузе (дающие ощущение холода) и уже упоминавшиеся тельца Руффини (способные реагировать не только растяжение кожи, но и на тепло).

источник https://ru.wikipedia.org/

Сенсорная система (анализатор) – сложная система, состоящая из периферического рецепторного образования – орган чувств, проводящего пути - черепно-мозговые и спинномозговые нервы и центрального отдела – корковый отдел анализатора, т.е. определенная зона коры головного мозга, в которой происходит обработка полученной от органов чувств информации. Выделяют следующие сенсорные системы: зрительная, слуховая, вкусовая, обонятельная, соматосенсорная, вестибулярная.

Зрительная сенсорная система представлена воспринимающим отделом – рецепторами сетчатой оболочки глаза, проводящей системой - зрительными нервами, и соответствующими участками коры в затылочных долях мозга.

Строение органа зрения: основу органа зрения составляет глазное яблоко, которое помещается в глазнице и имеет не совсем правильную шаровидную форму. Большую часть глаза составляют вспомогательные структуры, назначение которых – проецировать поле зрения на сетчатку. Стенка глаза состоит из трех слоев:

    склеры (белковой оболочки). Она самая толстая, прочная и обеспечивает глазному яблоку определенную форму. Эта оболочка непрозрачна и лишь в переднем отделе склера переходит в роговицу;

    сосудистой оболочки. Она обильно снабжена кровеносными сосудами и пигментом, содержащим красящее вещество. Часть сосудистой оболочки, находящейся за роговицей, образует радужную оболочку, или радужку. В центре радужки есть небольшое отверстие – зрачок, который, суживаясь или расширяясь, пропускает то больше, то меньше света. Радужка отделяется от собственно сосудистой оболочки ресничным телом. В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен хрусталик –двояковыпуклая линза диаметром 10мм.

    сетчатки. Это самая внутренняя оболочка глаза. Она содержит фоторецепторы палочки и колбочки. Глаз человека содержит примерно 125 миллионов таких палочек, которые позволяют ему хорошо видеть при сумеречном свете. Сетчатка человеческого глаза содержит 6-7 миллионов колбочек; лучше всего они функционируют при ярком свете. Считается, что существует три типа колбочек, каждый из которых воспринимает свет определенной длины волны - красный, зеленый или синий. Другие цвета получаются в результате сочетания этих трех основных цветов.

Вся внутренняя полость глаза заполнена желеобразной массой – стекловидным телом. От палочек и колбочек сетчатки отходят нервные волокна, образующие затем зрительный нерв. Зрительный нерв проникает через глазницы в полость черепа и заканчивается в затылочной доле больших полушарий головного мозга – зрительная кора.

Вспомогательный аппарат глаза включает защитные приспособления и мышцы глаза. К защитным приспособлениям относятся веки с ресницами, конъюнктива и слезный аппарат. Веки представляют собой парные кожно-конъюктивные складки, прикрывающие спереди глазное яблоко. Передняя поверхность века покрыта тонкой, легко собирающейся в складки кожей, под которой лежит мышца века и которая на периферии переходит в кожу лба и лица. Задняя поверхность века выстлана конъюнктивой. Веки имеют передние края век, несущие ресницы и задние края век, переходящие в конъюнктиву. Брови и ресницы защищают глаз от попадания пыли. Конъюнктива покрывает заднюю поверхность век и переднюю поверхность глазного яблока. Различают конъюнктиву века и конъюнктиву глазного яблока. Слезная железа расположена в одноименной ямке верхне-наружного угла глазницы, ее выводные протоки (в количестве 5-12) открываются в области верхнего свода конъюнктивального мешка. Слезная железа выделяет прозрачную бесцветную жидкость слезу, которая предохраняет глаз от высыхания. Нижний конец слезного мешка переходит в носо-слезный проток, открывающийся в нижний носовой ход.

Глаз - самый подвижный из всех органов организма. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательные мышцы, расположенные в глазнице. Всего их 6, 4 прямые мышцы крепятся к передней части склеры (сверху, внизу, справа, слева) и каждая из них поворачивает глаз в свою сторону. А 2 косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры.

Слуховая сенсорная система – совокупность структур, обеспечивающих восприятие звуковой информации, преобразовывать ее в нервные импульсы, последующую ее передачу и обработку в центральной нервной системе. В слуховом анализаторе: - периферический отдел образуют слуховые рецепторы, находящиеся в кортиевом органе внутреннего уха; - проводниковый отдел – преддверно-улитковые нервы; - центральный отдел – слуховая зона височной доли коры больших полушарий.

Орган слуха представлен: наружным, средним и внутренним ухом.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Оба образования выполняют функцию улавливания звуковых колебаний. Границей между наружным и средним ухом является барабанная перепонка – первый элемент аппарата механической передачи колебаний звуковых волн.

Среднее ухо состоит из барабанной полости и слуховой (евстахиевой) трубы.

Барабанная полость лежит в толще пирамиды височной кости. Ее емкость приблизительно равна 1 куб. см. Стенки барабанной полости выстланы слизистой оболочкой. В полости содержатся три слуховые косточки (молоточек, наковальня и стремечко), соединенные между собой суставами. Цепь слуховых косточек передает механические колебания барабанной перепонки на мембрану овального окна и структуры внутреннего уха.

Слуховая (евстахиева) труба соединяет барабанную полость с носоглоткой. Ее стенки выстланы слизистой оболочкой. Труба служит для выравнивания внутреннего и наружного давления воздуха на барабанную перепонку.

Внутреннее ухо представлено костным и перепончатым лабиринтом. Костный лабиринт включает в себя: улитку, преддверие, полукружные каналы, причем два последних образования к органу слуха не относятся. Они представляют собой вестибулярный аппарат, регулирующий положение тела в пространстве и сохранение равновесия.

Улитка является вместилищем органа слуха. Она имеет вид костного канала, имеющего 2.5 оборота и постоянно расширяющегося. Костный канал улитки за счет вестибулярной и базальной пластинок разделяются на три узких хода: верхний (лестница преддверия), средний (улитковый проток), нижний (барабанная лестница). Обе лестницы заполнены жидкостью – (перилимфой), а улитковый проток содержит в себе эндолимфу. На базальной мембране улиткового протока находится орган слуха (кортиев орган), состоящий из волосковых рецепторных клеточек. Эти клетки преобразуют механические звуковые колебания в биоэлектрические импульсы той же частоты, идущие затем по волокнам слухового нерва в слуховую зону коры мозга.

Вестибулярный орган (орган равновесия) располагается в преддверии и полукружных каналах внутреннего уха. Полукружные каналы – это костные узкие ходы, расположенные в трех взаимно перпендикулярных плоскостях. Концы каналов несколько расширены и называются ампулами. В каналах лежат полукружные протоки перепончатого лабиринта.

Преддверие содержит в себе два мешочка: эллиптический (маточка, утрикулюс) и сферический (саккулюс). В обоих мешочках преддверия имеются возвышения, называемые пятнами. В пятнах сосредоточены рецепторные волосковые клетки. Волоски обращены внутрь мешочков и прикреплены к кристаллическим камешкам – отолитам и желеобразной отолитовой мембране.

В ампулах полукружных протоков рецепторные клетки образуют скопление – ампулярные кристы. Возбуждение рецепторов здесь происходит за счет перемещения эндолимфы в протоках.

Раздражение отолитовых рецепторов или рецепторов полукружных протоков происходит в зависимости от характера движения. Отолитовый аппарат возбуждается при ускоряющихся и замедляющихся прямолинейных движениях, тряске, качке, наклоне тела или головы в сторону, при которых изменяется давление отолитов на рецепторные клетки. Вестибулярный аппарат участвует в регуляции и перераспределении мышечного тонуса, чем обеспечивается сохранение позы, компенсация состояния неустойчивого равновесия при вертикальном положении тела (стоя).

Вкусовая сенсорная система - совокупность сенсорных структур, обеспечивающих восприятие и анализ химических раздражителей и стимулов при воздействии их на рецепторы языка, а также формирующих вкусовые ощущения. Периферические отделы вкусового анализатора находятся на вкусовых сосочках языка, мягком небе, задней стенке глотки и надгортаннике. Проводниковым отделом вкусового анализатора служат вкусовые волокна лицевого и языкоглоточного нерва, по которым вкусовые раздражения следуют через продолговатый мозг и зрительные бугры на нижнюю поверхность лобной доли коры больших полушарий головного мозга (центральный отдел).

Обонятельная сенсорная система – совокупность сенсорных структур, обеспечивающая восприятие и анализ информации о веществах, соприкасающихся со слизистой оболочкой носовой полости, и формирующая обонятельные ощущения. В обонятельном анализаторе: периферический отдел - рецепторы верхнего носового хода слизистой оболочки носовой полости; проводниковый отдел – обонятельный нерв; центральный отдел – корковый обонятельный центр, расположенный на нижней поверхности височной и лобной долей коры больших полушарий. Обонятельные рецепторы расположены в слизистой оболочке, занимающей верхнюю часть носовой раковины. В слизистой оболочке, или обонятельной оболочке, выделяют три слоя клеток: структурные клетки, обонятельные клетки и базальные клетки. Обонятельные клетки передают нервный импульс в обонятельную луковицу, а оттуда в обонятельные центры коры головного мозга, где ощущение оценивается и расшифровывается.

Соматосенсорная система – совокупность сенсорных систем, обеспечивающих кодирование температурных, болевых, тактильных раздражителей, воздействующих непосредственно на тело человека. Рецепторным отделом служат рецепторы кожи, проводниковым – спинномозговые нервы, а мозговой отдел соматосенсорной системы сосредоточен в коре теменных долей головного мозга.

Строение и функции кожи человека. Площадь поверхности кожи у взрослого человека - 1,5-2 м2. Кожа богата мышечными и эластичными волокнами, обладающими способностью растягиваться, придавать ей упругость и противостоять давлению. Благодаря этим волокнам кожа может после растяжения возвращаться к исходному состоянию. Кожа состоит из двух отделов: верхнего - эпидермиса, или наружного слоя, и нижнего - дермы, или собственно кожи. Оба отдела обособлены друг от друга и в то же время тесно связаны между собой. Дерма (или собственно кожа) в нижнем отделе непосредственно переходит в подкожную жировую клетчатку. Эпидермис состоит из 5 слоев: базального слоя, шиловидного, зернистого, блестящего, или стекловидного, и самого поверхностного - рогового. Последний, роговой слой эпидермиса, непосредственно соприкасающийся с внешней средой. Толщина его различна на различных участках кожи. Наиболее мощный - на коже ладоней и подошв, наиболее тонкий - на коже век. Роговой слой состоит из ороговевших безъядерных клеток, напоминающих плоские чешуйки, тесно спаянные между собой в глубине рогового слоя и менее компактные на его поверхности. Отжившие эпителиальные элементы постоянно отделяются от рогового слоя (так называемое физиологическое шелушение). Роговые пластинки состоят из рогового вещества - кератина.

Дерма (собственно кожа) состоит из соединительной ткани и разделяется на два слоя: подэпителиальный (сосочковый) и сетчатый. Наличие сосочков намного увеличивает площадь соприкосновения эпидермиса с дермой и таким образом обеспечивает лучшие условия питания эпидермиса. Сетчатый слой дермы без резких границ переходит в подкожную жировую клетчатку. Сетчатый слой несколько отличается от сосочкового по характеру волокнистости. От его структуры в основном зависит прочность кожи. Чрезвычайно важная функциональная особенность дермы - наличие в ней эластических и других волокон, которые, обладая большой упругостью, поддерживают нормальную форму кожи и защищают кожу от травм. С возрастом, когда эластические волокна перерождаются, появляются складки кожи на лице и шее, морщины. В дерме расположены волосяные луковицы, сальные и потовые железы, а также мышцы, сосуды, нервы и нервные окончания. Почти на всем протяжении кожа покрыта волосами. Свободны от волос ладони и подошвы, боковые поверхности и ногтевые фаланги пальцев, кайма губ и еще некоторые участки.

Волосы – ороговевшие нитевидные придатки кожи толщиной 0,005-0,6 мм и длинной от нескольких миллиметров до 1,5 м, их цвет, размеры и распределение связаны с возрастом, полом, расовой принадлежностью и участком тела. Из 2 млн волос, имеющихся на теле человека, около 100 000 находится на волосистой части головы. Они разделяются на три вида:

    длинные – толстые, длинные, пигментированные, покрывают волосистую часть головы, а после полового созревания – лобок, подмышечные впадины, у мужчин – также усы, бороду и другие части тела;

    щетинистые – толстые, короткие, пигментированные, образуют брови, ресницы, обнаруживаются в наружном слуховом проходе и преддверии носовой полости;

    пушковые – тонкие, короткие, бесцветные, покрывают остальные части тела (численно преобладают); под влиянием гормонов при половом созревании в некоторых частях тела могут превращаться в длинные.

Волос состоит из стержня, выступающего над кожей, и корня, погруженного в нее до уровня подкожной жировой клетчатки. Корень окружен волосяным фолликулом – цилиндрическим эпителиальным образованием, вдающимся в дерму и гиподерму и оплетенным соединительнотканной волосяной сумкой. Вблизи поверхности эпидермиса фолликул образует расширение – воронку, куда впадают протоки потовых и сальных желез. На дистальном конце фолликула имеется волосяная луковица, в которую врастает соединительнотканный волосяной сосочек с большим количеством кровеносных сосудов, осуществляющих питание луковицы. В луковице находятся и меланоциты, обуславливающие пигментацию волоса.

Ноготь представляет собой образование в виде пластинки, лежащей на дорсальной поверхности дистальной фаланги пальцев. Он состоит из ногтевой пластинки и ногтевого ложа. Ногтевая пластинка состоит из твердого кератина, образована многими слоями роговых чешуек, прочно связанных друг с другом, и лежит на ногтевом ложе. Проксимальная ее часть – корень ногтя, находится в задней ногтевой щели и покрыта надкожицей, за исключением небольшой светлой зоны полулунной формы (луночки). Дистально пластинка заканчивается свободным краем, лежащим над подногтевой пластинкой.

Железы кожи. Потовые железы участвуют в терморегуляции, а также в экскреции продуктов обмена, солей, лекарственных веществ, тяжелых металлов. Потовые железы имеют простое трубчатое строение и подразделяются на: эккринные и апокринные. Эккринные потовые железы встречаются в коже всех участков тела. Их число составляет 3-5 млн (особенно многочисленны на ладонях, подошвах, лбу), а совокупная масса примерно 150 г. Они секретируют прозрачный пот с низким содержанием органических компонентов и по выводным протокам он попадает на поверхность кожи, охлаждая ее. Апокринные потовые железы, в отличие от эккринных, располагаются лишь в определенных участках тела: коже подмышечных впадин, промежности. Окончательное развитие претерпевают в период полового созревания. Образуют пот молочного цвета с высоким содержанием органических веществ. По строению – простые трубчато-альвеолярные. Активность желез регулируется нервной системой и половыми гормонами. Выводные протоки открываются в устья волосяных фолликулов или на поверхность кожи.

Сальные железы вырабатывают смесь липидов – кожное сало, которое покрывает поверхность кожи, смягчая ее и усиливая ее барьерные и антимикробные свойства. Они присутствуют в коже повсеместно, кроме ладоней, подошв и тыльной стороны стопы. Обычно связаны с волосяными фолликулами, развиваются в юности в ходе полового созревания под влиянием андрогенов (у обоих полов). Сальные железы располагаются у корня волоса на границе сетчатого и сосочкового слоя дермы. Они относятся к простым альвеолярным железам. Они состоят из концевых отделов и выводных протоков. Выделение секрета сальных желез (20 г в сутки) происходит при сокращении мышцы, поднимающей волос. Гиперпродукция кожного сала характерна для заболевания, называемого себореей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • Заключение
  • Приложения
  • Введение
  • Одной из физиологических функций организма является восприятие окружающей действительности. Получение и обработка информации об окружающем мире является необходимым условием поддержания гомеостатических констант организма и формирования поведения. Среди раздражителей, действующих на организм, улавливаются и воспринимаются лишь те, для восприятия которых есть специализированные образования. Такие раздражители называют сенсорными стимулами, а сложноорганизованные структуры, предназначенные для их обработки - сенсорными системами (органы чувств).
  • Сенсорная система человека состоит из следующих подсистем: зрительная система, слуховая система, соматосенсорная система, вкусовая система, обонятельная система.

Сенсорная информация, которую мы получаем с помощью органов чувств (анализаторов), имеет значение не только для организации деятельности внутренних органов и поведения соответственно требованиям окружающей среды, но и для полноценного развития человека.

Органы чувств - это «окна», через которые внешний мир проникает в наше сознание. Без этой информации была бы невозможна оптимальная организация как самых примитивных, «животных», функций нашего организма, так и высших познавательных психических процессов человека.

Однако, человек воспринимает не все изменения окружающей среды, он не способен, например, ощущать действие ультразвука, рентгеновских лучей или радиоволн. Диапазон сенсорного восприятия человека ограничен имеющимися у него сенсорными системами, каждая из которых перерабатывает информацию о стимулах определенной физической природы.

  • Цель и задачи данной работы состоят в рассмотрении понятия «сенсорные системы», анализе сенсорных систем человека и определения значимости каждой из них в развитии и жизнедеятельности человека.
  • 1. Психофизиология сенсорных систем: понятие, функции, принципы, общие свойства
  • сенсорный анализатор мозг человек
  • Сенсорные системы человека являются частью его нервной системы, способной воспринимать внешнюю для мозга информацию, передавать ее в мозг и анализировать. Получение информации от окружающей среды и собственного тела является обязательным условием существования человека.
  • Сенсорная система (лат. sensus - чувство) - это совокупность периферических и центральных структур нервной системы, которая состоит из группы клеток (рецепторов), ответственных за восприятие сигналов различных модальностей из окружающей или внутренней среды, передающая её в мозг и анализирующая её. Смирнов В.М. Физиология сенсорных систем и высшая нервная деятельность: Учеб. пособие / В.М. Смирнов, С.М. Будылина. - М.: Академия, 2009. - 304 с. - С. 178-196.
  • Термин «сенсорные системы» сменил название «органы чувств», сохранившееся только для обозначения анатомически обособленных периферических отделов некоторых сенсорных систем (как, например, глаз или ухо). В отечественной литературе в качестве синонима сенсорной системы применяется понятие «анализатор», предложенное И.П. Павловым и указывающее на функцию сенсорной системы.

Сенсорная система человека состоит из следующих подсистем: зрительная система, слуховая система, соматосенсорная система, вкусовая система, обонятельная система. Виды анализаторов показаны в Приложении 1.

  • Согласно И.П. Павлову, любой анализатор имеет три основных отдела (табл. 1):
  • 1. Периферический отдел анализатора представлен рецепторами. Его назначение - восприятие и первичный анализ изменений внешней и внутренней сред организма. Восприятие раздражителей в рецепторах происходит посредством трансформации энергии раздражителя в нервный импульс (эта часть представляет собой органы чувств - глаз, ухо и др.).
  • 2. Проводниковый отдел анализатора включает афферентные (периферические) и промежуточные нейроны стволовых и подкорковых структур центральной нервной системы (ЦНС). Он обеспечивает проведение возбуждения от рецепторов в кору большого мозга. В проводниковом отделе происходит частичная переработка информации на стадиях переключения (например, в таламусе).

3. Центральный, или корковый отдел анализатора, состоит из двух частей: центральной части - «ядра», - представленной специфическими нейронами, перерабатывающими афферентную информацию от рецепторов, и периферической части - «рассеянных элементов» - нейронов, рассредоточенных по коре большого мозга. Корковые концы анализаторов называют также «сенсорными зонами», которые не являются строго ограниченными участками, они перекрывают друг друга. Данные особенности строения центрального отдела обеспечивают процесс компенсации нарушенных функций. На уровне коркового отдела осуществляется высший анализ и синтез афферентных возбуждений, которые обеспечивают полное представление об окружающей среде.

  • Таблица 1 - Сравнительная характеристика отделов сенсорной системы
    • Сравнительная характеристика периферического отдела анализаторов, и сравнительная характеристика проводникового и центрального отделов анализаторов представлена в Приложении 2.
    • Сенсорные системы организованы иерархически, т.е. включают несколько уровней последовательной переработки информации. Низший уровень такой переработки обеспечивают первичные сенсорные нейроны, которые расположены в специализированных органах чувств или в чувствительных ганглиях и предназначены для проведения возбуждения от периферических рецепторов в центральную нервную систему.
    • Периферические рецепторы - это чувствительные высокоспециализи-рованные образования, способные воспринять, трансформировать и передать энергию внешнего стимула первичным сенсорным нейронам. Центральные отростки первичных сенсорных нейронов оканчиваются в головном или спинном мозге на нейронах второго порядка, тела которых расположены в переключательном ядре. В нем имеются не только возбуждающие, но и тормозные нейроны, участвующие в переработке передаваемой информации.
    • Представляя более высокий иерархический уровень, нейроны переключательного ядра могут регулировать передачу информации путем усиления одних и торможения или подавления других сигналов. Аксоны нейронов второго порядка образуют проводящие пути к следующему переключательному ядру, общее число которых обусловлено специфическими особенностями разных сенсорных систем. Окончательная переработка информации о действующем стимуле происходит в сенсорных областях коры.

    Каждая сенсорная система образует связи с разнообразными структурами моторных и интегративных систем мозга. Сенсорные системы являются необходимым звеном для формирования ответных реакций на воздействия среды. Для сенсорной системы характерно наличие обратных связей, адресованных к рецепторному или первому центральному отделу. Активация их дает возможность регулировать процесс восприятия информации и ее проведение по восходящим путям в мозге.

    • Каждая отдельная сенсорная система реагирует лишь на определенные физические стимулы (например, зрительная система реагирует на световые стимулы, слуховая - на звуковые и т.п.). Специфичность такой реакции обусловила понятие «модальность». Стимулом данной модальности, адекватным для конкретной сенсорной системы, считают такой стимул, который вызывает реакцию при минимальной физической интенсивности. По модальности раздражители делят на механические, химические, тепловые, световые и др.
    • Все сенсорные системы, независимо от природы действующего раздражителя, выполняют одинаковые функции и имеют общие принципы своей структурной организации. При этом, важнейшие принципы следующие: Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем. Общие принципы конструкции сенсорных систем / А.С. Батуев. - СПб.: Питер, 2010. - С. 46-51. - 317 с.

    1. Принцип многоканальности (дублирование с целью повышения надёжности системы).

    2. Принцип многоуровневости передачи информации.

    3. Принцип конвергенции (концевые развлетвления одного нейрона контактируют с несколькими нейронами предыдущего уровня; воронка Шеррингтона).

    4. Принцип дивергенции (мультипликации; контакт с несколькими нейронами более высокого уровня).

    5. Принцип обратных связей (у всех уровней системы есть и восходящий, и нисходящий путь; обратные связи имеют тормозное значение как часть процеса обработки сигнала).

    6. Принцип кортикализации (в новой коре представлены все сенсорные системы; следовательно, кора функционально многозначна, и не существует абсолютной локализации).

    7. Принцип двусторонней симметрии (существует в относительной степени).

    8. Принцип структурно-функциональных корреляций (кортикализация разных сенсорных систем имеет разную степень).

    Основные функции сенсорных систем: Безруких М.М. Психофизиология. Словарь / М.М. Безруких, Д.А. Фабер - М.: ПЕР СЭ, 2006. - обнаружение сигнала; различение сигнала; передача и преобразование; кодирование и детектирование признаков; опознание образов. Указанная последовательность соблюдается во всех сенсорных системах, отражая иерархический принцип их организации. При этом, обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

    1. Обнаружение сигналов начинается в рецепторе - специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

    2. Важная характеристика сенсорной системы - способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).

    3. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа. Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований выделяют изменения соотношения разных частей сигнала.

    4. Кодированием информации называют совершаемое по определенным правилам преобразование информации в условную форму - код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое.

    5. Детектирование сигналов - это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула. Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцентрированы детекторы сложных признаков и целых образов.

    6. Опознание образов - конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем. Опознание часто происходит независимо от изменчивости сигнала. Так, мы надежно опознаем предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

    Таким образом, сенсорная система (анализатор) - это функциональная система, состоящая из рецептора, афферентного проводящего пути и зоны коры головного мозга, куда проецируется данный вид чувствительности.

    Корковые анализаторы большого мозга человека, и их функциональная связь с различными органами наглядно показаны на рисунке в Приложении 3.

    Сенсорные системы человека обеспечивают:

    1) формирование ощущений и восприятие действующих стимулов;

    2) контроль произвольных движений;

    3) контроль деятельности внутренних органов;

    4) необходимый для бодрствования человека уровень активности мозга.

    Процесс передачи сенсорных сигналов (их часто называют сенсорными сообщениями) сопровождается их многократными преобразованиями и перекодированием на всех уровнях сенсорной системы и завершается опознанием сенсорного образа. Сенсорная информация, поступающая в мозг, используется для организации простых и сложных рефлекторных актов, а также для формирования психической деятельности. Поступление в мозг сенсорной информации может сопровождаться осознанием наличия стимула (ощущением раздражителя). Ощущение представляет собой субъективную чувственную реакцию на действующий сенсорный стимул (например, ощущение света, тепла или холода, прикосновения и т. п.). как уже было сказано ранее, совокупность ощущений, обеспечиваемых каким-либо одним анализатором, обозначается термином «модальность», которая может включать различные качественные типы ощущений. Самостоятельными модальностями являются осязание, зрение, слух, обоняние, вкус, чувство холода или тепла, боли, вибрации, ощущение положения конечностей и мышечной нагрузки. Внутри модальностей существуют разные качества, или субмодальности; например, во вкусовой модальности различают сладкий, соленый, кислый и горький вкус.

    На основе совокупности ощущений формируется чувственное восприятие, т. е. осмысление ощущений и готовность их описать. Восприятие не является простым отражением действующего стимула, оно зависит от распределения внимания в момент его действия, памяти о прошлом сенсорном опыте и субъективного отношения к происходящему, выражающегося в эмоциональных переживаниях.

    Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов. Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма.

    2. Характеристика основных сенсорных систем

    В физиологии принято разделять анализаторы на внешние и внутренние. Внешние анализаторы человека реагируют на те раздражители, которые приходят из внешней среды. Внутренние анализаторы человека, то это те структуры, которые реагируют на изменения внутри организма. Например, в мышечной ткани есть специфические рецепторы, которые реагируют на давление и другие показатели, которые изменяются внутри тела.

    Внешние анализаторы делятся на контактные (при прямом контакте с раздражителем) и дистантные, которые реагируют на удаленные раздражители:

    1) контактные: вкус и осязание;

    2) дистантные: зрение, слух и обоняние.

    Деятельность каждого из органов чувств представляет собой элементарный психический процесс - ощущение. Сенсорная информация от внешних раздражителей поступает в центральную нервную систему 2 путями:

    1) Характерные сенсорные пути:

    а) зрение - через сетчатку, латеральное коленчатое тело и верхние бугорки четверохолмия в первичную и вторичную зрительную кору;

    б) слух - через ядра улитки и четверохолмия, медиальное коленчатое тело в первичную слуховую кору;

    в) вкус - через продолговатый мозг и таламус в соматосенсорную кору;

    г) обоняние - через обонятельную луковицу и пириформную кору в гипоталамус и лимбическую систему;

    д) осязание - проходит через спинной мозг, ствол мозга и таламус в соматосенсорную кору.

    2) Неспецифические сенсорные пути: болевые и температурные ощущения, расположенные в ядрах таламуса и ствола мозга.

    Зрительная сенсорная система дает мозгу более 90% сенсорной информации. Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку. Затем происходят возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корковыми отделами этой системы решения о зрительном образе.

    Приспособление глаза к ясному видению объектов, удаленных на разное расстояние называют аккомодацией, главную роль здесь играет хрусталик, изменяющий свою кривизну и, следовательно, преломляющую способность.

    Периферическим отделом зрительной сенсорной системой является глаз (рис. 1). Он состоит из глазного яблока и вспомогательных структур: слезных желез, ресничной мышцы, кровеносных сосудов и нервов. Характеристика оболочек глазного яблока в Приложении 4.

    Проводниковый отдел зрительной сенсорной системы - это зрительный нерв, ядра верхних бугров четверохолмия среднего мозга, ядра наружного коленчатого тела промежуточного мозга.

    Центральный отдел зрительного анализатора расположен в затылочной доле.

    Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект. Количество света, которое поступает на сетчатку, регулируется зрачком, который способен расширятся и суживаться. Зрачком называют отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает четкость изображения на сетчатке, увеличивая глубину резкости глаза.

    Луч света переламывается на роговице, хрусталике и в стекловидном теле. Таким образом, изображение попадает на сетчатку, которая содержит множество нервных рецепторов - палочек и колбочек. Благодаря химическим реакциям здесь формируется электрический импульс, которые следует по зрительному нерву и проектируется в затылочных долях коры головного мозга.

    Рисунок 1 - Орган зрения:

    1 - белочная оболочка; 2 - роговица; 3 - хрусталик; 4 - ресничное тело; 5 - радужная оболочка; 6 - сосудистая оболочка; 7 - сетчатка; 8 - слепое пятно; 9 - стекловидное тело; 10 - задняя камера глаза; 11 - передняя камера глаза; 12 - зрительный нерв

    Сетчатка представляет собой внутреннюю светочувствительную оболочку глаза. Здесь расположены два вида фоторецепторов (палочковые и колбочковые: колбочки функционируют в условиях больших освещенностей, они обеспечивают дневное и цветовое зрение; намного более светочувствительные палочки ответственны за сумеречное зрение) и несколько видов нервных клеток. Все перечисленные нейроны сетчатки с их отростками образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию. Из сетчатки зрительная информация по волокнам зрительного нерва устремляется в мозг.

    Слуховая сенсорная система - одна из важнейших дистантных сенсорных систем человека. Рецептором здесь является ухо. Как и любой другой анализатор, слуховой тоже состоит из трех частей: слухового рецептора, слухового нерва с его проводящими путями и слуховой зоны коры больших полушарий головного мозга, где происходят анализ и оценка звуковых раздражений (рис. 2).

    Периферический отдел слуховой сенсорной системы состоит из трех частей: наружного, среднего и внутреннего уха.

    Проводниковый отдел. Волосковые клетки охватываются нервными волокнами улитковой ветви слухового нерва, который несет нервный импульс в продолговатый мозг, далее, перекрещиваясь со вторым нейроном слухового пути, он направляется к задним буграм четверохолмия и ядрам внутренних коленчатых тел промежуточного мозга, а от них - в височную область коры, где располагается центральная часть слухового анализатора.

    Рисунок 2 - Орган слуха:

    А - общий вид: 1 - наружный слуховой проход; 2 - барабанная перепонка; 3 - среднее ухо;

    4 - молоточек; 5 - наковальня; 6 - стремечко; 7 - слуховой нерв; 8 - улитка; 9 - слуховая (Евстахиева) труба; Б - срез улитки; В - поперечный срез канала улитки: 10 - костный лабиринт; 11 - перепончатый лабиринт; 12 - спиральный (Кортиев) орган; 13 - основная (базальная) пластинка

    Центральный отдел слухового анализатора расположен в височной доле. Первичная слуховая кора занимает верхний край верхней височной извилины, она окружена вторичной корой. Смысл услышанного интерпретируется в ассоциативных зонах. У человека в центральном ядре слухового анализатора особое значение имеет зона Вернике, расположенная в задней части верхней височной извилины. Эта зона ответственна за понимание смысла слов, она является центром сенсорной речи. При длительном действии сильных звуков возбудимость звукового анализатора понижается, а при длительном пребывании в тишине возрастает. Это адаптация наблюдается в зоне более высоких звуков.

    Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга через ряд последовательных отделов:

    Наружное ухо - слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направленной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.

    В среднем ухе, заполненном воздухом - находятся три косточки: молоточек, наковальня и стремечко, которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Молоточек вплетен рукояткой в барабанную перепонку, другая его сторона соединена с наковальней, передающей колебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы.

    В среднем ухе расположены две мышцы: напрягающая барабанную перепонку и стременная. Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым ограничивает его движения. Этим внутреннее ухо автоматически предохраняется от перегрузок;

    Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, образующий 2,5 витка. Внутри среднего канала улитки на основной мембране расположен звуко-воспринимающий аппарат - спиральный орган, содержащий рецепторные волосковые клетки. Эти клетки трансформируют механические колебания в электрические потенциалы.

    Сравнительная характеристика частей органа слуха в Приложении 5.

    Механизмы слуховой рецепции следующие. Звук, представляющий собой колебания воздуха, в виде воздушных волн попадает через ушную раковину в наружный слуховой проход и действует на барабанную перепонку. Колебания барабанной перепонки передаются слуховым косточкам, движения которых вызывают вибрацию перепонки овального окна. Эти колебания передаются перилимфе и эндолимфе, затем воспринимаются волокнами основной мембраны. Высокие звуки вызывают колебания коротких волоконец, низкие - более длинных, расположенных у вершины улитки. Эти колебания возбуждают рецепторные волосковые клетки кортиева органа. Далее возбуждение передается по слуховому нерву в височную долю коры больших полушарий, где происходит окончательный синтез и синтез звуковых сигналов.

    Вкусовая сенсорная система - скопление чувствительных химических рецепторов, которые реагируют на определенные химические вещества. Вкус, так же как и обоняние, основан на хеморецепции. Хеморецепторы - вкусовые клетки - расположены на дне вкусовой почки. Они покрыты микроворсинками, вступающими в контакт с растворенными в воде веществами.

    Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот. Их возбуждение запускает сложную цепь реакций разных отделов мозга, приводящих к различной работе органов пищеварения или к удалению вредных для организма веществ, попавших в рот с пищей.

    Периферический отдел этой системы представлен вкусовыми почками - рецепторы вкуса, - расположенные в эпителии желобковых, листовидных и грибовидных сосочков языка и в слизистой неба, зева и надгортанника. Больше всего их на кончике, краях и задней части языка. Каждая из примерно 10000 вкусовых почек человека состоит из нескольких (2-6) рецепторных клеток и, кроме того, из опорных клеток. Вкусовая почка имеет колбовидную форму; у человека ее длина и ширина около 70 мкм. Вкусовая почка не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору.

    Проводниковый отдел этого анализатора представлен тройничным нервом, барабанной струной, языкоглоточным нервом, ядрами продолговатого мозга, ядрами таламуса.

    Центральный отдел (корковый конец) вкусового анализатора расположен в эволюционно древних образованиях больших полушарий, расположенных на их медиальной (срединной) и нижней поверхностях. Это кора гиппокампа (аммонова рога), парагиппокампа и крючка, а также латеральная часть постцентральной извилины (рис. 5.3).

    Рис. 5.3. Свод мозга и гиппокамп:

    1 - крючок; 9 - зубчатая извилина; 2 - парагиппокампальная извилина; 3 - ножка гиппокампа; 4 - гиппокамп; 5 - мозолистое тело; 6 - центральная борозда; 7 - затылочная доля; 8 - теменная доля; 9 - височная доля

    Проводниками всех видов вкусовой чувствительности служат барабанная струна и языкоглоточный нерв, ядра которых в продолговатом мозге содержат первые нейроны вкусовой системы. Многие из волокон, идущих от вкусовых рецепторов, отличаются определенной специфичностью, так как отвечают учащением импульсных разрядов лишь на действие соли, кислоты и хинина. Другие волокна реагируют на сахар. Наиболее убедительной считается гипотеза, согласно которой информация о 4 основных вкусовых ощущениях: горьком, сладком, кислом и соленом - кодируется не импульсацией в одиночных волокнах, а разным распределением частоты разрядов в большой группе волокон, по-разному возбуждаемых вкусовым веществом.

    Вкусовые афферентные сигналы поступают в ядро одиночного пучка ствола мозга. От ядра одиночного пучка аксоны вторых нейронов восходят в составе медиальной петли до дугообразного ядра таламуса, где расположены третьи нейроны, аксоны которых направляются в корковый центр вкуса. Результаты исследований пока не позволяют оценить характер преобразований вкусовых афферентных сигналов на всех уровнях вкусовой системы.

    Обонятельный анализатор. Периферический отдел обонятельной сенсорной системы расположен в верхнезадней полости носа, - это обонятельный эпителий, в котором находятся обонятельные клетки, взаимодействующие с молекулами пахучих веществ.

    Проводниковый отдел представлен обонятельным нервом, обонятельной луковицей, обонятельным трактом, ядрами миндалевидного комплекса.

    Центральный, корковый отдел - крючок, извилина гиппокампа, прозрачная перегородка и обонятельная извилина.

    Ядра вкусового и обонятельного анализаторов тесно связаны между собой, а также со структурами мозга, ответственными за формирование эмоций и долговременной памяти. Отсюда ясно, насколько важно нормальное функциональное состояние вкусового и обонятельного анализатора.

    Обонятельная рецепторная клетка - биполярная клетка, на апикальном полюсе которой находятся реснички, а от ее базальной части отходит немиелинизированный аксон. Аксоны рецепторов образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу.

    Молекулы пахучих веществ попадают в слизь, вырабатываемую обонятельными железами, с постоянным током воздуха или из ротовой полости во время еды. Принюхивание ускоряет приток пахучих веществ к слизи.

    Каждая обонятельная клетка имеет только один тип мембранного рецепторного белка. Сам же этот белок способен связывать множество пахучих молекул различной пространственной конфигурации. Правило «одна обонятельная клетка - один обонятельный рецепторный белок» значительно упрощает передачу и обработку информации о запахах в обонятельной луковице - первом нервном центре переключения и обработки хемосенсорной информации в мозге.

    Особенность обонятельной системы состоит, в частности, в том, что ее афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону большого мозга. Выходящий из луковицы обонятельный тракт состоит из нескольких пучков, которые направляются в разные отделы переднего мозга: переднее обонятельное ядро, обонятельный бугорок, препириформную кору, периамигдалярную кору и часть ядер миндалевидного комплекса. Связь обонятельной луковицы с гиппокампом, пириформной корой и другими отделами обонятельного мозга осуществляется через несколько переключений. Показано, что наличие значительного числа центров обонятельного мозга не является необходимым для опознания запахов, поэтому большинство нервных центров, в которые проецируется обонятельный тракт, можно рассматривать как ассоциативные центры, обеспечивающие связь обонятельной сенсорной системы с другими сенсорными системами и организацию на этой основе ряда сложных форм поведения - пищевой, оборонительной, половой и т. д.

    Чувствительность обонятельной системы человека чрезвычайно велика: один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения. Адаптация в обонятельной системе происходит сравнительно медленно (десятки секунд или минуты) и зависит от скорости потока воздуха над обонятельным эпителием и от концентрации пахучего вещества.

    В соматосенсорную систему (кожно-мышечная сенсорная система) включают систему кожной чувствительности и чувствительную систему скелетно-мышечного аппарата, - представляют собой соответствующие рецепторы, расположенные в разных слоях кожи. Рецепторная поверхность кожи огромна (1,4-2,1 м2). В коже сосредоточено множество рецепторов. Они локализуются на разной глубине кожи и распределены неравномерно по ее поверхности.

    Периферический отдел этой важнейшей сенсорной системы представлен разнообразными рецепторами, которые по месту расположения разделяют на кожные рецепторы, проприорецепторы (рецепторы мышц, сухожилий и суставов) и висцеральные рецепторы (рецепторы внутренних органов). По характеру воспринимаемого раздражителя выделяют механорецепторы, терморецепторы, хеморецепторы и рецепторы боли - ноцицепторы.

    В роли органа чувств здесь, по сути дела, выступает вся поверхность тела человека, его мышцы, суставы, и в определенной степени - внутренние органы.

    Проводниковый отдел представлен многочисленными афферентными волокнами, центрами задних рогов спинного мозга, ядрами продолговатого мозга, ядрами таламус.

    Центральный отдел расположен в теменной доле: первичная кора - в заднецентральной извилине, вторичная - в верхнетеменной дольке.

    В кожных покровах имеется несколько анализаторных систем: тактильная (ощущения прикосновения), температурная (ощущения холода и тепла), болевая. Система тактильной чувствительности неравномерно распределена по всему телу. Но более всего скопление тактильных клеток наблюдается на ладони, на кончиках пальцев и на губах. Тактильные ощущения руки, объединяясь с мышечно-суставной чувствительностью, образуют осязание - специфически человеческую, выработавшуюся в труде систему познавательной деятельности руки.

    Если прикоснуться к поверхности тела, затем надавить на него, то давление может вызвать болевое ощущение. Таким образом, тактильная чувствительность дает знания о качествах предмета, а болевые ощущения сигнализируют организму о необходимости отдалиться от раздражителя и имеют ярко выраженный эмоциональный тон.

    Третий вид кожной чувствительности- температурные ощущения - связан с регулированием теплообмена между организмом и окружающей средой. Распределение тепловых и холодовых рецепторов на коже неравномерно. Наиболее чувствительна к холоду спина, наименее - грудь.

    О положении тела в пространстве сигнализируют статические ощущения. Рецепторы статической чувствительности расположены в вестибулярном аппарате внутреннего уха. Резкие и частые изменения положения тела относительно плоскости земли могут приводить к головокружению.

    Механизмы возбуждения кожных рецепторов: стимул приводит к деформации мембраны рецептора, в результате этого электрическое сопротивление мембраны уменьшается. Через мембрану рецептора начинает течь ионный ток, приводящий к генерации рецепторного потенциала. При увеличении рецепторного потенциала до критического уровня в рецепторе генерируются импульсы, распространяющиеся по волокну в ЦНС.

    Заключение

    Таким образом, информация об окружающем мире воспринимается человеком через органы чувств, называемые в физиологии сенсорными системами (анализаторы).

    Деятельность анализаторов связана с возникновением пяти чувств - зрения, слуха, вкуса, обоняния и осязания, с помощью которых осуществляется связь организма с внешней средой.

    Органы чувств - это сложные сенсорные системы (анализаторы), включающие воспринимающие элементы (рецепторы), проводящие нервные пути и соответствующие отделы в головном мозге, где сигнал преобразуется в ощущение. Основной характеристикой анализатора является чувствительность, которая характеризуется величиной порога ощущения.

    Основные функции сенсорной системы: обнаружение и различение сигналов; передача и преобразование сигналов; кодирование информации; детектирование сигналов и опознавание образов.

    Каждая сенсорная система включает в себя три отдела: 1) периферический или рецепторный, 2) проводниковый, 3) корковый.

    Сенсорные системы воспринимают сигналы от внешнего мира и несут в мозг информацию, необходимую организму для ориентации во внешней среде и для оценки состояния самого организма. Эти сигналы возникают в воспринимающих элементах - сенсорных рецепторах, получающих стимулы из внешней или внутренней среды, нервных путей, и передаются от рецепторов в мозг и тех частей мозга, которые перерабатывают эту информацию - через цепи нейронов и связующих их нервных волокон сенсорной системы.

    Передача сигналов сопровождается многократными преобразованиями и перекодированием на всех уровнях сенсорной системы и завершается опознанием сенсорного образа.

    Список используемой литературы

    1. Атлас по анатомии человека: учеб. пособие для мед. учеб. заведений / ред. Т.С. Артемьев, А.А. Власова, Н.Т. Шиндина. - М.: РИПОЛ КЛАССИК, 2007. - 528 с.

    2. Основы психофизиологии: Учебник / Отв. ред. Ю.И. Александров. - СПб.: Питер, 2003. - 496 с.

    3. Островский М.А. Физиология человека. Учебник. В 2 т. Т. 2 / М.А. Островский, И.А. Шевелев; Под ред. В.М. Покровского, Г.Ф. Коротько. - М. - 368 с. - С. 201-259.

    4. Реброва Н.П. Физиология сенсорных систем: Учебно-методическое пособие / Н.П. Реброва. - СПб.: НП «Стратегия будущего», 2007. - 106 с.

    5. Серебрякова Т.А. Физиологические основы психической деятельности: Учебное пособие. - Н.-Новгород: ВГИПУ, 2008. - 196 с.

    6. Смирнов В.М. Физиология сенсорных систем и высшая нервная деятельность: Учеб. пособие / В.М. Смирнов, С.М. Будылина. - М.: Академия, 2009. - 336 с. - С. 178-196.

    7. Титов В.А. Психофизиология. Конспект лекций / В.А. Титов. - М.: Приор-издат, 2003. - 176 с.

    8. Физиология сенсорных систем и высшей нервной деятельности: учебник. В 2 т. Т. 1. / Под ред. Я.А. Альтмана, Г.А. Куликова. - М. Академия, 2009. - 288 с.

    9. Физиология человека / Под ред. В.М. Смирнова - М.: Академия, 2010. - с.364-370, 372-375,377-378, 370-371,381-386.

    Приложение 1

    Виды анализаторов

    Анализатор

    Функции (какие раздражители воспринимает)

    Периферический отдел

    Проводниковый отдел

    Центральный отдел

    Зрительный

    Световые

    Фоторецепторы сетчатки глаза

    Зрительный нерв

    Зрительная зона в затылочной доле коры больших полушарий

    Слуховой

    Звуковые

    Слуховые рецепторы кортиева органа

    Слуховой нерв

    Слуховая зона в височной доле КБП

    Вестибулярный (гравитационный)

    Механические

    Рецепторы полукружных каналов и оттолитового аппарата

    Вестибулярный, затем слуховой нерв

    Вестибулярная зонав височной доле КБП

    Сенсомоторный чувствительный (соматосенсорный)

    Механические, температурные, болевые.

    Осязательные рецепторы кожи

    Спиноталамический путь: нервы кожной чувствительности

    Соматосенсорная зона в задней центральной извилине КБП

    Сенсомоторный двигательный (моторный)

    Механические

    Проприорецепторов мышц и суставов

    Чувствительный нервы скелетно-мышечного аппарат

    Соматосенсорная зона и моторная зона в передней центральной извилине КБП

    Обонятельный

    Газообразные химические вещества

    Обонятельные рецепторы полости носа

    Обонятельный нерв

    Обонятельные ядра и обонятельные центры височной доли КБП

    Вкусовой

    Химические растворенные вещества

    Вкусовые рецепторы ротовой полости

    Лицевой языкоглоточный нерв

    Вкусовая зона в теменной доле КБП

    Висцеральный (внутренней среды)

    Механические

    Интерорецепторы внутренних органов

    Блуждающий, чревный и тазовый нервы

    Лимбическая система и сенсомоторная зона КБП

    Приложение 2

    Сравнительная характеристика периферического отдела анализаторов

    Анализаторы

    Чувствительный орган

    Качество

    Рецепторы

    Зрительный анализатор

    Сетчатка

    Яркость, контрастность, движение, размер, цвет

    Палочки и колбочки

    Слуховой анализатор

    Высота, тембр звука

    Волосковые клетки

    Вестибулярный анализатор

    Вестибулярный орган

    Сила притяжения

    Вестибулярные клетки

    Вестибулярный анализатор

    Вестибулярный орган

    Вращение

    Вестибулярные клетки

    Кожный анализатор

    Прикосновение

    Ощупь, холодовые и тепловые рецепторы

    Вкусовой анализатор

    Сладкий и кислый вкус

    Вкусовые сосочки на кончике языка

    Вкусовой анализатор

    Горький и соленый вкус

    Вкусовые сосочки у основания языка

    Обонятельный анализатор

    Обонятельные нервы

    Обонятельные рецепторы

    Сравнительная характеристика проводникового и центрального отделов анализаторов

    Анализаторы

    Уровни переключения: первичный

    Уровни переключения вторичный

    Уровни переключения: третичный

    Центральный отдел

    Зрительный анализатор

    Сетчатка

    Первичная и вторичная зрительная кора

    Затылочные доли головного мозга

    Слуховой анализатор

    Ядра улитки

    Первичная слуховая кора

    Височная доля головного мозга

    Вестибулярный анализатор

    Вестибулярные ядра

    Соматосенсорной коры

    Теменные и височные доли головного мозга

    Кожный анализатор

    Спинной мозг

    Соматосенсорная кора

    Верхний участок задней центральной извилины головного мозга

    Обонятельный анализатор

    Обонятельная луковица

    Пириформная кора

    Лимбическая система, гипоталамус

    Височная доля (кора извилины морского коня) головного мозга

    Вкусовой анализатор

    Продолговатый мозг

    Соматосенсорная кора

    Нижняя участок задней центральной извилины головного мозга

    Приложение 3

    Корковые анализаторы большого мозга человека, и их функциональная связь с различными органами

    1 - периферическое звено; 2 - проводниковое; 3 - центральное, или корковое; 4 - интерорецептивный; 5 - двигательный; 6 - вкусовой и обонятельный; 7 - кожный, 8 - слуховой, 9 - зрительный)

    Приложение 4

    Сравнительная характеристика оболочек глазного яблока

    Оболочки

    Особенности строения

    Cклера (белковая оболочка)

    Опорная, защитная

    Волокнистая оболочка (внешняя оболочка)

    Роговица

    Прозрачная, соединительнотканная, имеет выпуклую форму

    Пропускает и преломляет лучи света

    Собственно сосудистая оболочка

    Содержит много кровеносных сосудов

    Бесперебойное питание глаза

    Сосудистая оболочка (средняя оболочка)

    Ресничное тело

    Содержит ресничную мышцу

    Изменение кривизны хрусталика

    Сосудистая оболочка (средняя оболочка)

    Содержит зрачок, мышцы и пигмент меланин

    Пропускает лучи света и определяет цвет глаз

    Сетчатка (внутренняя оболочка)

    Два слоя: наружный пигментный (содержит пигмент фусцин) и внутренний светочувствительный (содержит палочки, колбочки)

    Преобразует световое раздражение в нервный импульс, первичная обработка зрительного сигнала

    Оболочки

    Особенности строения

    Волокнистая оболочка (внешняя оболочка)

    Cклера (белковая оболочка)

    Непрозрачная, соединительнотканная

    Опорная, защитная

    Приложение 5

    Сравнительная характеристика частей органа слуха

    Особенности строения

    Наружное ухо

    Ушная раковина, наружный слуховой проход

    Защитная (волоски, ушная сера), проводниковая, резонаторная

    Среднее ухо

    Барабанная полость, барабанная перепонка, слуховые косточки (молоточек, наковальня, стремечко), слуховая (евстахиевая) труба

    Проводниковая, увеличение мощности колебаний, защитная (от сильных звуковых колебаний)

    Внутреннее ухо

    Улитка перепончатого лабиринта, которая содержит спиральный (кортиев) орган

    Проводниковая, звуковоспринимающая (спиральный орган)

    Размещено на Allbest.ru

Подобные документы

    Сенсорная организация личности как уровень развития отдельных систем чувствительности и возможность их объединения. Анализаторы сенсорных систем. Деятельность сенсорных рецепторов. Общие принципы устройства сенсорных систем. Работа органов чувств.

    реферат , добавлен 24.05.2012

    Общая характеристика органов чувств. Рецепторы и их функциональная характеристика. Обработка сенсорных стимулов на уровне спинного мозга, таламуса и коры больших полушарий. Аускультация как диагностический метод. Общий принцип строения сенсорных систем.

    презентация , добавлен 26.09.2013

    Нарушение сенсорных систем у взрослого человека обращают на себя внимание и рассматриваются окружающими как патология. Вспомогательные органы глаза. Орган слуха и равновесия. Методики исследования каждой сенсорной системы. Методы безусловных рефлексов.

    курсовая работа , добавлен 14.04.2009

    Общая физиология сенсорных систем. Соматосенсорный, вкусовой и обонятельный анализаторы. Определение точек прикосновения. Определение пространственных порогов тактильной рецепции и локализации болевых рецепторов. Определение вкусовых ощущений и порогов.

    методичка , добавлен 07.02.2013

    Строение коры головного мозга. Характеристика корковых проекционных зон мозга. Произвольная регуляция психической деятельности человека. Основные нарушения при поражении структуры функционального отдела мозга. Задачи блока программирования и контроля.

    презентация , добавлен 01.04.2015

    Обработка соматосенсорных и слуховых сигналов. Особенности организации рецепторов тонкого прикосновения. Свойства ответов корковых нейронов. Параллельная обработка сенсорных модальностей. Болевые и температурные проводящие пути. Центральные пути боли.

    реферат , добавлен 27.10.2009

    Характеристика мозга, важнейшего органа человека, регулирующего все процессы, рефлексы и движения в теле. Оболочки головного мозга: мягкая, паутинная, твердая. Функции продолговатого мозга. Основное значение мозжечка. Серое вещество спинного мозга.

    презентация , добавлен 28.10.2013

    Понятие и принципы строения анализаторных систем человека, изучение с точки зрения нейрофизиологии. Причины возникновения и разновидности расстройств анализаторных систем, их клинические признаки и пути ликвидации. Строение, роль зрительного анализатора.

    контрольная работа , добавлен 18.09.2009

    Высшая нервная деятельность. Работа аппаратов рецепции и высших этажей мозга. Проблема адекватности отражения. Дифференциация раздражений, их дробный анализ. Энергия внешнего раздражения. Афферентная импульсация от мышечно-суставных рецепторов.

    реферат , добавлен 16.06.2013

    Регуляция функций организма, согласованная деятельность органов и систем, связь организма с внешней средой как основные функции деятельности нервной системы. Свойства нервной ткани - возбудимость и проводимость. Строение головного мозга и его зоны.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. СЕНСОРНЫЕ СИСТЕМЫ

1.1 Общее представление о сенсорных системах

Сенсорный - от латинского sensus - чувство, ощущение.

Сенсорная система представляет собой целостный нервный механизм, осуществляющий прием и анализ сенсорной информации. Синонимом сенсорной системы в отечественной психологии является термин «анализатор», который впервые ввел выдающийся русский физиолог И.П.Павлов.

Анализатор состоит из трех частей:

1) периферического отдела - рецептора, осуществляющего прием и трансформацию внешней энергии в нервный процесс, и эффектора - органа или системы органов, реагирующих на действия внешних или внутренних раздражителей, выступающих в роли исполнительного звена рефлекторного акта; сенсорный зрительный чувствительность сенсибилизация

2) проводящих путей - афферентных (восходящих) и эфферентных (нисходящих), соединяющих периферический отдел анализатора с центральным;

3) центрального отдела - представленного подкорковыми и корковыми ядрами и проекционными отделами коры больших полушарий, где происходит переработка нервных импульсов, приходящих из периферических отделов.

В каждом анализаторе имеется ядро, т.е. центральная часть, где сконцентрирована основная масса рецепторных клеток, и периферия, состоящая из рассеянных клеточных элементов, которые в том или ином количестве расположены в различных областях коры. Ядерная часть анализатора состоит из большой массы клеток, которые находятся в той области коры головного мозга, куда входят центростремительные нервы от рецептора. Рассеянные (периферические) элементы данного анализатора входят в области, смежные с ядрами других анализаторов. Тем самым обеспечивается участие в отдельном сенсорном акте большой части всей коры головного мозга. Ядро анализатора выполняет функцию тонкого анализа и синтеза, например, дифференцирует звуки по высоте. Рассеянные элементы связаны с функцией грубого анализа, например, различение музыкальных звуков и шумов.

Определенным клеткам периферических отделов анализатора соответствуют определенные участки корковых клеток. Так, пространственно разными точками в коре представлены, например, разные точки сетчатки; пространственно разным расположением клеток представлен в коре и орган слуха. То же самое относится и к другим органам чувств.

Многочисленные опыты, проведенные методами искусственного раздражения, позволяют в настоящее время довольно определенно установить локализацию в коре тех или иных видов чувствительности. Так, представительство зрительной чувствительности сосредоточено главным образом в затылочных долях коры головного мозга. Слуховая чувствительность локализуется в средней части верхней височной извилины. Осязательно-двигательная чувствительность представлена в задней центральной извилине и т.д.

Для возникновения сенсорного процесса необходима работа всего анализатора как целого. Воздействие раздражителя на рецептор вызывает появление раздражения. Начало этого раздражения заключается в превращении внешней энергии в нервный процесс, который производится рецептором. От рецептора этот процесс по восходящим путям достигает ядерной части анализатора. Когда возбуждение достигает корковых клеток анализатора, возникает ответ организма на раздражение. Мы ощущаем свет, звук, вкус или другие качества раздражителей.

Таким образом, анализатор составляет исходную и важнейшую часть всего пути нервных процессов, или рефлекторной дуги. Рефлекторная дуга состоит из рецептора, проводящих путей, центральной части и эффектора. Взаимосвязь элементов рефлекторной дуги обеспечивает основу ориентировки сложного организма в окружающем мире, деятельность организма в зависимости от условий его существования.

1.2 Виды сенсорных систем

Долгое время зрительная, слуховая, осязательная, обонятельная и вкусовая чувствительность представлялась основой, на которой с помощью ассоциаций строится вся психическая жизнь человека. В 19 веке этот список стал быстро расширяться. К нему были добавлены чувствительность к положению и движению тела в пространстве, была открыта и изучена вестибулярная чувствительность, осязательная чувствительность и т.д.

Первая классификация была выдвинута Аристотелем, жившим в 384-322 г.г. до н.э., который выделял 5 видов «внешних чувств»: зрительные, слуховые, обонятельные, осязательные, вкусовые.

Немецкий физиолог и психофизикЭрнст Вебер(1795-1878) расширил аристотелевскую классификацию, предложив разделить осязание на: чувство прикосновения, чувство веса, температурное чувство.

Кроме этого, он выделил особую группу чувств: чувство боли, чувство равновесия, чувство движения, чувство внутренних органов.

Классификация немецкого физика, физиолога, психологаГермана Гельмгольца(1821-1894) основана на категориях модальности, фактически эта классификация - также расширение классификации Аристотеля. Поскольку модальности выделяются по соответствующим органам чувств, например, сенсорные процессы, связанные с глазом, относятся к зрительной модальности; сенсорные процессы, связанные со слухом - к слуховой модальности, и т.д. В современной модификации этой классификации используется дополнительное понятие субмодальности, например, в такой модальности, как кожное чувство, различают субмодальности: механические, температурные и болевые. Аналогично, внутри зрительной модальности выделяют субмодальности ахроматические и хроматические.

Немецкий психолог, физиолог, философВильгельм Вундт(1832-1920)считается родоначальникомклассификации сенсорных систем на основе типа энергии адекватного раздражителя для соответствующих рецепторов: физические (зрение, слух); механические (осязание); химические (вкус, обоняние).

Эта идея не получила широкого развития, хотя была использована И.П.Павловым для разработки принципов физиологической классификации.

Классификация ощущений выдающегося русского физиолога Ивана Петровича Павлова (1849-1936) опирается на физико-химические характеристики раздражителей. Для определения качества каждого из анализаторов он использовал физико-химические характеристики сигнала. Отсюда наименования анализаторов: световые, звуковые, кожно-механические, запаховые и т.д., а не зрительный, слуховой и т.п., как обычно классифицировались анализаторы.

Рассмотренные выше классификации не позволяли отразить разноуровневый характер разных видов рецепций, одни из которых являются более ранними и низшими по уровню развития, а другие - более поздними и более дифференцированными. Представления о разноуровневой принадлежности тех или иных сенсорных систем связаны с разработанной Г.Хэдом моделью кожных рецепций человека.

Английский невролог и физиологГенри Хэд(1861-1940)в 1920 г.предложил генетический принцип классификации. Он различал протопатическую чувствительность (низшую) и эпикритическую чувствительность (высшую).

В качестве эпикритической, или дискриминативной, чувствительности высшего уровня была выделена тактильная чувствительность; а протопатической чувствительности, архаического, низшего уровня - болевая. Он доказал, что протопатические и эпикритические компоненты могут быть как присущи различным модальностям, так и иметь место внутри одной модальности. Более молодая и совершенная эпикритическая чувствительность позволяет точно локализовать объект в пространстве, она дает объективные сведения о явлении. Например, осязание позволяет точно определить место прикосновения, а слух - определить направление, в котором раздался звук. Относительно древние и примитивные ощущения не дают точной локализации ни во внешнем пространстве, ни в пространстве тела. Например, органическая чувствительность - чувство голода, чувство жажды и т.п. Их характеризует постоянная аффективная окрашенность, и они отражают скорее субъективные состояния, чем объективные процессы. Соотношение протопатических и эпикритических компонентов в различных видах чувствительности оказываются различными.

Алексей Алексеевич Ухтомский(1875-1942), выдающийся русский физиолог, один из основателей физиологической школы Санкт-Петербургского университета,также применял генетический принцип классификации. Высшие рецепции по Ухтомскому - слух, зрение, которые находятся в постоянном взаимодействии с низшими, благодаря чему они совершенствуются и развиваются. Например, генезис зрительной рецепции заключается в том, что сначала осязательная рецепция переходит в осязательно-зрительную, а затем - в чисто зрительную рецепцию.

Английский физиологЧарльз Шеррингтон(1861-1952) в 1906 г. разработал классификацию, учитывающую место расположения рецептирующих поверхностей и выполняемую ими функцию:

1.Экстероцепция (внешняя рецепция): а) контактная; б) дистантная; в) контактно-дистантная;

2. Проприоцепция (рецепция в мышцах, связках и т.д.): а)статическая; б)кинестетическая.

3. Интероцепция (рецепция внутренних органов).

Системная классификация Ч.Шеррингтона разделила все сенсорные системы на три основных блока.

Первый блок - экстероцепция, которая доводит до человека информацию, поступающую из внешнего мира и являются основной рецепцией, связывающей человека с внешним миром. Именно к ней относятся: зрение, слух, осязание, обоняние, вкус. Вся экстероцепция разделена на три подгруппы: контактная, дистантная и контактно-дистантная.

Контактная экстероцепция осуществляется при воздействии раздражителя непосредственно на поверхность тела или соответствующие рецепторы. Типичным примером могут служить сенсорные акты прикосновения и давления, осязания, вкуса.

Дистантная экстероцепция осуществляется без непосредственного контакта раздражителя с рецептором. При этом источник раздражения находится на некотором расстоянии от рецептирующей поверхности соответствующего органа чувств. К ней относятся зрение, слух, обоняние.

Контактно-дистантная экстероцепция осуществляется как при непосредственном контакте с раздражителем, так и дистантно. К ней относятся температурные, кожно-болевые. вибрационные сенсорные акты.

Второй блок составляет проприоцепция, которая доводит до человека информацию о положении его тела в пространстве и состоянии его опорно-двигательного аппарата. Вся проприоцепция разделена на две подгруппы: статическую и кинестетическую рецепцию.

Статическая рецепция сигнализирует о положения тела в пространстве и равновесии. Рецепторные поверхности, сообщающие об изменении положения тела в пространстве, заложены в полукружных каналах внутреннего уха.

Кинестетическая рецепция сигнализирует о состоянии движения (кинестезии) отдельных частей тела относительно друг друга, и положений опорно-двигательного аппарата. Рецепторы кинестетической, или глубокой, чувствительности находятся в мышцах и суставных поверхностях (сухожилиях, связках). Возбуждения, возникающие при растяжении мышц, изменении положения суставов, вызывают кинестетическую рецепцию.

Третий блок включает интероцепцию, сигнализирующую о состоянии внутренних органов человека. Данные рецепторы находятся в стенках желудка, кишечника, сердца, кровеносных сосудов и других висцеральных образований. Интероцептивными являются чувство голода, жажды, половые ощущения, ощущения недомогания и т.п.

Современные авторы используют дополненную классификацию Аристотеля, различая рецепцию: прикосновения и давления, осязания, температурную, болевую, вкусовую, обонятельную, зрительную, слуховую, положения и движения (статические и кинестетические) и органическую (голод, жажда, половые ощущения, болевые, ощущения внутренних органов и т.д.), структурируя ее классификацией Ч.Шеррингтона. Уровни организации сенсорных систем базируются на генетическом принципе классификации Г.Хэда.

1.3 Чу вствительность сенсорных систем

Чувствительность - способность органов чувств реагировать на появление раздражителя или его изменение, т.е. способность к психическому отражению в форме сенсорного акта.

Различают абсолютную и дифференциальную чувствительность. Абсолютная чувствительность - способность воспринимать раздражители минимальной силы (обнаружение). Дифференциальная чувствительность - способность воспринимать изменение раздражителя или различение близких раздражителей в пределах одной модальности.

Чувствительностьизмеряется или определяется силой раздражителя, которая в данных условиях оказывается способной вызвать ощущение. Ощущение - есть активный психический процесс частичного отражения предметов или явлений окружающего мира, а также внутренних состояний организма, в сознании человека при непосредственном воздействии раздражителей на органы чувств.

Минимальной силой раздражителя, способной вызвать ощущение, определяется нижний абсолютный порог ощущения. Раздражители меньшей силы называются подпороговыми. Нижний порог ощущений определяет уровень абсолютной чувствительности данного анализатора. Чем меньше величина порога, тем выше чувствительность.

где Е - чувствительность, Р - пороговая величина раздражителя.

Величина абсолютного порога зависит от возраста, характера деятельности, функционального состояния организма, силы и длительности действующего раздражителя.

Верхний абсолютный порог ощущения - определяется максимальной силой раздражителя, вызывающей ещё характерное для данной модальности ощущение. Существуют надпороговые раздражители. Они вызывают болевые ощущения и разрушение рецепторов анализаторов, на которые действует надпороговая стимуляция. Минимальное различие между двумя раздражителями, вызывающее различные ощущения в одной модальности, определяет разностный порог, или порог различения. Разностная чувствительность обратно пропорциональна порогу различения.

Французский физик П.Бугер в 1729 г. пришел к выводу о том, что разностный порог зрительного восприятия прямо пропорционален его исходному уровню. Через 100 лет после П.Бугера немецкий физиолог Эрнст Вебер установил, что эта закономерность характерна и для других модальностей. Таким образом, был найден очень важный психофизический закон, который был назван законом Бугера-Вебера.

Закон Бугера-Вебера:

где?I - разностный порог, I - исходный раздражитель.

Отношение разностного порога к величине исходного раздражителя является величиной постоянной и называется относительным разностным или дифференциальным порогом.

Согласно закону Бугера-Вебера, дифференциальный порог есть некоторая постоянная часть величины исходного раздражителя, на которую он должен быть увеличен или уменьшен для того, чтобы получить едва заметное изменение ощущения. Величина дифференциального порога зависит от модальности ощущения. Для зрения она примерно 1/100, для слуха 1/10, для кинестезии 1/30 и т.д.

Величина, обратная дифференциальному порогу, называется дифференциальной чувствительностью. Последующие исследования показали, что закон справедлив только для средней части динамического диапазона сенсорной системы, где дифференциальная чувствительность максимальна. Пределы этой зоны различны для различных сенсорных систем. За пределами этой зоны дифференциальный порог возрастает, иногда очень значительно, особенно при приближении к абсолютному нижнему или верхнему порогу.

Немецкий физик, психолог и философ Густав Фехнер (1801-1887), основатель психофизики как науки о закономерной связи физических и психических явлений, используя ряд найденных к тому времени психофизических закономерностей, в том числе закон Бугера-Вебера, сформулировал следующий закон.

Закон Фехнера:

где S - интенсивность ощущения, i - сила раздражителя, К - константа Бугера-Вебера.

Интенсивность ощущений пропорциональна логарифму силы действующего раздражителя , то есть ощущение изменяется гораздо медленнее, чем растет сила раздражения.

По мере увеличения интенсивности сигнала для того, чтобы разницы между единицами измерения ощущений (S) оставались равными, требуется все более значительная разница между единицами измерения интенсивности (i). Иными словами, в то время как ощущение увеличивается равномерно (в арифметической прогрессии), соответствующее увеличение интенсивности сигнала происходит физически неравномерно, но пропорционально (в геометрической прогрессии). Связь между величинами, одна из которых изменяется в арифметической прогрессии, а вторая - в геометрической, выражается логарифмической функцией.

Закон Фехнера получил в психологии название основного психофизического закона.

Закон Стивенса (степенной закон) - вариант основного психофизического закона, предложенный американским психологом Стэнли Стивенсом (1906-1973), и устанавливающий степенную, а не логарифмическую зависимость между интенсивностью ощущения и силой раздражителей:

где S - интенсивность ощущения, i - сила раздражителя, k - константа, зависящая от единицы измерения, n - показатель степени функции. Показатель nстепенной функции различен для ощущений разных модальностей: пределы его вариации от 0,3 (для громкости звука) до 3,5 (для силы электрического удара).

Сложность обнаружения порогов и фиксации изменения интенсивности ощущения является объектом исследования и в настоящее время. Современные исследователи, занимающиеся изучением обнаружения сигналов различными операторами, пришли к выводу о том, что сложность этого сенсорного действия заключается не просто в невозможности воспринять сигнал из-за его слабости, а в том, что он всегда присутствует на фоне маскирующих его помех или «шума». Источники этого «шума» многочисленны. Среди них посторонние раздражители, спонтанная активность рецепторов и нейронов в ЦНС, изменение ориентации рецептора относительно раздражителя, колебания внимания и другие субъективные факторы. Действие всех этих факторов приводит к тому, что испытуемый зачастую не может с полной уверенностью сказать, когда сигнал предъявлялся, и когда его не было. В результате сам процесс обнаружения сигнала приобретает вероятностный характер. Эта особенность возникновения ощущений околопороговой интенсивности учитывается в ряде созданных в последнее время математических моделей, описывающих эту сенсорную деятельность.

1.4 Изменчивость чувствительности

Чувствительность анализаторов, определяемая величиной абсолютных и разностных порогов, не постоянна и может изменяться. Эта изменчивость чувствительности зависит как от условий внешней среды, так и от ряда внутренних физиологических и психологических условий. Выделяют две основные формы изменения чувствительности:

1) сенсорная адаптация - изменение чувствительности под влиянием внешней среды;

2) сенсибилизация - изменение чувствительности под влиянием внутренней среды организма.

Сенсорная адаптация - приспособление организма к действиям окружающей среды благодаря изменению чувствительности под влиянием действующего раздражителя. Различают три вида адаптации:

1. Адаптация как полное исчезновение ощущения в процессе продолжительного действия раздражителя. В случае действия постоянных раздражителей ощущение имеет тенденцию к угасанию. Например, одежда, часы на руке, вскоре перестают ощущаться. Обычным фактом является и отчетливое исчезновение обонятельных ощущений вскоре после того, как мы попадаем в атмосферу с каким-либо устойчивым запахом. Интенсивность вкусового ощущения ослабевает, если соответствующее вещество в течение некоторого времени держать во рту.

И, наконец, ощущение может угаснуть совсем, что связано с постепенным повышением нижнего абсолютного порога чувствительности до уровня интенсивности постоянно действующего раздражителя. Явление характерно для всех модальностей, кроме зрительной.

Полной адаптации зрительного анализатора при действии постоянного и неподвижного раздражителя в обычных условиях не наступает. Это объясняется компенсацией постоянного раздражителя за счет движений самого рецепторного аппарата. Постоянные произвольные и непроизвольные движения глаз обеспечивают непрерывность зрительного ощущения. Эксперименты, в которых искусственно создавались условия стабилизации изображения относительно сетчатки глаз, показали, что при этом зрительное ощущение исчезает спустя 2--3 секунды после его возникновения.

2. Адаптация как притупление ощущения под действием сильного раздражителя. Резкое снижение ощущения с последующим восстановлением - охранная адаптация.

Так, например, когда мы из полутемной комнаты попадаем в ярко освещенное пространство, то сначала бываем ослеплены и не способны различать вокруг какие-либо детали. Через некоторое время чувствительность зрительного анализатора восстанавливается, и мы начинаем нормально видеть. То же происходит, когда мы попадаем в ткацкий цех и первое время кроме грохота станков мы не можем воспринимать речь и другие звуки. Через некоторое время способность слышать речь и другие звуки восстанавливается. Это объясняется резким повышением нижнего абсолютного порога и порога различения с последующим восстановлением этих порогов в соответствии с интенсивностью действующего раздражителя.

Описанные 1 и 2 вид адаптации можно объединить общим термином «негативная адаптация», так как результатом их является общее снижение чувствительности. Но «негативная адаптация» не является «плохой» адаптацией, так как является приспособлением к интенсивности действующих раздражителей и способствует предотвращению разрушения сенсорных систем.

3. Адаптация как повышение чувствительности под влиянием слабого раздражителя (снижение нижнего абсолютного порога). Этот вид адаптации, свойственный некоторым видам ощущений, можно определить как позитивную адаптацию.

В зрительном анализаторе это темновая адаптация, когда увеличивается чувствительность глаза под влиянием пребывания в темноте. Аналогичной формой слуховой адаптации является адаптация к тишине. В температурных ощущениях позитивная адаптация обнаруживается тогда, когда предварительно охлажденная рука чувствует тепло, а предварительно нагретая -- холод при погружении в воду одинаковой температуры.

Исследования показали, что одни анализаторы обнаруживают быструю адаптацию, другие -- медленную. Например, тактильные рецепторы адаптируются очень быстро. Сравнительно медленно адаптируется зрительный рецептор (время темновой адаптации достигает нескольких десятков минут), обонятельный и вкусовой.

Явление адаптации можно объяснить теми периферическими изменениями, которые происходят в функционировании рецептора по влиянием прямой и обратной связи с ядром анализатора.

Адаптационное регулирование уровня чувствительности в зависимости от того, какие раздражители (слабые или сильные) воздействуют на рецепторы, имеет огромное биологическое значение. Адаптация помогает посредством органов чувств улавливать слабые раздражители и предохраняет органы чувств от чрезмерного раздражения в случае необычайно сильных воздействий.

Итак, адаптация является одним из важнейших видов изменения чувствительности, указывающим на большую пластичность организма в его приспособлении к условиям среды.

Другим видом изменения чувствительности является сенсибилизация. Процесс сенсибилизации отличается от процесса адаптации тем, что в процессе адаптации чувствительность меняется в обоих направлениях - то есть повышается или понижается, а в процессе сенсибилизации - только в одном направлении, а именно, повышении чувствительности. Кроме того, изменение чувствительности при адаптации зависит от условий окружающей среды, а при сенсибилизации - преимущественно от процессов, протекающих в самом организме, как физиологических, так и психических. Таким образом, сенсибилизация - это повышение чувствительности органов чувств под влиянием внутренних факторов.

Различают два основных направления повышения чувствительности по типу сенсибилизации. Одно из них носит длительный постоянный характер и зависит преимущественно от устойчивых изменений, происходящих в организме, второе носит непостоянный характер и зависит от временных воздействий на организм.

К первой группе факторов, меняющих чувствительность, относятся: возраст, эндокринные сдвиги, зависимость от типа нервной системы, общее состояние организма, связанное с компенсацией сенсорных дефектов.

Исследования показали, что острота чувствительности органов чувств нарастает с возрастом, достигая своего максимума к 20-30 годам, с тем, чтобы в дальнейшем постепенно снижаться.

Существенные особенности функционирования органов чувств зависят от типа нервной системы человека. Известно, что люди, обладающие сильной нервной системой, обнаруживают большую выносливость и меньшую чувствительность, а люди со слабой нервной системой при меньшей выносливости обладают большей чувствительностью.

Очень большое значение для чувствительности имеет эндокринный баланс в организме. Например, при беременности обонятельная чувствительность резко обостряется, тогда как зрительная и слуховая чувствительность падает.

К повышению чувствительности приводит компенсация сенсорных дефектов. Так, например, утрата зрения или слуха в известной мере компенсируется обострением других видов чувствительности. У людей, лишенных зрения, высоко развито осязание, они способны читать руками. Этот процесс чтения руками носит специальное название - гаптика. У людей лишенных слуха, сильно развивается вибрационная чувствительность. Например, великий композитор Людвиг Ван Бетховен в последние годы жизни, когда он лишился слуха, использовал именно вибрационную чувствительность для прослушивания музыкальных произведений.

Ко второй группе факторов, меняющих чувствительность, можно отнести фармакологические воздействия, условно-рефлекторное повышение чувствительности, влияние второй сигнальной системы и установки, общее состояние организма, связанное с утомлением, а также взаимодействие ощущений.

Существуют вещества, вызывающие отчетливое обострение чувствительности. К таковым относится, например, адреналин, применение которого вызывает возбуждение вегетативной нервной системы. Аналогичное действие, обостряющее чувствительность рецепторов, может иметь фенамин и ряд других фармакологических средств.

К условно-рефлекторному повышению чувствительности можно отнести ситуации, в которых присутствовали предвестники угрозы функционирования организма человека, закрепленные в памяти предыдущими ситуациями. Например, резкое обострение чувствительности наблюдается у членов оперативных групп, участвовавших в боевых действиях, при проведении последующих боевых операций. Вкусовая чувствительность обостряется при попадании человека в обстановку, сходную с той, в которой он ранее участвовал в обильном и приятном застолье.

Повышение чувствительности анализатора может быть вызвано и воздействием второсигнальных раздражителей. Например: изменение электрической проводимости глаз и языка в ответ на слова «кислый лимон», что в действительности и происходит при непосредственном воздействии сока лимона.

Обострение чувствительности наблюдается также под влиянием установки. Так, слуховая чувствительность резко повышается при ожидании важного телефонного звонка.

Изменения чувствительности наступают и в состоянии утомления. Утомление сначала вызывает обострение чувствительности, то есть человек начинает обостренно ощущать не связанные с основной деятельностью посторонние звуки, запахи и т.д., а затем при дальнейшем развитии утомления происходит снижение чувствительности.

Изменение чувствительности может быть вызвано и взаимодействием разных анализаторов.

Общая закономерность взаимодействия анализаторов заключается в том, что слабые ощущения вызывают повышение, а сильные - понижение чувствительности анализаторов при их взаимодействии. Физиологические механизмы в данном случае, лежащие в основе сенсибилизации. - это процессы иррадиации и концентрации возбуждения в коре головного мозга, где и представлены центральные отделы анализаторов. По Павлову, слабый раздражитель вызывает в коре больших полушарий процесс возбуждения, который легко иррадиирует (распространяется). В результате иррадиации повышается чувствительность других анализаторов. При действии сильного раздражителя возникает процесс возбуждения, вызывающий, наоборот, процесс концентрации, что приводит к торможению чувствительности других анализаторов и понижению их чувствительности.

При взаимодействии анализаторов могут возникнуть межмодальные связи. Примером этому явлению может служить факт возникновения панического страха при воздействии звука сверхнизких частот. Это же явление подтверждается, когда человек чувствует воздействие радиации или чувствует взгляд в спину.

Произвольное повышение чувствительности может быть достигнуто в процессе целенаправленной тренировочной деятельности. Так, например, опытный токарь в состоянии «на глаз» определить миллиметровые размеры мелких деталей, дегустаторы различных вин, духов и т.п., даже обладая неординарными врожденными способностями, чтобы стать настоящими мастерами своего дела, вынуждены годами тренировать чувствительность своих анализаторов.

Рассмотренные виды изменчивости чувствительности не существуют изолированно именно потому, что анализаторы находятся в постоянном взаимодействии друг с другом. С этим связано парадоксальное явление синестезии.

Синестезия - возникновение под влиянием раздражения одного анализатора ощущения, характерного для другого (например: холодный свет, теплые цвета). Это явление широко используется в искусстве. Известно, что способностью «цветного слуха» обладали некоторые композиторы, в том числе Александр Николаевич Скрябин, которому принадлежит первое в истории цветомузыкальное произведение - симфония «Прометей», представленная в 1910 году и включающая партию света. Литовский живописец и композитор Чюрлёнис Миколоюс Константинас (1875-1911) известен своими символическими картинами, в которых он отразил зрительные образы своих музыкальных произведений - «Соната Солнца», «Соната весны», «Симфония моря» и др.

Явление синестезии характеризует постоянную взаимосвязь сенсорных систем организма и целостность чувственного отражения мира.

Размещено на Allbest.ru

Подобные документы

    Структурная сложность ощущений человека. Основные виды ощущений. Понятие сенсора и сенсорных систем. Органы чувств человека. Понятие адаптации в современной психологии. Взаимодействие ощущений, сенсибилизация, синестезия, закон Вебера-Фехнера.

    презентация , добавлен 09.05.2016

    Формирование отечественной нейропсихологии как самостоятельной науки. Сенсорные и гностические зрительные, кожно-кинестетические и слуховые расстройства. Зрительные, тактильные и слуховые агнозии. Слуховой анализатор, сенсорные слуховые расстройства.

    реферат , добавлен 13.10.2010

    Понятие об ощущении и его физиологической основе. Виды и классификация ощущений: зрительные, слуховые, вибрационные, обонятельные, вкусовые, кожные и другие. Определение восприятия как психологического процесса, его свойства. Виды и способы мышления.

    реферат , добавлен 27.11.2010

    Сенсорные системы человека, степень их развития, роль и место в формировании поведения человека. Свойства сенсорных систем и регуляция их деятельности. Эмоции как элемент жизни человека, их психологическая сущность и влияние на поведение личности.

    контрольная работа , добавлен 14.08.2009

    Классификация и основные свойства восприятия человека. Система сенсорных эталонов. Абсолютная чувствительность и чувствительность к различению. Овладение средствами и способами восприятия в раннем детстве. Психологические основы сенсорного воспитания.

    контрольная работа , добавлен 11.01.2014

    Становление психофизиологии как одной из ветвей нейронауки. Понятие сенсорных систем, их основные функции и свойства, адаптация и взаимодействие. Физиологические основы сновидений и причина сомнамбулизма. Психофизиология творческой деятельности и речи.

    шпаргалка , добавлен 21.06.2009

    Пять сенсорных систем и функция формирования представлений о мире. Характеристики репрезентативных систем. Аудиально, визуально, кинестестически сфокусированные люди. Предикаты, их роль при установлении раппорта с людьми. Подстройка и предикативные фразы.

    курсовая работа , добавлен 19.04.2009

    Использование в психофизиологических исследованиях реакций, определяемых функционированием сенсорных систем, двигательной системы. Субъективное восприятие длительности временных интервалов. Критическая частота мельканий. Рефлексометрия и зрительный поиск.

    контрольная работа , добавлен 15.02.2016

    Предмет и задачи. История развития. Методы исследования. Потребности и мотивации. Эволюция сенсорных систем. Безусловный рефлекс. Инстинкты, их характеристика и видовые особенности. Пластичность инстинктивного поведения. Импринтинг и его роль.

    шпаргалка , добавлен 01.03.2007

    Общее представление о природе внушения. Аутогенная тренировка. Методы суггестии в человеческих взаимоотношениях. Действия эффекта Барнума. Гипноз, как проявление внушающего поведения. Постгипнотическое внушение и процессы порождения сенсорных образов.

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Загрузка...