Медицинский портал. Щитовидная железа, Рак, диагностика

Станция катодной защиты газопровода принцип работы. Электрохимическая защита трубопроводов от коррозии

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс - с анодным заземлением (электрический метод).

Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой. В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д. протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений - это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности. На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты. Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины. Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве. Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод - почвенный электролит - трубопровод - катодный кабель - источник постоянного тока - анодный кабель. В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением. Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга - контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж - созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

М. Иванов, к. х. н.

Коррозия металлов, особенно железа и нелегированной стали, наносит большой вред аппаратам и трубопроводам, эксплуатируемым в условиях контакта с водой и воздухом. Это приводит к снижению сроков службы оборудования и дополнительно создает условия для загрязнения воды продуктами коррозии.

Подписаться на статьи можно на

Как известно, коррозия является электрохимическим процессом, при котором происходит окисление металла, то есть отдача его атомами электронов. Этот процесс осуществляется в микроскопической части поверхности, называемой анодной областью. Он приводит к нарушению целостности металла, атомы которого вступают в химические реакции, особенно активно - в присутствии кислорода воздуха и влаги.

Поскольку металлы хорошо проводят электрический ток, высвобожденные электроны свободно перетекают в другую микроскопическую область, где в присутствии воды и кислорода происходят восстановительные реакции. Такую область называют катодной.

Протеканию электрохимической коррозии можно противодействовать, произведя за счет приложения напряжения от внешнего источника постоянного тока сдвиг электродного потенциала металла до значений, при которых процесс коррозии не происходит.

На основе этого построены системы катодной защиты подземных трубопроводов, резервуаров и других металлических сооружений. В случае приложения к защищаемому металлу электрического потенциала на всей поверхности металлической конструкции устанавливаются такие значения потенциала, при которых могут протекать только восстановительные катодные процессы: например, катионы металла будут принимать электроны и превращаться в ионы более низкой степени окисления или нейтральные атомы.

Технически метод катодной защиты металлов осуществляется следующим образом (рис. 1 ). К защищаемой металлической конструкции, например стальному трубопроводу, подводится провод, который соединяют с отрицательным полюсом катодной станции, в результате этого трубопровод становится катодом. На некотором расстоянии от металлической конструкции в грунте располагается электрод, который с помощью провода соединяется с положительным полюсом и становится анодом. Разность потенциалов между катодом и анодом создают таким образом, чтобы полностью исключить протекание окислительных процессов на защищаемой конструкции. В этом случае через влажную почву между катодом и анодом в толще грунта будут протекать слабые токи. Для эффективной защиты требуется размещение нескольких анодных электродов по всей длине трубопровода. Если удается снизить разность потенциалов защищаемой конструкции и грунта до 0,85-1,2 В, то скорость протекания коррозии трубопровода уменьшается до существенно малых значений.

Итак, система катодной защиты включает в себя источник постоянного электрического тока, контрольно-измерительный пункт и анодное заземление. Обычно станция катодной защиты состоит из трансформатора переменного тока и диодного выпрямителя. Как правило, ее питание осуществляется от сети напряжением 220 В; существуют также станции, питаемые от линий высокого (6-10 кВ) напряжения.

Для эффективной работы катодной станции создаваемая ею разность потенциалов катода и анода должна быть не менее 0,75 В. В некоторых случаях для успешной защиты достаточно порядка 0,3 В. В то же время в качестве технических параметров станций катодной защиты используются величины номинальных значений выходного тока и выходного напряжения. Так, обычно номинальное выходное напряжение станций составляет от 20 до 48 В. При большом расстоянии между анодом и защищаемым объектом требуемое значение выходного напряжения станции достигает 200 В.

В качестве анодов применяют вспомогательные инертные электроды. Анодные заземлители, например модели АЗМ-3Х производства ЗАО «Катодъ» (пос. Развилка, Московская обл.), представляют собой отливки из коррозионно-стойкого сплава, снабженные специальным проводом с медной жилой в усиленной изоляции, а также герметизированной муфтой для присоединения к магистральному кабелю станции катодной защиты. Рациональнее всего использовать заземлители в средах высокой и средней коррозийной активности при удельном сопротивлении грунта до 100 Ом.м. Для оптимального распределения напряженности поля и плотности тока по корпусу оборудования вокруг анодов располагают специальные экраны в виде засыпки из угля или кокса.

Для оценки эффективности работы станции катодной защиты необходима система, которая состоит из измерительного электрода и электрода сравнения и является основной частью контрольно-измерительного пункта. На основании показаний данных электродов производится регулирование разности потенциалов катодной защиты.

Измерительные электроды изготавливают из высоколегированной стали, кремнистого чугуна, платинированной латуни или бронзы, а также меди. Электроды сравнения - хлорсеребряные или сульфатно-медные. По своему конструктивному исполнению электроды сравнения могут быть погружными или выносными. Состав раствора, используемого в них, должен быть близким к составу среды, от вредного воздействия которой требуется защитить оборудование.

Можно отметить биметаллические электроды сравнения длительного действия типа ЭДБ, разработанные ВНИИГАЗом (Москва). Они предназначены для измерения разности потенциалов между подземным металлическим объектом (включая трубопровод) и землей для управления станцией катодной защиты в автоматическом режиме в условиях большой нагрузки и на значительной глубине, то есть там, где другие электроды не могут обеспечить постоянное поддержание заданного потенциала.

Оборудования для катодной защиты поставляется, в основном, отечественными производителями. Так, упомянутое ЗАО «Катодъ» предлагает станцию «Минерва-3000» (рис. 2 ), предназначенную для защиты магистральных водопроводных сетей. Ее номинальная выходную мощность - 3,0 кВт, выходное напряжение - 96 В, сила тока защиты - 30 А. Точность поддержания защитного потенциала и величины тока соответственно составляет 1 и 2 %. Величина пульсации - не более 1 %.

Другой российский производитель - ОАО «Энергомера» (Ставрополь) - поставляет модули марок МКЗ-М12, ПНКЗ-ППЧ-М10 и ПН-ОПЕ-М11, обеспечивающие эффективную катодную защиту подземных металлических сооружений в зонах высокой коррозионной опасности. Модуль МКЗ-М12 имеет номинальный ток 15 или 20 А; номинальное выходное напряжение - 24 В. Для моделей МКЗ-М12-15-24-У2 выходное напряжение составляет 30 В. Точность поддержания защитного потенциала достигает ±0,5 %, заданного тока ±1 %. Технический ресурс - 100 тыс. ч, а срок службы - не менее 20 лет.

ООО «Электронные технологии» (Тверь) предлагает станции катодной защиты «Тверца» (рис. 3 ), комплектуемые встроенным микропроцессором и телемеханической системой дистанционного управления. Контрольно-измерительные пункты оборудованы неполяризующимися электродами сравнения длительного действия с датчиками электрохимического потенциала, обеспечивающими измерение поляризационных потенциалов на трубопроводе. В состав этих станций включены также регулируемый источник катодного тока и блок датчиков электрических параметров цепи, который через контроллер соединен с устройством дистанционного доступа. Трансформатор данной станции выполнен на основе ферритовых сердечников типа Epcos. Используется также система управления преобразователем напряжения на основе микросхемы типа UCC 2808A.

Компания «Курс-ОП» (Москва) выпускает станции катодной защиты «Элкон», напряжение на выходе которых изменяется в диапазоне от 30 до 96 В, а выходной ток - в диапазоне от 20 до 60 А. Пульсации выходного напряжения - не более 2 %. Эти станции предназначены для защиты от почвенной коррозии однониточных, а с применением блока совместной защиты и многониточных трубопроводов в зонах отсутствия блуждающих токов в условиях умеренного климата (от -45 до +40 °С). В состав станций входят однофазный силовой трансформатор, преобразователь со ступенчатым регулированием выходного напряжения, высоковольтная аппаратура, двухполюсный разъединитель с ручным приводом и ограничители перенапряжений.

Можно также отметить установки катодной защиты серии НГК-ИПКЗ производства ООО «НПФ «Нефтегазкомплекс ЭХЗ» (Саратов), максимальный ток на выходе из которых составляет 20 или 100 А, а номинальное выходное напряжение - 48 В.

Один из поставщиков станций катодной защиты из стран СНГ - фирма «Гофман Электрик Технолоджис» (Харьков, Украина), предлагающая оборудование для электрохимической защиты от почвенной коррозии магистральных трубопроводов.

А.И. Хейфец, начальник службы электрохимической защиты,
ОАО «Теплосеть Санкт-Петербурга», г. Санкт-Петербург

Введение

Защита трубопроводов тепловых сетей от коррозии является очень важной задачей, от решения которой во многом зависит надежность работы всей системы централизованного теплоснабжения. В г. Санкт-Петербург превалируют тепловые сети подземной прокладки, которые эксплуатируются в коррозионно-опасных условиях, обусловленных как густой сетью подземных коммуникаций большой протяженности и развитым электрифицированным транспортом, так и насыщенностью почв и грунтов влагой и химическими реагентами. Существует два основных способа защиты металлов от коррозии: пассивный - это нанесение на их поверхность изоляционных покрытий и активный - это использование средств электрохимической защиты.

Немного теории

Металлические сооружения, эксплуатируемые в различных средах (в атмосфере, воде, почве), подвергаются разрушающему воздействию этой среды. Разрушение металла вследствие его взаимодействия с внешней средой называется коррозией. Сутью коррозионного процесса является удаление атомов из металлической решетки, которое может происходить двумя путями, поэтому и различают коррозию просто химическую и электрохимическую.

Коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Процесс проходит без участия свободных электронов и не сопровождается появлением электрического тока. Примером может служить образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом.

Коррозия является электрохимической, если при выходе из металлической решетки положительно заряженный ион металла, т.е. катион, вступает в связь не с окислителем, а с другими компонентами коррозионной среды, окислителю же передаются электроны, освобождающиеся при образовании катиона. При электрохимической коррозии удаление атомов из металлической решетки осуществляется в результате не одного, как при химической коррозии, а двух независимых, но сопряженных между собой электрохимических процессов: анодного (переход «захваченных» катионов металла в раствор) и катодного (связывание окислителем освободившихся электронов). Окислителями служат ионы водорода, которые есть везде, где присутствует вода, и молекулы кислорода. Электрохимическая коррозия сопровождается появлением электрического тока.

Трубопроводы тепловых сетей являются протяженными объектами и различные их участки оказываются не в равных условиях с точки зрения развития коррозионных процессов. Почвы и грунты по-разному впитывают в себя атмосферные осадки, талые воды, обладают различной воздухопроницаемостью. Удельное электрическое сопротивление грунтов тоже разное; именно его значение (чем ниже, тем опаснее) характеризует коррозионную агрессивность среды. В результате вдоль поверхности трубопроводов образуются участки, где преимущественно осуществляются либо анодные, либо катодные реакции. Электрическая проводимость металла очень высока, электроны практически мгновенно перераспределяются от мест протекания анодной реакции к местам, где протекает катодная (рис. 1). По сути, возникают подобия гальванических элементов, батареек, в которых роль электролита играет грунт, а внешней цепью является подземное металлическое сооружение. Анодные зоны - это положительный электрод («+»), а катодные зоны - это отрицательный электрод («-»). При протекании электрического тока в анодных зонах непрерывно происходит выход атомов из металлической решетки во внешнюю среду, т.е. растворение металла.

Особую опасность для трубопроводов тепловых сетей представляют блуждающие токи, которые возникают вследствие утечки из транспортных электрических цепей части тока в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду возникает анодное растворение металла. Такие зоны особенно часто наблюдаются в районах наземного электрического транспорта. Коррозию под действием блуждающих токов иногда называют электрической коррозией. Такие токи могут достигать величины в несколько ампер. Для представления: ток силой в 1 А, в соответствии с первым законом Фарадея, вызывает в течение года растворение железа в количестве 9,1 кг. Если ток сосредоточен на участке 1 м 2 , то это соответствует уменьшению толщины стенки трубы на 1,17 мм в год, т.е. за 6 лет она уменьшилась бы на 7 мм.

Принцип действия электрохимической защиты (ЭХЗ) наружной поверхности металла от коррозии основан на том, что, сдвигая потенциал металла пропусканием внешнего электрического тока, можно изменить скорость его коррозии. Зависимость между потенциалом и скоростью коррозии нелинейная и неоднозначная.

ЭХЗ, основанная на наложении катодного тока, носит название катодной защиты. В производственных условиях она реализуется в двух вариантах.

1. В первом варианте необходимый сдвиг потенциала обеспечивается подключением защищаемой конструкции к внешнему источнику напряжения в качестве катода, а в качестве анода используются вспомогательные электроды (рис. 2).

Источником служит регулируемый выпрямитель, который преобразует напряжение промышленной частоты в постоянное, а анодные заземлители объединяются в контур, состав и расположение электродов которого определяются расчетом. В процессе эксплуатации масса электродов контура анодного заземления монотонно уменьшается.

Катодная поляризация неизолированной металлической конструкции до величины минимального защитного потенциала требует значительных токов, поэтому обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность защищаемого сооружения. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. При катодной защите необходимо контролировать и величину максимального потенциала, т.к. его слишком большое значение может привести к отслаиванию изоляционного покрытия от стенки трубопровода. Нормативными документами (Типовая инструкция по защите трубопроводов тепловых сетей от наружной коррозии РД 153-34.0-20.518-2003) установлено, что минимальный защитный потенциал для тепловых сетей равен 1,1 В, а максимальный 2,5 В в отрицательную сторону по отношению к неполяризующемуся медносульфатному электроду сравнения. Такие значения должны быть обеспечены на всем протяжении защищаемого участка, и это достигается тем вернее, чем лучше металл изолирован от земли.

2. Вторым вариантом катодной защиты является гальваническая (или протекторная) защита (рис. 3). Принцип ее действия основан на том, что разные металлы характеризуются различными значениями стандартных электродных потенциалов. Катодная поляризация защищаемой конструкции достигается за счет ее контакта с более электроотрицательным металлом. Последний выступает в роли анода, и его электрохимическое растворение обеспечивает протекание катодного тока через защищаемый металл. Сам же анод, выполненный из магния, цинка, алюминия и их сплавов, постепенно разрушается. Достоинством протекторной защиты является то, что для нее не требуется внешний источник напряжения, но этот вид защиты может использоваться только на сравнительно небольших по протяженности участках трубопроводов (до 60 м), а также на стальных футлярах.

3. Для защиты трубопроводов тепловых сетей от наружной коррозии под действием блуждающих токов применяют электродренаж (дренаж) - соединение металлическим проводником участка, с которого стекают эти токи, с рельсом трамвайных или железнодорожных путей. При большом расстоянии до рельса, когда такой дренаж трудно реализовать, используют дополнительный чугунный анод, который закапывают в землю и соединяют с защищаемым участком.

В местах, где электролитическое действие блуждающих токов складывается с токами гальванических пар, может произойти резкое увеличение скорости коррозионных процессов. В таких случаях применяются установки усиленного дренажа (рис. 4), которые позволяют не только отводить блуждающие токи от трубопроводов, но и обеспечить на них необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным - не к анодному заземлению, а к рельсам электрифицированного транспорта.

4. Сильное коррозионное воздействие на трубопроводы тепловых сетей могут оказывать установки ЭХЗ владельцев смежных подземных коммуникаций, например газопроводов (рис. 5а). Если трубопроводы оказались в зоне действия катодного тока «чужой» установки, то разрушения в местах выхода этого тока из стальной трубы в грунт будут такими же, как и под действием блуждающих токов. Для защиты необходимо соединить трубопроводы тепловых сетей с отрицательным полюсом источника напряжения (рис. 5б).

Сдвигать потенциал металла для защиты его от коррозии можно не только в сторону отрицательных, но и положительных значений. При этом некоторые металлы переходят в пассивное состояние, а ток растворения металла падает в десятки раз. Такая защита называется анодной, ее преимущество в том, что для поддержания пассивного состояния металла требуются малые токи. Однако, если в электролите есть ионы хлора и серы, коррозия металла может резко возрасти и выйти из строя само анодно-поляризованное оборудование. Анодная защита для тепловых сетей не применяется.

ЭХЗ в ОАО «Теплосеть Санкт-Петербурга» эксплуатируется и развивается как система, т.е. совокупность взаимосвязанных составляющих: стационарных технических средств, инструментального контроля и информационной базы данных.

В соответствии с графиками специалисты службы ЭХЗ в плановом порядке проводят по установленной методике коррозионные измерения на всех участках магистральных и распределительных сетей в местах доступа к подземным трубопроводам (тепловые камеры). После обработки результатов измерений определяются анодные и катодные зоны на трубопроводах, зоны защиты, участки опасного воздействия блуждающих токов. Кроме того, коррозионные измерения проводятся при плановых шурфовках и при устранении дефектов на тепловых сетях, где они дополняются результатом химического анализа грунта. Результаты измерений систематизируются и архивируются, они являются ценной информацией как для правильной организации эксплуатации тепломеханического оборудования, так и для планирования строительства дополнительных средств ЭХЗ.

Более подробные и тщательные коррозионные обследования зон залегания теплотрасс проводятся силами специализированной подрядной организации. Эти обследования проводятся на коррозионно-опасных участках обычно после реконструкции (перекладки) тепловых сетей, т.к. применение современных типов изоляции, конструкций и технологий обеспечивает лучшую, чем ранее, гальваническую развязку металла от бетона и от земли. Это означает, в том числе, и возможное изменение границ анодных и катодных зон, участков воздействия блуждающих токов. Результаты обследований представляются в виде отчетов, содержащих сведения об изменениях значений электродных потенциалов на разных участках поверхности трубопроводов при различных режимах работы (рис. 6) не только своих, но и принадлежащих сторонним организациям средств ЭХЗ. Методами математического моделирования (рис. 7) рассчитываются тип, количество и места расположения необходимых дополнительных средств ЭХЗ для дальнейшего проектирования.

В настоящее время ОАО «Теплосеть Санкт- Петербурга» принадлежат 432 установки ЭХЗ, из них: установок катодной защиты - 204 шт. (в том числе установок катодной защиты, относящихся к категории совместной защиты от наружной коррозии трубопроводов тепловых сетей и проложенных рядом газопроводов, - 20 шт.); установок усиленного дренажа - 8 шт.; установок протекторной защиты - 220 шт. Техническим обслуживанием установок катодной совместной защиты занимается ОАО «Антикор».

В соответствии с требованиями нормативных документов (Защита от коррозии. Проектирование электрохимической защиты подземных сооружений. СТО Газпром 2-3.5-047-2006) установки ЭХЗ не должны оказывать негативного влияния на соседние коммуникации. ОАО «Антикор», занимающееся в Санкт-Петербурге электрохимической защитой газопроводов, при реконструкции и новом строительстве своих установок своевременно уведомляет ОАО «Теплосеть Санкт-Петербурга» о технической возможности подключения участков тепловых сетей к ЭХЗ газопроводов, если это предусмотрено проектом.

В процессе эксплуатации всех, кроме дренажных, установок ЭХЗ непрерывно теряется масса их заземленных электродов, т.к. это составляет физическую сущность электрохимической защиты. Неизбежно наступает момент «смерти» контура анодного заземления или протектора. Обеспечить заданный период эксплуатации между капитальными ремонтами установок ЭХЗ можно и нужно правильным расчетом

необходимого числа и места расположения элементов, выбором качественных материалов, строгим соблюдением технологии монтажа. Возможны случаи отказа электродов из-за локальных точечных повреждений. С 2010 г. при реконструкции и новом строительстве нами применяются ферросилидовые анодные заземлители ЭлЖК-1500 с защитой контактного узла вместо прежних ЭГТ-1450. В течение ряда последних лет в установках ЭХЗ применяются только автоматические преобразователи типа УКЗТА и ПКЗ-АР (рис. 8), позволяющие непрерывно поддерживать заданные значения анодного тока или защитного потенциала на трубопроводе.

Особое значение приобрела практика оснащения установок ЭХЗ телеметрическими регистраторами (рис. 9). Эти устройства, изготовленные в виде встраиваемых блоков, непрерывно дистанционно передают информацию о значениях меняющихся во времени электрических величин на выделенный компьютер (рис. 10). Создаются архивы, позволяющие анализировать работу установок ЭХЗ. Кроме того, в системе телеметрии реализована функция сигнализации о несанкционированном доступе посторонних лиц к установкам.

Стоит отметить, что перед началом строительно-монтажных работ подрядчик извещает о дате начала работ заказчика, проектную организацию, организацию, осуществляющую технический надзор за строительством, и организацию, на обслуживание которой будут передаваться строящиеся защитные установки.

Электрохимической защитой тепловых сетей от наружной коррозии на нашем предприятии занимаются с 1960 г., т.е. более 50 лет. В разные годы специалисты по ЭХЗ входили в состав различных производственных подразделений, а после образования в 2010 г. ОАО «Теплосеть Санкт-Петербурга» была создана отдельная служба ЭХЗ. На сегодняшний день в ее составе 13 чел., которые решают технические и организационные задачи.

К техническим задачам относятся: ежедневные объезды двух бригад электромонтеров по заданным маршрутам установок ЭХЗ с проведением технического обслуживания. Одновременно при этом контролируется, не ведутся ли сторонними организациями без правильного оформления земляные работы в зоне наших установок.

Техническое обслуживание установок ЭХЗ включает:

■ осмотр всех элементов установки с целью выявления внешних дефектов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений;

■ проверку исправности предохранителей (если они имеются);

■ очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

■ измерение тока и напряжения на выходе преобразователя или между гальваническими анодами (протекторами) и трубами;

■ измерение потенциала трубопровода в точке подключения установки;

■ производство записи в журнале установки о результатах выполненной работы;

■ измерения потенциалов в постоянно закрепленных измерительных пунктах.

Периодически проводится текущий ремонт и контроль эффективности оборудования ЭХЗ. Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

Текущий ремонт включает:

■ измерение сопротивления изоляции питающих кабелей;

■ ремонт линий питания;

■ ремонт выпрямительного блока;

■ ремонт дренажного кабеля.

Контроль эффективности работы установки ЭХЗ заключается в измерении защитных потенциалов в измерительных пунктах по всей зоне защиты данной установки ЭХЗ. Контроль эффективности ЭХЗ трубопроводов тепловых сетей производят не реже, чем 2 раза в год, а также при изменении параметров работы установок ЭХЗ и при изменении коррозионных условий, связанных с:

■ прокладкой новых подземных сооружений;

■ в связи с проведением ремонтных работ на тепловых сетях;

■ установкой ЭХЗ на смежных подземных коммуникациях.

Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

К организационным задачам относится, прежде всего, получение разрешения на электроснабжение станций ЭХЗ от сетей ОАО «Ленэнерго». Это многоходовый алгоритм, сопровождаемый оформлением большого количества документации. Кроме электроснабжения, служба ЭХЗ занимается подготовкой адресных программ нового строительства и ремонта, проверкой и согласованием проектов, подготовкой технических заданий.

Установки ЭХЗ от наружной коррозии металлоконструкций используются уже 100 лет. Физико-химический принцип их работы остается неизменным, но для увеличения ресурса их работы, снижения капитальных и эксплуатационных затрат необходимо искать и находить новые технические решения. Перспективным представляется использование протяженных электродов для анодного заземления. Эластомерные электроды укладываются горизонтально в траншею вдоль трубопроводов тепловой сети на глубине

1,5 м и разделяются на несколько участков для повышения ремонтопригодности. Стоимость таких установок меньше, чем при использовании традиционных контуров анодного заземления. В 2011 г. уже построены две установки с горизонтальными электродами.

Оснащение установок ЭХЗ блоками телеметрии будет продолжаться, и в перспективе информация о работе всех установок будет дистанционно передаваться и архивироваться.

В 2011 г. был выполнен проект автоматизированного учета электроэнергии для 59 установок ЭХЗ, а его реализация намечена на 2012 г

Уже начата работа по занесению базы данных об установках ЭХЗ в единую информационно-аналитическую систему ОАО «Теплосеть Санкт- Петербурга». В перспективе это позволит быстрее и достовернее определять приоритеты при составлении программы реконструкции участков тепловых сетей, правильно организовывать земляные работы при устранении дефектов.

Основное назначение ЭХЗ тепловых сетей - это обеспечение эксплуатации трубопроводов без возникновения повреждений в течение всего нормативного срока (25 лет). Для достижения этой цели необходимо относиться к ЭХЗ именно как к системе, не пренебрегая ни одной из ее составляющих, указанных в данной статье. Полезными могут оказаться несколько общих соображений.

1. В коррозионно-опасных зонах нужно вводить в эксплуатацию ЭХЗ как можно быстрее после строительства или реконструкции участка тепловых сетей, т.е. защищать металл «с нуля».

2. На участке трубопроводов, электрически плохо изолированных от земли (разрушение тепловой изоляции, контакт металла с бетонными конструкциями и т.п.), установка ЭХЗ будет мало эффективна, т.к. созданный ею защитный ток не распределится на сотни метров вдоль труб, а стечет в землю в месте «закоротки».

3. При выявленной низкой эффективности существующей установки ЭХЗ (малая разница в значении потенциала металла при включенной и отключенной установке) нужно провести ее реконструкцию с изменением расположения контура анодного заземления (КАЗ) по отношению к защищаемым трубопроводам.

4. При реконструкции и новом строительстве установок ЭХЗ целесообразно использовать самые лучшие марки электродов для КАЗ, т.к. отказ контура - это выход из строя всей установки, а для восстановления КАЗ придется проводить дорогостоящие земляные работы.

5. Координация деятельности в части ЭХЗ с другими владельцами подземных коммуникаций позволит принять меры для защиты трубопроводов тепловых сетей от вредного влияния «чужих» установок ЭХЗ, а также в ряде случаев организовать совместную защиту.

Опыт эксплуатации тепловых сетей ОАО «Теплосеть Санкт-Петербурга» убедительно доказывает, что ЭХЗ была и остается важной составляющей в комплексе мер по повышению надежности теплоснабжения Санкт-Петербурга.

Защита трубопроводов от коррозии может выполняться посредством множества технологий, наиболее эффективным из которых является электрохимический метод, к которому и относится катодная защита. Зачастую антикоррозийная катодная защита применяется комплексно, вместе с обработкой стальной конструкции изолирующими составами.

В данной статье рассмотрена электрохимическая защита трубопроводов и особенно детально изучен ее катодный подвид. Вы узнаете, в чем заключается суть данного метода, когда его можно использовать и какое оборудование применяется для катодной защиты металлов.

Cодержание статьи

Разновидности катодной защиты

Катодная защита стальных конструкций от коррозии была изобретена в 1820-х годах. Впервые метод был применен в кораблестроении – защитными анодными протекторами был обшит медный корпус судна, что значительно уменьшило скорость корродирования меди. Методика была взята на вооружение и начала активно развиваться, что сделало ее одним из наиболее эффективных методов противокоррозионной защиты на сегодняшний день.

Катодная защита металлов, согласно технологии выполнения, классифицируется на две разновидности:

  • метод №1 – к защищающейся конструкции подсоединяется внешний источник тока, при наличии которого само металлическое изделие выполняется роль катода, тогда как в качестве анодов выступают сторонние инертные электроды.
  • метод №2 – “гальваническая технология “: защищаемая конструкция контактирует с протекторной пластиной изготовленной из металла, имеющего больший электроотрицательный потенциал (к таким металлам относится цинк, алюминий, магний и их сплавы). Функцию анода в данном метода выполняют оба металла, тогда как электрохимическое растворение металла протекторной пластины обеспечивает протекание через защищаемую конструкцию необходимого минимума катодного тока. По истечению времени протекторная пластина полностью разрушается.

Метод №1 – наиболее распространенный. Это простая в реализации противокоррозионная технология, которая эффективно справляется с многими разновидностями коррозии металлов:

  • межкристальная коррозия нержавеющей стали;
  • питтинговая коррозия;
  • растрескивание латуни из повышенного напряжения;
  • коррозия под воздействием блуждающих токов.

В отличие от первого метода, пригодного для защиты больших по размеру конструкций (применяется для подземных и наземных трубопроводов), гальваническая электрохимзащита предназначена для применения с изделиями малых размеров.

Гальванический метод широко распространен в США, в России он практически не используется, поскольку технология возведения трубопроводов в нашей стране не предусматривает обработку магистралей специальным изоляционным покрытием, которое является обязательным условием для гальванической электрохимзащиты.

Отметим, что без значительно увеличивается коррозия стали под воздействием грунтовых вод, что особенно характерно для весеннего периода и осени. Зимой, после замерзания воды, коррозия от влаги существенно замедляется.

Суть технологии

Катодная противокоррозионная защита осуществляется посредством применения постоянного тока, который подается на защищаемую конструкцию от внешнего источника (чаще всего используются выпрямители, преобразующие переменный ток в постоянный) и делает ее потенциал отрицательным.

Сам объект, подключенный к постоянному току, является “минусом” – катодом, тогда как подведенное к нему анодное заземление, является “плюсом”. Ключевым условием эффективности катодной защиты является наличие хорошо проводимой электролитической среды, в качестве которого при защите подземных трубопроводов выступает грунт, тогда как электронный контакт достигается за счет использования металлических материалов с высокой проводимостью.

В процессе реализации технологии между электролитической средой (грунтом) и объектом постоянно поддерживается требуемая разница потенциала тока, величина которой определяется с помощью высокоомного вольтметра.

Особенности катодной защиты трубопроводов

Коррозия – основная причина разгерметизации всех типов трубопроводов. Из-за повреждения металла ржавчиной на нем образуются разрывы, каверны и трещины, приводящие к разрушению стальной конструкции. Данная проблема особенно критична для подземных трубопроводов, которые постоянно пребывают в постоянном контакте с грунтовыми водами.

Катодная защита газопроводов от коррозии выполняется одним из вышеуказанных способов (посредством внешнего выпрямителя либо гальваническим методом). Технология в, данном случае, позволяет уменьшить скорость окисления и растворения металла, из которого изготовлен трубопровод, что достигается за счет смещения его естественного коррозийного потенциала в отрицательную сторону.

Посредством практический испытаний было выяснено, что потенциал катодной поляризации металлов, при котором замедляются все коррозийные процессы, равен -0.85 В , тогда как у подземных трубопроводов в естественном режиме он составляет -0.55 В.

Чтобы противокоррозионная защита было эффективной, необходимо посредством постоянного тока снизить катодный потенциал металла, из которого изготовлен трубопровод, на -0.3 В. В таком случае скорость корродирования стали не превышает 10 микрометров в течении года.

Катодная защита – наиболее эффективный метод защиты подземных трубопроводов от блуждающих токов. Под понятием блуждающих токов подразумевается электрический заряд, который попадает в землю в результате работы точек заземления ЛЭП, громоотводов либо движения поездов по железнодорожным магистралям. Точное время и место появления блуждающих токов выяснить невозможно.

Коррозийное воздействие блуждающих токов на металл происходит в случае, если металлическая конструкция имеет позитивный потенциал относительно электролита(для подземных трубопроводов электролитом выступает грунт). Катодная защита же делает потенциал металла подземных трубопроводов отрицательным, что устраняет риск их окисления под воздействием блуждающих токов.

Технология применения внешнего источника тока для катодной защиты подземных трубопроводов предпочтительна. Ее преимущества – неограниченный энергоресурс, способный преодолевать удельное сопротивление грунта.

В качестве источника тока противокоррозионная защита используется воздушные линии электропередач мощностью 6 и 10 кВт, если же на территории ЛЭП отсутствуют, могут применяться мобильные генераторы, работающие на газу и дизтопливе.

Детальный обзор технологии катодной защиты от коррозии (видео)

Оборудование для катодной защиты

Для противокоррозионной защиты подземных трубопроводов применяется специальное оборудование – станции катодной защиты (СКЗ), состоящие из следующих узлов:

  • заземление (анод);
  • источник постоянного тока;
  • пункт управления, контроля и измерений;
  • соединительные кабели и провода.

Одна СКЗ, подключенная к электросети либо к автономному генератору, может выполнять катодную защиту сразу нескольких рядом расположенных магистралей подземных трубопроводов. Регулировка тока может выполняться вручную (посредством замены обмотки на трансформаторе) либо в автоматическом режиме (если система укомплектована тиристорами).

Среди станций катодной защиты, применяемых в отечественной промышленности, наиболее технологичной установкой считается Минерва-3000 (спроектированная инженерами из Франции по заказу Газпрома). Мощности данной СКЗ достаточно для эффективной защиты 30 км подземного трубопровода.

К преимуществам установки относится:

  • повышенная мощность;
  • функция восстановления после перегрузок (обновление происходит за 15 секунд);
  • наличие систем цифрового регулирования для контроля за рабочими режимами;
  • полная герметичность ответственных узлов;
  • возможность подключения оборудования для удаленного контроля.

Также широко востребованными в отечественном строительстве являются установки АСКГ-ТМ, в сравнении с Минервой-3000 они имеют уменьшенную мощность (1-5 кВт), однако в стоковой комплектации система оборудована телеметрическим комплексом, который в автоматическом режиме контролирует работу СКЗ и имеет возможность дистанционного управления.

Станции катодной защиты Минерва-3000 и АСКГ-ТМ требуют питания от электросети мощностью 220 В. Удаленное управление оборудованием выполняется посредством встроенных GPRS модулей. СКЗ имеют достаточно больше габариты – 50*40*90 см. и вес – 50 кг. Минимальный срок службы устройств составляет 20 лет.

Трубопроводы, пролегающие под землёй, подвергаются разрушающему действию коррозии. Коррозия трубопровода поражает металлические трубы, если возникают условия, когда атомы металла могут перейти в состояние иона.

Чтобы нейтральный атом стал, ионом, необходимо отдать электрон, а это возможно если есть анод, который его примет. Такая ситуация возможна при возникновении разности потенциалов между отдельными участками трубы: один участок анод, другой катод.

Причины протекания электролитических реакций

Причин образования разности потенциалов (величина его значения) на отдельных участках трубы несколько:

  • различные составы грунта по физическим и химическим свойствам;
  • неоднородность металла;
  • влажность почвы;
  • значение рабочей температуры, транспортируемого вещества;
  • показатель кислотности грунтового электролита;
  • прохождение линии электротранспорта, который создаёт блуждающие токи.

Важно! Участки, которые требуют установления защиты, определяются на стадии проектирования объекта. Все необходимые сооружения строятся параллельно с прокладкой труб.

В результате могут возникнуть два вида коррозийного повреждения:

  • поверхностное, которое к разрушению трубопровода не приводит;
  • местное, в результате которого образуются раковины, щели, растрескивания.

Виды предохранения от коррозии

Чтобы уберечь трубы от разрушения, применяют защиту трубопроводов от коррозии.

Существует два основных способа защиты:

  • пассивный, при котором вокруг труб создаётся защитная оболочка полностью отделяющая их от грунта. Обычно это покрытие из битума, эпоксидной смолы, полимерной ленты;
  • активный, позволяющий управлять электрохимическими процессами, которые протекают в местах соприкосновения трубы и грунтового электролита.

Активный метод разделяется на три вида предохранения:

  • катодный;
  • протекторный;
  • дренажный.

Дренажный осуществляет защиту трубопроводов от коррозии производимой блуждающими токами. Такие токи отводят в направлении создающего их источника или напрямую в почвенный слой. Дренаж может быть земляным (заземление анодных зон трубопровода), прямым (отсоединение от отрицательного полюса источника блуждающего тока). Реже используют дренаж поляризованный и усиленный.

Способы организации катодной защиты

Катодная защита трубопровода от коррозии образуется, если использовать внешнее электрическое поле для организации катодной поляризации трубопровода, а повреждение перевести на внешний анод, который подвергнется разрушению.

Катодная разделяется на два вида:

  • гальваническая с использованием анодов-протекторов, для изготовления которых используют сплавы магния, алюминия, цинка;
  • электрическая, в которой применяется внешний источник постоянного тока с схемой подключения: минус на трубу, плюс - на заземлённый анод.

Основа гальванического способа катодной защиты: использование свойства металла иметь отличные по величине потенциалы, когда их применяют в виде электрода. Если в электролите находятся две металла с разным значением потенциала, то разрушаться будет тот, который имеет меньшее значение.

Материал для протектора подбирается такой, чтобы выполнялись определённые требования:

  • отрицательный потенциал с большим значение в сравнении с потенциалом трубопровода;
  • значительный КПД;
  • высокий показатель удельной токоотдачи;
  • малая анодная поляризуемость, чтобы не образовывались окисные плёнки.

Обратить внимание! Наиболее высокий КПД у анодов из сплава цинка и алюминия, наименьший - у магниевых.

Чтобы повысить КПД и действенность защиты, протекторы погружают в активатор, который снижает собственную коррозию протектор и величину сопротивления растеканию тока с протектора, уменьшает анодную поляризуемость.

Протекторная защитная установка состоит из протектора, активатора, проводника, соединяющего протектор и трубопровод, пункта для контроля и проведения замера электрических параметров.

Эффективность протекторной защиты от коррозии трубопроводов зависит от величины удельного сопротивления грунта. Она хорошо действует, если этот показатель не превышает 50 Ом*м, при большем значении защита будет частичной. Для повышения действенности используют ленточные протекторы.

Ограничением для использования протекторной защиты является электрический контакт трубопровода и смежной протяжённой коммуникацией.

Станции катодной защиты

Более сложный в организации, но самый эффективный - это электрический. Для его организации сооружают внешний источник постоянного тока - станцию катодной защиты. В электрической станции преобразуется переменный ток в постоянный.

Элементы катодной защиты:

  • анодное заземление;
  • линия соединения постоянного тока;
  • защитное заземление;
  • источник постоянного тока;
  • катодный вывод.

Электрический метод является аналогом процесса электролиза.

Под действием внешнего поля источника тока валентные электроны двигаются в сторону от анодного заземления к источнику тока и трубе. Заземленный анод постепенно разрушается. А у трубопровода от источника постоянного тока поступающий переизбыток свободных электронов приводит к деполяризации (как у катода при электролизе).

Чтобы предотвратить коррозийное разрушение нескольких труб, сооружают несколько станций и устанавливают соответствующее количество анодов.

Загрузка...