Медицинский портал. Щитовидная железа, Рак, диагностика

Изучение основных правил физики: чем отличается постоянный ток от переменного. В розетке постоянный ток или переменный

Изначально люди не знали, что такое ток. Был известен статический заряд, но никто не понимал и не осознавал природы электричества. Понадобились долгие века, пока Кулон разработал собственную теорию, а немецкий священник фон Клейн обнаружил, что банка способна запасать энергию. К тому времени, как Ван де Грааф создал первый генератор, любой уже знал, в чем отличие постоянного тока от переменного.

История переменного и постоянного электрического тока

Издавна, к примеру, люди видели, что кристалл турмалина притягивает пепел. Кстати, свойства пьезоэлектричества впервые описаны именно на примере турмалина.

В начала 19-го века было показано, что нагретый кристалл приобретает электрический заряд. За счёт деформации образовались два полюса:

  • Южный (аналогический).
  • Северный (антилогический).

Причём если температура после нагрева остаётся постоянной, электричество исчезает. Потом появление полюсов отмечается уже при охлаждении. Выходит, кристалл турмалина при изменении температуры вырабатывает электричество. Дальнейшие исследования показали, что размер потенциала зависит от:

  1. Поперечного сечения кристалла (среза поперёк полюсов).
  2. Разницы температур.

Прочие факторы влияния на величину заряда не оказывают. Указанное явление получило название пироэлектричества. Диэлектрик турмалин потихоньку заряжался от тока, текущего внутри. А заряд оставался на месте (определённые участки поверхности) из-за изолирующих свойств. Пока не замкнуть полюса турмалина проводником, кристалл продолжит копить заряд по мере изменения температуры. Линию, объединяющую полюса, назвали пироэлектрической осью.

Пьезоэлектричество открыто известной парой Кюри на основе турмалина в 1880 году. Осознавалось, что при изменении размеров кристалла начнут вырабатываться заряды, осталось лишь придумать методику для проведения опыта. Кюри использовал для этого статическое давление обычной массы. Эксперимент проводится на изолирующей поверхности. К примеру, масса в 1 кг вызывает появление в кристалле турмалина электрического заряда в пределах пяти сотых статических единиц.

Как появляется электрический ток

Любопытно, что стройная теория по описанному явлению ещё не создана. Важно указание, что в природе присутствуют заряды, получаемые различными методами. Во время грозы это происходит за счёт сил трения воздушных масс, молекул влаги и прочих явлений. Земля заряжена отрицательно, вверх постоянно течёт ток через атмосферу. Током называется движение носителей заряда в силу неких причин. К примеру, разницы потенциалов – перепад в уровне носителей между двумя точками пространства.

Сравним с напором воды. Когда преграда устраняется, поток хлынет в направлении меньшего давления. Теперь возьмём аналогию с кристаллом турмалина. Допустим, появились на его концах заряды. Дальше потребуется вызвать движение, к примеру, медной жилкой провода. Объединим полюса, и потечёт электрический ток. Движение носителей продолжится, пока потенциал не уравняется. При этом кристалл разряжается.

О переменности или постоянстве тока нельзя сказать в ходе указанного ходе процесса. Переменный и постоянный ток являются физическими идеалами, а используются в силу относительной простоты получения математических моделей и управления при помощи них технологическим оборудованием.


Электрический ток в действительности

На практике форма тока (зависимость плотности зарядов от времени) не синусоидальная. По разным причинам вид графика искажается. Это, к примеру, происходит при запуске оборудования и остановке, из-за наведённых помех различной природы. Форма переменного и постоянного тока искажается. Причём давно установлено, что это вредит аппаратуре. Для борьбы с подобной напастью требовались методы, и математики придумали спектральный анализ.

Колебание любой формы возможно представить в виде суммы с различным удельным весом простейших синусоид разной частоты. Получается, что по цепи двигается одновременно масса составляющих, в совокупности дающих ток. Причём не обязательно все составляющие двигаются заодно с основной массой. Представим элементы как группу муравьёв, каждый тащит в свою сторону, а результирующий эффект заставляет груз перемещаться лишь в одну. Упомянем, что помимо коэффициента (амплитуды) каждая составляющая обладает фазой (направлением), а именуется гармоникой.

Каскады техники устроены так, чтобы полезные частоты (преимущественно 50 Гц) проходили внутрь прибора, а прочее уходило на землю. Указан признак для решения затруднения, упомянутого в начале. Любое колебание представляется в виде набора полезных и вредных сигналов, исходя из этого, аппаратуру полагается конструировать надлежащим образом. К примеру, на описанном принципе работают все приёмники: избирательно пропускают ток нужной частоты. Так удаётся отрезать помехи, а волна передаётся с минимальными искажениями на большие расстояния.

Примеры использования переменного и постоянного тока

Приблизительно постоянным считается ток разряда автомобильного аккумулятора. Напряжение здесь постепенно падает, а потому даже при одинаковой нагрузке эффект разнится хронометрически. В целом, происходит это плавно. Ток течёт в одном направлении и проявляет приблизительно постоянную плотность. Аналогично работают:

  1. Аккумулятор сотового телефона.
  2. Батарейка любого типа.
  3. Аккумулятор питания ноутбуков.

В природе источников постоянного тока (генераторов), за исключением матушки-Земли, нет. Человеку гораздо удобнее создавать роторы, которые, вращаясь с конкретной частотой, создают условия для образования в катушках статора переменного электрического тока. Потом промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.

Источником постоянного тока допустимо считать адаптеры. Это устройства, выполняющие преобразование переменного тока в постоянный. Допустим, у сотовых телефонов это +5 В, а для мобильных раций характерен большой разброс. Устройство постоянного тока может функционировать исключительно от номинала, для которого сконструировано. В противном случае либо работоспособность нарушается, либо – при больших отклонениях – возможен полный выход из строя.

Это касается и переменного, и постоянного тока. Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется. Из соображений экономии двигатели работают от трёх фаз. Каждая считается переменным током частоты 50 Гц. Говорили выше, что у любой гармоники присутствует фаза. В рассматриваемом случае фаза равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что три фазы равно отстоят друг от друга. При подобном раскладе генераторам ГЭС легче производить энергию, поступающую в дома в неизменном виде. Но в квартиру заходит единственная фаза переменного тока.

Поэтому бытовые приборы по внутреннему устройству сильно отличаются от промышленных. Важными признаются параметры переменного тока. В любом государстве они стандартизированы и чётко выдерживаются. К параметрам переменного тока относят:

  1. Действующее значение напряжения — вызывающее в обычном проводнике постоянное идентичного номинала. Действующее значение ниже амплитуды в корень из двух раз либо близко к указанному. Требования для РФ составляют 220-230 В плюс-минус 10% от номинала.
  2. К частоте переменного тока предъявляются повышенные строгие требования. Предел отклонений от 50 Гц измеряется десятыми долями процента. Потому стабилизации движения вала на ГЭС уделяется столько внимания. От скорости его вращения зависит параметр.
  3. Нелинейные искажения считаются отдельной темой. Требований множество, определиться непросто. Особенно строго нормируются гармоники основной частоты, к примеру: 100, 150, 200, 250 Гц.

Подобные требования предъявляются и к параметрам постоянного тока. Допустим, известные автомобильные аккумуляторы в действительности включают в арсенал не 12, а 14 В. По мере разряда вольтаж падает. Если на аккумуляторе зарегистрировано напряжение 11,9 В, банка считается вышедшей из строя. Предлагаем внимательно читать инструкции. Дополним: в отдельных ноутбуках присутствует заряд бережного расхода энергии аккумулятора. В этом случае уровень поддерживается в рамках двух третей от полного. Считается, что тогда батарея прослужит дольше.

Итак, требования направлены на поддержание долгого и правильного функционирования оборудования. Параметры постоянного и переменного тока считаются фактором, определяющим надёжность и работоспособность системы.

Содержание:

Не первое десятилетие продолжаются споры, какой же вид тока опаснее - переменный или постоянный. Одни утверждают, что именно выправленное напряжение несет большую угрозу, другие искренне убеждены, что синусоида переменного тока, совпав по амплитуде с биением человеческого сердца, останавливает его. Но, как всегда бывает в жизни, сколько людей - столько и мнений. А потому, стоит взглянуть на этот вопрос чисто с научной точки зрения. Но сделать это стоит языком, понятным даже для чайников, т.к. не у каждого имеется электротехническое образование. При этом, наверняка любому хочется узнать происхождение постоянного и переменного тока.

С чего же стоит начать? Да, наверное, с определений - что же такое электричество, почему его называют переменным либо постоянным, какой из этих видов опаснее и почему.

Большинству известно, что постоянный ток можно получить от различных блоков или элементов питания, а переменный поступает в квартиры и помещения посредством электросети и благодаря ему работают бытовые электроприборы и освещение. Но мало кто задумывался, почему одно напряжение позволяет получить другое и для чего это нужно.

Имеет смысл ответить на все возникшие вопросы.

Что такое электрический ток?

Электрическим током называют постоянную или переменную величину, которая возникает на основе направленного или упорядоченного движения, создаваемого заряженными частицами - в металлах это электроны, в электролите - ионы, а в газе - и те, и другие. Иными словами, говорят, что электрический ток «течет» по проводам.

Некоторые ошибочно полагают, что каждый заряженный электрон двигается по проводнику от источника до потребителя. Это не так. Он лишь передает заряд на соседние электроны, сам оставаясь на месте. Т.е. его движение хаотично, но микроскопично. Ну а уже сам заряд, двигаясь по проводнику, достигает потребителя.

Электрический ток имеет такие параметры измерения, как: напряжение, т.е. его величина, измеряющаяся в вольтах (В) и сила тока, которая измеряется в амперах (А). Что очень важно, при трансформации, т.е. уменьшении или увеличении при помощи специальных устройств, одна величина воздействует на другую обратно пропорционально. Это значит, что уменьшив напряжение посредством обычного трансформатора, добиваются увеличения силы тока и наоборот.

Ток постоянный и переменный

Первое, что следует понять - это разницу между постоянным и переменным током. Дело в том, что переменный ток не только проще получить, хотя это тоже немаловажно. Его характеристики позволяют передачу на любые расстояния по проводникам с наименьшими потерями, особенно при более высоком напряжении и меньшей его силе. Именно поэтому линии электропередач между городами являются высоковольтными. А уже в населенных пунктах ток трансформируется в более низкое напряжение.

А вот постоянный ток очень просто получить из переменного, для чего используют разнонаправленные диоды (т.н. диодный мост). Дело в том, что переменный ток (АС), вернее частота его колебаний, представляет собой синусоиду, которая, проходя через выпрямитель, теряет часть колебаний. Тем самым на выходе получается постоянное напряжение (АС), не имеющее частоты.

Имеет смысл конкретизировать, чем же, все-таки, они отличаются.

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Ну и последнее по очереди, но не по смыслу - все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного - это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности - при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России - 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока - в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому - габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингауз ом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

История

Компания Томаса Эдисона, которая называлась «Эдисон Электрик Лайт», была основана в конце 70-х годов XIX века. Тогда, во времена свечей, керосиновых ламп и газового освещения лампы накаливания, выпускаемые Эдисоном, могли работать непрерывно 12 часов. И хотя сейчас этого может показаться до смешного мало - это был настоящий прорыв. Но уже в 1880-е годы компания смогла не только запатентовать производство и передачу постоянного тока по трехпроводной системе (это были «ноль», «+110 В» и «-110 В»), но и представить лампу накаливания с ресурсом в 1200 часов.

Именно тогда и родилась фраза Томаса Эдисона, которая впоследствии стала известна всему миру, - «Мы сделаем электрическое освещение настолько дешевым, что только богачи будут жечь свечи».

Ну а уже к 1887-му в Соединенных Штатах успешно функционирует больше 100 электростанций, которые вырабатывают постоянный ток и где используется для передачи именно трехпроводная система, которая применяется в целях хотя бы небольшого снижения потерь электроэнергии.

А вот ученый в области физики и математики Джордж Вестингауз после ознакомления с патентом Эдисона нашел одну очень неприятную деталь - это была огромная потеря энергии при передаче. В то время уже существовали генераторы переменного тока, которые не пользовались популярностью по причине оборудования, которое бы на подобной энергии работало. В то время талантливый инженер Никола Тесла еще работал у Эдисона в компании, но однажды, когда ему было в очередной раз отказано в повышении зарплаты, Тесла не выдерживал и ушел работать к конкуренту, которым являлся Вестингауз. На новом месте Никола (в 1988 году) создает первый прибор учета электроэнергии.

Именно с этого момента и начинается та самая «война токов».

Выводы

Попробуем обобщить изложенную информацию. На сегодняшний день невозможно представить пользование (как в быту, так и на производствах) каким-то одним из видов электричества - практически везде присутствует и постоянный, и переменный ток. Ведь где-то необходим постоянный, но его передача на дальние расстояния невозможна, а где-то переменный.

Конечно, доказано, что АС намного безопаснее, но как быть с приборами, помогающими экономить электроэнергию во много раз, в то время как они могут работать только на DC?

Именно по этим причинам сейчас токи «мирно сосуществуют» в нашей жизни, закончив «войну», которая продлилась более 100 лет. Единственное, что не стоит забывать - насколько бы одно ни было безопаснее другого (постоянное, переменное напряжение - не важно), оно может нанести огромный вред организму, вплоть до летального исхода.

И именно поэтому при работе с напряжением необходимо тщательно соблюдать все нормы и правила безопасности и не забывать про внимательность и аккуратность. Ведь, как говорил Никола Тесла, электричества не стоит бояться, его стоит уважать.

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят — постоянный ток одной амплитуды.

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природныедвух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть — замалчивает работы с переменным током. Подобно Георгу Ому, ученый — талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда — противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы — неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

Говоря о постоянном токе (см. раздел «Про ток»), мы выяснили, что он протекает в одном направлении - от плюса источника к минусу(так было принято, хотя на самом деле наоборот). Однако в большинстве случаев приходится иметь дело с током переменным. При переменном токе электроны движутся не в одном направлении, а попеременно то в одном, то в другом, меняя свое направление. Поэтому, когда осветительная лампа включена, электроны в ее накаленной нити(да и в проводах тоже)движутся то в одну, то в другую сторону. Это движение условно показано на рис.1 и рис.2. Попробуйте пробежаться то в одну, то в другую сторону. Нетрудно догадаться, что при таком движении, прежде чем изменить направление движения, нужно сначала его замедлить, потом застыть на месте, а уж потом ринуться в другую сторону. Какая взаимосвязь с током? Перед тем как изменить движение, электроны должны притормозить(всё это мы рассматриваем в замедленном времени). Значит ток уменьшится, а лампа должна уменьшить яркость. А уж когда они остановятся перед изменением движения - и вовсе должна погаснуть. Но мы этого не видим. Почему? Потому что накаленная нить имеет тепловую инертность и за долю секунды не может остыть. Поэтому мигания мы не видим. Однако, каждый из нас слышал жужжание работающего трансформатора, что и связано с попеременным направлением движения тока.

А теперь стоит задуматься. Означает ли это, что за долю секунды электроны от электростанции доходят до дома, а за следующую долю секунды - обратно? Ранее, в разделе«Про ток» мы выяснили, что электрическое поле в проводниках распространяется со скоростью 300000км/с., а сами электроны движутся в проводниках со скоростью примерно 0,1мм/с. Но за 1/100 часть секунды (именно столько длится один полупериод, в течение которого электроны движутся в одну сторону) электроны только успевают переместиться в одном направлении, как электрическое поле начнет действовать в противоположном направлении. Вот почему электроны отклоняются то в одну, то в другую сторону и не покидают, так сказать, предела наших жилищ. То есть, у вас в доме(квартире) есть свои «домашние» электроны. Если мы могли бы замедлить время и включили бы в розетку вольтметр параллельно нагрузке, т.е. лампе (рис.3) или амперметр последовательно через нагрузку (рис.4), то увидели бы как стрелка прибора плавно изменяет свое показание от нуля до максимального значения при замере напряжения (рис.3) или тока (рис.4). На рисунке рядом это продемонстрировано. В действительности мы, конечно, этого не увидим. Причина в инертности стрелки, из-за которой она не может произвести сотню за секунду. Кстати, к рис.3 и рис.4 приведен пояснительный рис.5, где уж точно без особых усилий можно увидеть, как подключаются вольтметр и амперметр при измерении напряжения и тока в электрической цепи. Где вольтметр, а где амперметр, я думаю, можно без труда догадаться. На схемах они обозначаются как V и А соответственно.

Итак, первое, что необходимо знать - это то, что изменения тока и напряжения в электрической цепи происходят по так называемому синусоидальному закону. Второе - любое синусоидальное колебание (ток или напряжение) характеризуются следующими важными величинами:

Период Т - время совершения одного полного колебания. Половина этого времени называется полупериодом. Очевидно, что в один полупериод ток течет(ну или как мы оговаривали - электроны движутся) в одном направлении, которое условно можем принять за положительное, а в другой полупериод он течет в другом направлении, которое можем принять за отрицательное. На графиках положительный полупериод будет представлен верхней полуволной над осью Х, а отрицательный - нижней. Говоря про нашу сеть, можно указать, что период переменного тока Т = 1/50сек - 0,02сек.

Частота f - это число колебаний в секунду. Теперь давайте подсчитаем. Если одно колебание у нас происходит за время периода Т, которое равно 0,02сек, то тогда за одну секунду у нас произойдет 50 колебаний (1/0,02=50). А одно колебание представляет собой движение электронов сначала в одну сторону, потом в другую(два полупериода). Т.е. за 1сек электроны будут двигаться поочередно то в одну то в другую сторону 50раз. Вот вам и наша частота тока в сети, которая равна 50Гц (Герц).

Амплитуда - наибольшая величина тока(Imах) или напряжения (Umах=310В) за время периода Т. Очевидно, что за один период синусоидальный ток и напряжение достигают два раза своей максимальной величины.

Мгновенное значение - мы уже знаем, что переменный ток непрерывно изменяет свое направление и величину. Величина напряжения в данный момент называется мгновенным значением напряжения. Это же относится и к величине тока.

В качестве иллюстрации на рис.6 указаны несколько мгновенных значений (200В, 300В, 310В, - 150В, - 310В, - 100В) величины напряжения в электрической цепи в течение одного периода. Видно, что в начальный момент напряжение равно равно нулю, после чего постепенно нарастает до 100В, 200В и т.д. Достигнув максимального значения 310В, напряжение начинает постепенно уменьшаться до нуля, после чего изменяет свое направление и снова возрастает, достигая величины минус 310В (- 310В) и т.д. Если кто-то с трудом может себе представить, что такое смена направления, может представить себе, что плюс и минус в розетке меняются местами - т.е. если мы условно примем ноль(землю) за минус, а фазу за плюс. И происходит это 50 раз в секунду. Ну, вот где-то примерно так...

Действующее значение

Итак, зададимся вопросом - а какому постоянному напряжению равно по своему действию наше переменное напряжение в сети, показанное на рис.6? Теория и практика показывают, что оно равняется постоянному напряжению величиной 220В - рис.7. Взять это на веру не так уж и сложно, поскольку несложно увидеть, что рассматриваемое в течение одного периода напряжение имеет значение 310В только в два момента, а в остальное время оно меньше. Так как наше синусоидальное напряжение изменяется непрерывно, то целесообразно было ввести такое понятие как - действующее напряжение . Ведь именно по какому-либо конкретному значению напряжения(или тока), а не его меняющемуся значению мы можем «прикинуть» его силу. Так вот, под действующим значением переменного тока (ну или напряжения) мы понимаем такой постоянный ток, который за то же самое время совершает ту же работу (или выделяет такое же количество тепла), что и данный переменный ток.

Поэтому, наша обыкновенная лампочка (или, например, обогревательный прибор) будет одинаково работать как при переменном напряжении, изменяющегося от нуля до 310В, так и при постоянном напряжении 220В. А 12-вольтовая лампочка будет одинаково светить как от источника переменного напряжения величиной 12В(изменяющегося от нуля до 16,8В), так и от любой батарейки или аккумулятора(а они являются, как известно, источниками постоянного напряжения).

Итак, запомните!!!

Электрический ток(напряжение), который периодически изменяет свое направление и величину, называется переменным током. Любой переменный ток характеризуется в основном своей частотой, амплитудой и действующим значением;
Приборы, предназначенные для измерения переменного тока, показывают его действующее значение;
Напряжение измеряют вольтметром(или комбинированным прибором - авометром), ток - амперметром(или комбинированным прибором - авометром). Также ток можно измерять так называемыми токовыми клещами . Служат они для бесконтактного измерения тока - рабочая часть прибора образует кольцо вокруг измеряемого провода и по величине электромагнитного поля, действующего на рабочую часть прибора, выводится информация на его небольшой дисплей о величине протекающего тока. Авометр - это комбинированный прибор(его в простонародье еще называют просто тестером), который полностью в своем техпаспорте называется ампервольтомметром и служит для измерения и тока, и напряжения, и сопротивлений. А цифровые модели могут измерять и частоту напряжения(тока), и емкости конденсаторов и другие вещи - это уж как задумает разработчик;
Зная значение (действующее) переменного напряжения, всегда можно узнать его максимальное значение (не забудьте - оно меняется по синусоидальному закону). А связь здесь такая - Umax = 1,4U , где U - действующее значение, а Umax- максимальное значение (амплитуда).

Инструкция

Для начала разберемся, что же электрический ток. Направленное движение () заряженных частиц и называется электрическим током. В переменном токе проводника за равнозначные промежутки времени проходит различное количество заряженных частиц. В постоянном же количество данных частиц за одинаковые времени всегда равнозначно.

Переменный ток постоянно изменяет свою силу, величину или направление. И эти изменения всегда периодически, то есть повторяются через одинаковые промежутки времени. Например, с помощью переменного тока невозможно зарядить аккумулятор или нельзя использовать его для подобных технических целей.

В отличие от постоянного тока , переменный имеет несколько дополнительных значений:- период - временное значение совершения полного цикла показателей переменного тока ; полупериод и частота (количество циклов за конкретный отрезок времени);- амплитуда – наивысшее значение переменного тока ;- мгновенное значение – значение тока в данный момент времени.

Переменный ток более распространен и широко применяем. Его легче преобразовать в переменный ток другого напряжения, изменить напряжение в сетях в зависимости от необходимых потребностей. Это можно сделать с помощью трансформатора. Трансформатор – аппарат, преобразующий переменный ток одного напряжения в такой же ток, но другого напряжения при одинаковой частоте тока .

Крупозная пневмония начинается остро, чаще всего, после сильного переохлаждения. Температура до 39-40 градусов, больного бьет сильный озноб. Сразу появляется боль при дыхании и со стороны пораженного легкого. Кашель сопровождается выделением гнойной вязкой мокроты с крови. Состояние больного тяжелое. Дыхание поверхностное, учащенное, с раздуванием крыльев носа. Пораженная сторона грудной клетки заметно отстает при дыхании от здоровой.

На планете Земля на сегодняшний день 98% всей электроэнергии вырабатывается генераторами переменного тока. Такой ток достаточно легко производить и передавать на большие расстояния. При этом ток и напряжение могут неоднократно повышаться и понижаться – трансформироваться. Работу совершает не напряжение, а ток. Поэтому чем меньше его значение, тем меньше потери в проводах.


Многие пользователи считают, что в используется только переменный ток с напряжением 220В и частотой 50Гц. Это только справедливо для ламп накаливания, электродвигателей в пылесосах, холодильниках.

В любом сложном бытовом устройстве, питающемся от сети переменного тока, имеются узлы, которые работают при постоянном напряжении с различными значениями. Предугадать, какими могут быть эти значения, фактически невозможно. Поэтому у всех потребителей в розетке имеется переменный ток одной и той же частоты и напряжения.

Постоянный ток

Несмотря на то, что доля выработки постоянного тока составляет только 2%, его значение достаточно велико. Постоянный ток вырабатывается гальваническими элементами, аккумуляторами, термопарами, солнечными батареями.


Солнечные батареи становятся весьма перспективным направлением энергетики в сегодняшние дни, когда остро ставится вопрос об использовании возобновляемых источников энергии.

Постоянный ток питает двигатели локомотивов на железнодорожном транспорте, используется в бортовой сети самолетов и автомобилей.

На дорогах современных городов становится все больше электромобилей и гибридных автомобилей. Для подзарядки их аккумуляторов строятся станции, которые обеспечивают их потребности в постоянном токе.

Какими должны быть розетки

Размеры розеток, их тип, материал, из которого они изготовлены, зависят в первую очередь от назначения розеток, токов и напряжений, на которые они рассчитаны. Устройства, работающие при постоянном напряжении, имеют полярные вилки. Поэтому и розетки для них должны быть полярными. Тогда даже неопытный пользователь не сможет перепутать, где «+» и «–».

Переменный ток в цепи представляет собой электрический поток заряженных частиц, направление и скорость которых периодически изменяется во времени по определенному закону.

Инструкция

Обратитесь к общему в электрической цепи, описанному в школьном учебнике. Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Это означает, что величина силы тока в сети переменного тока изменяется по закону синуса или косинуса. Собственно говоря, это отвечает тому току, что течет в бытовой электрической сети. Однако синусоидальность тока не является общим определением переменного тока и не до конца объясняет природу его протекания.

Нарисуйте на листе бумаги график синусоиды. По данному графику видно, что значение самой функции, выражаемой силой тока в данном контексте, изменяется от положительного значения к отрицательному. Причем время, через которое происходит смена знака, всегда одно и то же. Это время называется периодом колебаний тока, а обратная ко времени величина – частотой переменного тока. Например, частота переменного тока бытовой сети составляет 50 Гц.

Обратите внимание на то, смена знака функции физически. На самом деле, это означает лишь то, что в какой-то момент времени ток начинает течь в противоположную сторону. Причем, если закон изменения синусоидальный, то смена направления движения происходит не скачком, а с постепенным торможением. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Как известно, направление тока задается направлением положительно заряженных частиц в цепи. Таким образом, в цепи переменного тока заряженные частицы через определенное время изменяют направление своего движения на противоположное.

Загрузка...