Медицинский портал. Щитовидная железа, Рак, диагностика

Отведение экг треугольник эйнтховена. Эйнтховен, Виллем: биография

Транскрипт

1 Автор: Дидигова Румина Саид-Магометовна студентка Научный руководитель: Щербакова Ирина Викторовна старший преподаватель ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России г. Саратов, Саратовская область ОСНОВЫ ЭЛЕКТРОКАРДИОГРАФИИ. ТРЕУГОЛЬНИК ЭЙНТХОВЕНА Аннотация: авторы исследуемой статьи представляют собственный взгляд на понимание основ электрокардиографии, трактуют треугольник Эйнтховена как основу концепции ЭКГ. Ключевые слова: ЭКГ, электрокардиография, треугольник Эйнтховена. Несмотря на огромные шаги по пути развития медицинской науки и практики, до настоящего времени одним из основных методов обследования пациентов остается электрокардиография (ЭКГ). В связи с постоянно возрастающим количеством летальных случаев, обусловленных сердечно-сосудистыми заболеваниями во всем мире, применение ЭКГ и грамотная расшифровка ее результатов имеют высокую актуальность. Цель данной работы состоит в изучении сущности метода ЭКГ и его значения в медицинской практике. Известно, что электрокардиография является основным методом исследования сердечной деятельности. Метод достаточно прост и безопасен в применении и, вместе с тем, информативен, что к нему прибегают повсеместно. Противопоказаний к проведению ЭКГ практически не существует, поэтому данный метод используют как непосредственно для диагностики сердечно-сосудистых заболеваний, так и в процессе плановых медицинских осмотров в целях ранней диагно- 1

2 Центр научного сотрудничества «Интерактив плюс» стики, перед спортивными соревнованиями и после них для отслеживания процессов, происходящих в организме спортсменов. Помимо этого, ЭКГ проводят для определения пригодности к некоторым профессиям, связанным с тяжелыми физическими нагрузками. Электрокардиограмма представляет собой запись суммарного электрического потенциала, возникающего при возбуждении множества миокардиальных клеток. Результат ЭКГ записывают с помощью прибора, называемого электрокардиографом. Его основными частями являются гальванометр, система усиления, переключатель отведений и регистрирующее устройство. Электрические потенциалы, возникающие в сердце, воспринимаются электродами, усиливаются и приводят в действие гальванометр. Изменения магнитного поля передаются на регистрирующее устройство и фиксируются на электрокардиографическую ленту, которая движется со скоростью мм/с. Во избежание технических ошибок и помех при записи электрокардиограммы необходимо обратить внимание на правильность наложения электродов и обеспечение их контакта с кожей, на заземление аппарата, амплитуду контрольного милливольта и другие факторы, способные вызвать искажения кривой, имеющей важное диагностическое значение. Электроды для записи ЭКГ накладывают на различные участки тела. Система расположения электродов называется электрокардиографическими отведениями. Рассматривая их, мы сталкиваемся с понятием «треугольник Эйнтховена». Согласно теории нидерландского физиолога Виллема Эйнтховена (), сердце человека, расположенное в грудной клетке со смещением влево, находится в центре своеобразного треугольника. Вершины этого треугольника, который называют треугольником Эйнтховена, образованы тремя конечностями: правой рукой, левой рукой и левой ногой. В. Эйнтховен предложил регистрировать разницу потенциалов между электродами, накладываемыми на конечности. Разница потенциалов определяется в трех отведениях, которые именуют стандартными, и обозначают римскими цифрами. Эти отведения являются сторонами треугольника Эйнтховена (рисунок 1). 2 Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

3 При этом в зависимости от отведения, в котором происходит запись ЭКГ, один и тот же электрод может быть активным, положительным (+), или же отрицательным (). Общая схема отведений выглядит следующим образом: Левая рука (+) Правая рука (); Правая рука () Левая нога (+); Левая рука () Левая нога (+). Рис. 1. Треугольник Эйнтховена В развитие теории Эйнтховена, позже было предложено регистрировать усиленные однополюсные отведения от конечностей. В усиленных однополюсных отведениях определяется разность потенциалов между конечностью, на которую накладывается активный электрод, и средним потенциалом двух других конечностей. В середине XX века метод ЭКГ был дополнен Вильсоном, который помимо стандартных и однополюсных отведений предложил регистрировать электрическую активность сердца с однополюсных грудных отведений. Таким образом, метод не «застыл», он развивается и совершенствуется. А суть его в том, что наше сердце сокращается под действием импульсов, которые проходят по проводящей системе сердца. Каждый импульс представляет собой электрический ток. Он зарождается в месте генерации импульса в синусовом узле, и далее идет на предсердия и на желудочки. Под действием импульса происходит сокращение (систола) и расслабление (диастола) предсердий и желудоч- 3

4 Центр научного сотрудничества «Интерактив плюс» ков. Причем систолы и диастолы возникают в строгой последовательности сначала в предсердиях (в правом предсердии чуть раньше), а затем в желудочках. Так обеспечивается нормальная гемодинамика (кровообращение) с полноценным снабжением кровью органов и тканей. Электрические токи в проводящей системе сердца создают вокруг себя электрическое и магнитное поле. Одной из его характеристик является электрический потенциал. При ненормальных сокращениях и неадекватной гемодинамике величина потенциалов будет отличаться от потенциалов, свойственных сердечным сокращениям здорового сердца. В любом случае как в норме, так и при патологии электрические потенциалы ничтожно малы. Но ткани обладают электропроводностью, и поэтому электрическое поле работающего сердца распространяется по всему организму, а потенциалы можно фиксировать на поверхности тела. Для этого нужен высокочувствительный аппарат, снабженный датчиками или электродами. Если с помощью этого аппарата, именуемого электрокардиографом, регистрировать электрические потенциалы, соответствующие импульсам проводящей системы, то можно судить о работе сердца и диагностировать нарушения его работы. Именно эта идея легла в основу концепции В. Эйнтховена. Основные задачи электрокардиографии формулируются следующим образом: 1. Своевременное определение нарушений ритмичности и частоты сердечных сокращений (выявление аритмий и экстрасистол). 2. Определение острых (инфаркт миокарда) либо хронических (ишемия) органических изменений сердечной мышцы. 3. Выявление нарушений внутрисердечных проведений нервных импульсов (нарушение проводимости электрического импульса по проводящей системе сердца (блокады)). 4. Определение некоторых легочных заболеваний как острых (например, тромбоэмболии легочной артерии), так и хронических (таких, как хронический бронхит с дыхательной недостаточностью). 4 Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

5 5. Выявление электролитных (уровень калия, кальция) и иных изменений миокарда (дистрофия, гипертрофия (увеличение толщины сердечной мышцы)). 6. Косвенная регистрация воспалительных заболеваний сердца (миокардит). В плановом порядке запись результатов ЭКГ проводится в специализированном помещении, оборудованном электрокардиографом. В некоторых современных кардиографах вместо обычного чернильного самописца используется термопечатающий механизм, который с помощью тепла выжигает кривую кардиограммы на бумаге. Но в этом случае для кардиограммы нужна особая бумага или термобумага. Для наглядности и удобства подсчета параметров ЭКГ в кардиографах используют миллиметровую бумагу. В кардиографах последних модификаций ЭКГ выводится на экран монитора, посредством прилагаемого программного обеспечения расшифровывается, и не только распечатывается на бумаге, но и сохраняется на цифровом носителе (CD, флеш-карта). Отметим, что, несмотря на усовершенствования, принцип устройства кардиографа регистрации ЭКГ практически не изменился с того времени, как его разработал Эйнтховен. Большинство современных электрокардиографов являются многоканальными. В отличие от традиционных одноканальных приборов они регистрируют не одно, а несколько отведений сразу. В 3-х канальных аппаратах регистрируются сначала стандартные I, II, III, затем усиленные однополюсные отведения от конечностей avl, avr, avf, и затем грудные V1 3 и V4 6. В 6-канальных электрокардиографах сначала регистрируют стандартные и однополюсные отведения от конечностей, а затем все грудные отведения. Помещение, в котором осуществляется запись, должно быть удалено от источников электромагнитных полей, рентгеновского излучения. Поэтому кабинет ЭКГ не следует размещать в непосредственной близости от рентгенологического кабинета, помещений, где проводятся физиотерапевтические процедуры, а также электромоторов, силовых щитов, кабелей, и т. д. Специальная подготовка перед записью ЭКГ не проводится. Желательно, чтобы пациент был отдохнувшим, выспавшимся, пребывал в спокойном состоянии. Предшествующие физические и 5

6 Центр научного сотрудничества «Интерактив плюс» психоэмоциональные нагрузки могут сказаться на результатах, и поэтому нежелательны. Иногда прием пищи тоже может отразиться на результатах. Поэтому ЭКГ регистрируют натощак, не ранее чем через 2 часа после еды. Во время записи ЭКГ обследуемый лежит на ровной жесткой поверхности (на кушетке) в расслабленном состоянии. Места для наложения электродов должны быть освобождены от одежды. Поэтому нужно раздеться до пояса, голени и стопы освободить от одежды и обуви. Электроды накладываются на внутренние поверхности нижних третей голеней и стоп (внутренняя поверхность лучезапястных и голеностопных суставов). Эти электроды имеют вид пластин, и предназначены для регистрации стандартных отведений и однополюсных отведений с конечностей. Эти же электроды могут выглядеть как браслеты или прищепки. При этом каждой конечности соответствует свой собственный электрод. Чтобы избежать ошибок и путаницы, электроды или провода, посредством которых они подключаются к аппарату, маркируют цветом: к правой руке красный, к левой руке желтый, к левой ноге зеленый, к правой ноге черный. Однако возникает вопрос: зачем нужен черный электрод? Ведь правая нога не входит в треугольник Эйнтховена, и с нее не снимаются показания. Оказывается, черный электрод предназначен для заземления. Согласно основным требованиям безопасности, вся электроаппаратура, в том числе и электрокардиографическая, должна быть заземлена. Для этого кабинеты ЭКГ снабжаются заземляющим контуром. А если ЭКГ записывается в неспециализированном помещении, например, на дому работниками скорой помощи, аппарат заземляют на батарею центрального отопления или на водопроводную трубу. Для этого предназначен специальный провод с фиксирующим зажимом на конце. Таким образом, при проведении ЭКГ необходимо соблюдение целого ряда правил, основанных на понимании работы сердца и знаниях физики. Выявление нарушений ритма сердца, гипертрофии миокарда, перикардита, ишемии миокарда, определение локализации и протяженности инфаркта миокарда и иные се- 6 Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

7 рьезные заболевания диагностируются, главным образом, именно при проведении ЭКГ. Число людей, страдающих заболеваниями сердечно-сосудистой системы, неуклонно растет с каждым годом во всех уголках Земного шара, и огромную роль в выявлении этих патологий на ранних стадиях играет электрокардиограмма. От правильного проведения электрокардиографических манипуляций зависит качество диагностики и дальнейших врачебных манипуляций, направленных на улучшение состояния пациента. Список литературы 1. Альмухамбетова Р.К. Активные методы обучения электрокардиографии / Р.К. Альмухамбетова, Ш.Б. Жангелова, М.К. Альмухамбетов // Вестник Казахского Национального медицинского университета С Багаева Е.А. Загадки треугольника Эйнтховена. Кардиоинтервалография / Е.А. Багаева, И.В. Щербакова // Бюллетень медицинских Интернет-конференций Vol. 4. Issue 4. Р Зудбинов Ю.И. Азбука ЭКГ. Ростов н/д, Электрокардиографические отведения. Треугольник и закон Эйнтховена // Физиология человека [Электронный ресурс]. Режим доступа: (дата обращения:). 5. Ремизов А.Н. Медицинская и биологическая физика: Учебник. М.,


Электрокардиография (ЭКГ) Электрокардиография (ЭКГ) один из важнейших методов диагностики заболеваний сердца. Наличие электрических явлений в сокращающейся сердечной мышце впервые обнаружили два немецких

7. Электрокардиография 7.1. Основы электрокардиографии 7.1.1. Что такое ЭКГ? Электрокардиография самый распространенный метод инструментального обследования. Ее проводят, как правило, сразу же после получения

ММА им. И.М. Сеченова Кафедра факультетской терапии 1 ЭЛЕКТРОКАРДИОГРАФИЯ 1. Нормальная ЭКГ профессор Подзолков Валерий Иванович Происхождение ЭКГ Токи, генерируемые кардиомиоцитами во время деполяризации

Анализ ЭКГ «Вам расскажет всё сигнал, Что на ленту прибежал» Non multa, sed multum. "Дело не в количестве, а в качестве". Плиний Младший Скорость движения ленты При записи ЭКГ на миллиметровой бумаге со

1924 Нобелевская премия по физиологии/медицине вручается Эйнтховену за его работы по ЭКГ (1895 год). 1938 кардиологические Общества США и Великобритании вводят грудные отведения (по Wilson). 1942 - Goldberger

Физические основы электрокардиографии. В основе электрографических диагностических методик лежит регистрация разностей потенциалов между определѐнными точками организма. Электрическое поле это вид материи,

ТЕСТЫ ТЕКУЩЕГО КОНТРОЛЯ по теме «МЕТОДЫ ИССЛЕДОВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ» Выберите номер правильного ответа 1. Сердечные тоны это звуковые феномены, возникающие а) при аускультации сердца б) при

УДК 681.3 B.Н. БАЛЕВ, канд. техн. наук, A.Н. МАРЕНИЧ СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА АППАРАТНЫХ СРЕДСТВ ЭЛЕКТРОКАРДИОГРАФИЧЕСКОГО АНАЛИЗА В статті розглянуто принцип роботи пристроїв для зняття електрокардіограми,

Экспертная оценка комплекса аппаратно-программного для скрининга сердца «ECG4ME», ТУ 9442-045-17635079-2015, производства ООО "Медицинские компьютерные системы" (г. Москва) Врач кардиолог высшей категории

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Н.В.НИГЕЙ ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ТКАНЕЙ ОРГАНИЗМА И ЕГО ИЗМЕНЕНИЯ ЗА ЦИКЛ РАБОТЫ СЕРДЦА МЕТОДИЧЕСКИЕ

Остановка сердца или внезапная смерть Каждые 10 минут люди умирают от внезапной остановки сердца или около 500 000 человек в год. Как правило, это люди пожилого возраста, страдающие различными сердечнососудистыми

1. Цель реализации программы Совершенствование теоретических знаний и практических навыков для самостоятельной работы медицинской сестрой в отделениях и кабинетах функциональной диагностики по отдельным

НАРУШЕНИЕ РИТМА И ПРОВОДИМОСТИ Проводящая система сердца Функции проводящей системы сердца: 1. автоматизма 2. проводимости 3. сократимости пейсмекер первого порядка (синусно-предсердный узел) пейсмекер

Тесты текущего контроля по теме «Методы исследования сердечнососудистой системы. Сердечный цикл» Выберите номер правильного ответа 1. Впервые точное описание механизмов кровообращения и значение сердца

Синусовая аритмия у детей: причины, симптомы, лечение заболевания Самым главным органом тела человека является сердце, его работа заключается в доставке с током крови всех питательных веществ в ткани и

Электрокардиография Среди многочисленных инструментальных методов исследования, которыми в совершенстве должен владеть современный практический врач, ведущее место справедливо принадлежит электрокардиографии.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ УКРАИНЫ Харьковский национальный медицинский университет ЭЛЕКТРОКАРДИОГРАФИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ. МЕТОДИКА РЕГИСТРАЦИИ И РАСШИФРОВКА ЭЛЕКТРОКАРДИОГРАММЫ Методические указания

Правильная постановка электродов Основные электроды (R) красный на правую руку (L) желтый на левую руку (F) зелёный на левую ногу (N) черный на правую ногу Грудные электроды (V1) красного цвета 4-е межреберье

ЭКГ понятным языком Атул Лутра Перевод с английского Москва 2010 СОДЕРЖАНИЕ Список сокращений... VII Предисловие... IX Благодарности... XI 1. Описание зубцов, интервалов и сегментов электрокардиограммы...1

ББК 75.0 М15 Макарова Г.Л. М15 Электрокардиограмма спортсмена: норма, патология и потенциально опасная зона. / Г.А. Макарова, Т.С. Гуревич, Е.Е. Ачкасов, С.Ю. Юрьев. - М.: Спорт, 2018. - 256 с. (Библиотечка

Ãëàâà 5. Íàðóøåíèÿ ðèòìà è ïðîâîäèìîñòè ñåðäöà от сердца (при чреспищеводном введении зонда). Это дает широкие возможности для уточненной диагностики аритмий, устраняя диагностические ограничения, имеющиеся

4 ЭЛЕКТРОКАРДИОГРАФИЧЕСКАЯ КАРТИНА ИСПОЛЬЗУЕМЫХ РЕЖИМОВ СТИМУЛЯЦИИ Об одном из основных параметров работы любого имплантируемого антиаритмического устройства, режиме стимуляции, подробно говорилось в разделе

3 1. Целью изучения дисциплины является: овладение знаниями, умениями, навыками обследования больных с заболеваниями внутренних органов с помощью основных методов ультразвуковой и функциональной диагностики,

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» Биологический факультет кафедра

Приобретенные пороки сердца профессор Хамитов Р.Ф. зав.кафедрой внутренних болезней 2 КГМУ Митральный стеноз (МС) Сужение (стеноз) левого атриовентрикулярного (митрального) отверстия с затруднением опорожнения

Нормальная электрокардиограмма Чтобы оправдаться в собственных глазах, мы нередко убеждаем себя, что не в силах достичь цели, на самом же деле мы не бессильны, а безвольны. Франсуа де Ларошфуко. Калибровочный

ЭКГ при гипертрофиях миокарда предсердий и желудочков Лучше совсем не знать чего-либо, чем знать плохо. Публий Гипертрофия сердечной мышцы - это компенсаторная приспособительная реакция миокарда, выражающаяся

69 С.П. ФОМИН Разработка модуля анализа электрокардиограммы УДК 004.58 Муромский институт (филиал) ФГБОУ ВПО «Владимирский государственный университет имени А.Г. и Н.Г. Столетовых» г. Муром В работе рассматривается

Система дистанционной кардио-теледиагностики Группа компаний «КОМНЕТ» - «ТЕХНОМАРКЕТ» г. Воронеж ПРИМЕНЕНИЕ НА ПРАКТИКЕ 2 НАЗНАЧЕНИЕ биомониторинг Система дистанционной кардио-теледиагностики это территориальнораспределенный

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УТВЕРЖДАЮ Первый заместитель министра Д.Л. Пиневич 19.05.2011 г. Регистрационный 013-0311 ЭКСПРЕСС-ОЦЕНКА ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ

Дела сердечные... Ветеринарный врач КСЦ «Измайлово», ООО «Эквимедика» Евсеенко Анастасия Основные жалобы владельцев: 1. Снижение работоспособности 2. Кашель, тяжелое дыхание 3. Отеки ног 4. Долгое восстановление

Секция: Клиническая медицина Альмухамбетова Рауза Кадыровна К.м.н., доцент, профессор кафедры интернатуры и резидентуры по терапии 3 Казахский Национальный медицинский университет Жангелова Шолпан Болатовна

ОСНОВЫ РАСШИФРОВКИ НОРМАЛЬНОЙ ЭЛЕКТРОКАРДИОГРАММЫ 2017 СОДЕРЖАНИЕ Список сокращений 2 Введение...2 Основные функции сердца.4 Формирование элементов ЭКГ...5 Расшифровка ЭКГ 9 Значения элементов ЭКГ в норме

ОТЧЕТ по результатам применения препарата КУДЕСАН в комплексной терапии нарушений сердечного ритма у детей. Березницкая В.В., Школьникова М.А. Детский центр нарушений ритма сердца Минздрава РФ В последние

ЭКГ при инфаркте миокарда Схема морфологических изменений в сердечной мышце при остром инфаркте миокарда По данным ЭКГ можно судить о продолжительности ОКС Электрокардиограмма при ишемической болезни сердца

Center of Scientific Cooperation "Interactive plus" Жоголева Екатерина Евгеньевна студентка ГБОУ ВО «Воронежский государственный медицинский университет им. Н.Н. Бурденко» Минздрава России г. Воронеж,

Секция: Кардиология Альмухамбетова Рауза Кадыровна профессор кафедры интернатуры и резидентуры по терапии 3 Казахский Национальный медицинский университет им.с.д.асфендиярова,алматы, Республика Казахстан

Профессия врач Выполнили: Анастасия Марусина Татьяна Матросова Научный руководитель: Ковшикова Ольга Ивановна «Я торжественно клянусь посвятить мою жизнь служению человечеству; Я буду честен в своей профессиональной

Секция 9: Медицинские науки Альмухамбетова Рауза Кадыровна кандидат медицинских наук, доцент профессор кафедры внутренних болезней 3 Казахский национальный медицинский университет Жангелова Шолпан Болатовна

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра информационно-аналитических систем Курсовая работа Определение пульса по ЭКГ Чирков Александр Научный руководитель:

Миннесотский код расшифровка >>> Миннесотский код расшифровка Миннесотский код расшифровка Считается фактором риска по внезапной остановке сердца, но клиники не дает и чаще всего остается без последствий.

Секция: кардиология МУСАЕВ АБДУГАНИ ТАЖИБАЕВИЧ Д.м.н., профессор, профессор кафедры скорой и неотложной медицинской помощи, Казахский Национальный медицинский университет им.с.д.асфендиярова, Алматы, Республика

УДК 616.1 ББК 54.10 Р 60 Посвящаю памяти моего отца Владимира Ивановича Родионова Научный редактор: Светлана Петровна Попова, канд.мед.наук, доцент, врач высшей категории, преподаватель кафедры инфекционных

5 Фотоплетизмография Введение Движение крови в сосудах обусловлено работой сердца. При сокращении миокарда желудочков кровь под давлением перекачивается из сердца в аорту и легочную артерию. Ритмические

В.Н. Орлов Руководство по электрокардиографии 9-е издание, исправленное Медицинское информационное агентство МОСКВА 2017 УДК 616.12-073.7 ББК 53.4 О-66 Орлов, В.Н. О-66 Руководство по электрокардиографии

ООО НИМП ЕСН г.саров «Миокард Холтер» «Миокард 12» Электрокардиограф «Миокард 3» Более 3000 медучреждений РФ работают на нашем оборудовании Домашний кардиоанализатор Миокард-12 Мобильный кардиоанализатор

Глава IV. Кровообращение На дом: 19 Тема: Строение и работа сердца Задачи: Изучить строение, работу и регуляцию работы сердца Пименов А.В. Строение сердца Сердце человека располагается в грудной клетке.

Сафонова Оксана Александровна преподаватель физической культуры Алексеева Полина Витальевна студентка Быстрова Дарья Александровна студентка ФГБОУ ВО «Санкт-Петербургский государственный архитектурно-строительный

Лектор и ответственная за обучение ин. учащихся на кафедре медицинской и биологической физики Межевич З.В. Физические основы электростимуляции Лабораторная работа: «Измерение параметров импульсных сигналов»,

Рябоштан Илья Андреевич студент Вишина Алла Леонидовна старший преподаватель ФГБОУ ВО «Ростовский государственный университет путей сообщения» г. Ростов-на-Дону, Ростовская область ЗДОРОВЬЕСБЕРЕГАЮЩИЕ

Гемодинамика. Физиология сердца. ЛЕКЦИЮ ЧИТАЕТ К.М.Н. КРЫЖАНОВСКАЯ СВЕТЛАНА ЮРЬЕВНА Гемодинамика - движение крови в замкнутой системе, обусловленное разностью давления в различных отделах сосудистого

ЭКГ при гипертрофии отделов сердца Определение Гипертрофия миокарда компенсаторноприспособительная реакция, развивающаяся в ответ на перегрузку того или иного отдела сердца и характеризующаяся увеличением

Scientific Cooperation Center "Interactive plus" Иванов Валентин Дмитриевич канд. пед. наук, доцент Елизаров Сергей Евгеньевич студент Кауль Ксения Максимовна студентка ФГБОУ ВО «Челябинский государственный

Школа электрокардиографии Синдромы гипертрофии миокарда предсердий и желудочков А.В. Струтынский, А.П. Баранов, А.Б. Глазунов, А.Г. Бузин Кафедра пропедевтики внутренних болезней Лечебного факультета РГМУ

Федорова Галина Алексеевна профессор Малиновский Вячеслав Владимирович доцент Вьюшин Сергей Германович старший преподаватель ФГБОУ ВО «Вологодский государственный университет» г. Вологда, Вологодская область

Аннотация к программе «Лечебная физкультура и спортивная медицина» Дополнительная профессиональная образовательная программа профессиональной переподготовки «Лечебная физкультура и спортивная медицина»

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Работа 2 Вариант 1 Опорно-двигательная система. Скелет 1. В таблице между позициями первого и второго столбцов имеется определенная связь. Объект Нейрон Свойство Обеспечивает рост кости в толщину Обладает

Авторы: Чухлебов Николай Владимирович Баракин Виталий Васильевич Товстый Андрей Игоревич Руководитель: Трегубова Ирина Владимировна учитель математики, физики, технологии, художественный руководитель детского

МИНЗДРАВ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Теоретические основы

Стандартные отведения


Отведение I.

Отведение II.

Отведение III.

Электрокардиограф

Электрокардиограф – прибор регистрирующий разности потенциалов, вызванных электрической активностью сердца, между точками на поверхности тела.

Типовые блоки электрокардиографа:

1. Входное устройство - система электродов, кабелей их подключения к прибору, приспособлений для фиксации электродов.

2. Усилитель биопотенциалов. Коэффициент усиления – порядка 1000.

3. Регистрирующее устройство - обычно термопринтер с разрешением не менее 8 точек/мм. Применяются значения скорости протяжки ленты 25 мм/с и 50 мм/с

4. ЖКИ – экран с видеоконтроллером.

5. Центральный процессор.

6. Клавиатура.

7. Блок питания

8. Блок калибровки. При его кратковременных включениях, на вход усилителя вместо пациента подключается калибровочный прямоугольный импульс амплитудой (1±0.01) мВ. Если коэффициент усиления по п.2 в допуске, то на ленте прописывается прямоугольный импульс высотой 10 мм

Требования ГОСТ 19687-89

ГОСТ 19687-89 «ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ БИОЭЛЕКТРИЧЕСКИХ ПОТЕНЦИАЛОВ СЕРДЦА» (см. Приложение 1) определяет основные характеристики электрокардиографов и электрокардиоскопов и методы их измерения. Основные параметры приборов должны соответствовать приведенным в таблице 1.

Таблица 1

Наименование параметра Значение параметра
1. Диапазон входных напряжении U, мВ. впределах 2. Относительная погрешность измерения напряжения* и, в диапазонах: от 0,1 до 0,5 мВ, %, не более от 0,5 до 4 мВ, %, не более 3. Нелинейность, %, в пределах: для электрокардиографов для электрокардиоскопов 4. Чувствительность S, мм/мВ 5. Относительная погрешность установки чувствительности, %. в пределах 6. Эффективная ширина записи (изображения) канала В, мм, не менее 7. Входной импеданс Zвх, МОм, не менее 8. Коэффициент ослабления синфазных сигналов Кс, не менее: для электрокардиографов для электрокардиоскопов 9. Напряжение внутренних шумов, приведенных ко входу Uш, мкВ, не более 10. Постоянная времени, с. не менее 11. Неравномерность амплитудно-частотной характеристики (АЧХ) в диапазонах частот: от 0,5 до 60 Гц, % от 60 до 75 Гц, % 12. Относительная погрешность измерения интервалов времени в диапазоне интервалов времени от 0.1 до 1.0 с,% не более 13. Скорость движения носителя записи (скорость развертки) Vн мм/с 14. Относительная погрешность установки скорости движения носителя записи (скорости развертки) ,%, в пределах: для электрокардиографов для электрокардиоскопов От 0,03 до 5 ±15 ±7 ±2 ±2.5 2.5**; 5; 10; 20; 40** ±5 40*** 100000 28000 20 3.2 от -10 до +5 от -30 до +5 ±7 25,50 допустимы и иные значения ±5 ±10

* Допускается не проверять при проведении приемо-сдаточных испытаний.

** Допускается по согласованию с заказчиком.

***Для носимых приборов по согласованию с заказчиком допускаются значения менее 40 мм.

В международном стандарте IEC 60601-2-51 “Medical electrical equipment-Part 2-51: Particular requirements for safety, including essential performance, of recording and analysing single channel and multichannel electrocardiographs”, принятом целиком в РФ требования установлены в SECTION EIGHT - ACCURACY OF OPERATING DATA AND PROTECTION AGAINST HAZARDOUS OUTPUT (см. Приложение 2).

Типовая схема электрокардиографа с активной компенсацией синфазной помехи.

Рис. 5. Типовая структура ЭКГ- канала с активной компенсацией синфазной помехи.

Рис. 6. Главная часть схемы канала ЭКГ

Кардиограф DIXION ECG-1001a

Кабель отведений пациента

Согласующее устройство

Задняя и передняя панель соответственно.

Схема установки.

Схема согласующего устройства для проверки диапазона регистрируемых сигналов, погрешности чувствительности, погрешности измерения напряжения, погрешности измерения интервалов времени, погрешности скорости движения, погрешности калибровочного сигнала, постоянной времени, АЧХ

Условные обозначения элементов схемы и их номинальные значения:

G1 – генератор сигналов специальной формы;

G2 – генератор импульсов прямоугольной формы;

R1 – 51 кОм ±5%;

R2– 100 кОм ±0,1%;

R3– 100 Ом ±0,1%;

R4– 51 Ом ±5%;

R5 – выбирают для получения напряжения на R4±(300 мВ±10%) в зависимости от напряжения источника;

R8 - 100 Ом ±5%;

C1 – 47 нФ ±10%;

Z1 - параллельно соединенные R1 и C1;

Z2 - параллельно соединенные R6 и C2;

U – источник постоянного напряжения, обеспечивающий напряжение на R4±(300±10%).

Порядок выполнения работы

Под контролем лаборанта собрать схему установки.

Перед проверкой основных параметров прибор подвергают испытанию на допустимые перегрузки по входному напряжению в каждом регистрирующем канале гармоническим сигналом размахом 1В ÷5% и частотой 50 Гц±5%, приложенным между отводящими электродами в течении времени не менее 10 с. Фильтры должны быть выключены. Испытания не должны приводить к повреждению пишущего механизма или электрической схемы прибора.

Установить скорость протяжки ленты 25 мм/с (в меню кардиографа). Это означает, что при расшифровке записей одному миллиметру вдоль ленты соответствует время t = 1/25 = 0,04 с/мм.

1. Выполнить проверку относительной погрешности установки чувствительности подавая на вход прибора прямоугольный сигнал 5 Hz ±5% и амплитудой 1 V ±2% и изменяя усиление (20, 10, 5).

Для этого:

· Из библиотеки сигналов (кнопка More Function) выбрать прямоугольный сигнал, CardTest01_05_1(0,33Hz), изображенный на рис.12.3 и задаём частоту 0,33 Hz.

· На панели генератора установить амплитуду сигнала 2 V.

· На кардиографе выбрать чувствительность равной 5mm/mV кнопкой SENS. Возможны следующие уровни чувствительности: ×1 (10mm/mV) → ×2 (20mm/mV) →AGC → · 25 (2.5mm/mV)→ · 5 (5mm/mV)).

· Запустить сигнал кнопкой RUN.

· Повторить всё, установив амплитуду 1V, и чувствительность 10mm/mV. А затем задать амплитуду 0,5V и чувствительность 20mm/mV.

· С помощью линейки и циркуля измеряем отклонение амплитуды, допустимы отклонение ±5%.

· Заносим результаты в таблицу.

2. Проверку неравномерности АЧХ проводить подачей на вход прибора гармонического сигнала в соответствие со схемой 7.1.

Неравномерность АЧХ в процентах вычисляют по формуле: δ 1 = *100,

где h о - размер размаха изображения синусоиды на записи на опорной частоте 10 Гц, мм.

h max - размер размаха изображения синусоиды на записи максимально отличающегося от h о в положительную или отрицательную стороны, мм.

Для проверки АЧХ погрешности измерения напряжения рекомендуется использовать комплексные испытательные сигналы генератора PCSGU-250, представленные на Рис.12. (1 и 2 сигнал)

Для этого:

· Из библиотеки сигналов выбрать сигнал, CardTest10_20_30_40_50_60_75_100(0,5Hz).

· Установить частоту 0,5 Hz и амплитуду 2V.

· На кардиографе устанавливаем чувствительность 10mm/mV.

· Записываем сигнал.

· С помощью линейки и циркуля измеряем h о (для 10 Hz пачки сигналов)и h max 1 (для 60 Hz пачки сигналов) и h max 2 (для 75 Hz пачки сигналов.

· Проводим расчет по формуле для 60 и 75 Hz сигналов.

· Повторяем все действия для сигнала CardTest05_2_10_25(0,25Hz), установив амплитуду 2V, частоту 0,25 Hz.

· Измеряем h о для пачки сигналов 0,5 Hz и h max для пачки сигналов 10 и 25Hz, h max 1 (для 10 Hz) и h max 2 (для 25 Hz)

· Результаты вносим в таблицу.

Отклонения АЧХ допустимы следующие: в первом сигнале для пачки 60Гц "-10%", для пачки 75Гц - "30%". Во втором сигнале ±5%.


Рис.12. Комплексные испытательные сигналы, используемые при поверке электрокардиографов.

3. Проверку постоянной времени провести в каждом канале при чувствительности 5мм/мВ подачей на вход прибора сигнала прямоугольной формы размахом 4мВ±3% длительностью менее 5 с. Постоянную времени определить по записи как время затухания сигнала до уровня 0,37согласно чертежу без учета выбросов.

Изображение переходной характеристики на записи для каждого канала должно быть монотонным, обращенным в сторону нулевой линии.

· Выбираем прямоугольный сигнал с размахом 4мВ.

· Устанавливаем чувствительность на кардиографе 5мм/мВ.

· Записываем сигнал.

· С помощью линейки измеряем максимальную амплитуду (А), затем проводим горизонтальную линию на уровне 0,37А до пересечения с линией сигнала, и измеряем τ как показано на рисунке ниже.

Таблица результатов при измерении погрешности чувствительности

Таблица результатов при проверне неравномерности АЧХ

Таблица результатов при проверне постоянной времени

τ

Выводы:

Теоретические основы

Интегральный электрический вектор сердца (ИЭВС) – это векторная сумма дипольных моментов токовых диполей по всему объему сердца. В ходе сердечного сокращения ИЭВС меняется как по величине, так и по направлению, что вызывает распространение электромагнитной энергии в пространстве.

Стандартные отведения

Эта энергия, распространяясь от сердца по многим направлениям, вызывает появление поверхностных потенциалов на коже разных в различных точках. Эта разница в потенциалах, называемая отведением, может быть зарегистрирована.

Отведение обеспечивает оценку электрической активности сердца между двумя точками (полюсами). Каждое отведение состоит из положительного (+) полюса, или активного электрода, и отрицательного (-) полюса. Между положительным и отрицательным полюсами проходит воображаемая линия, представляющая ось отведения. Поскольку отведения позволяют измерять электрический потенциал сердца с разных позиций, сигналы, регистрируемые этими отведениями, дают свою характерную для каждого отведения кривую.

Направление движения электрического сигнала определяет форму зубцов ЭКГ. Когда оно совпадает с направлением оси отведения и направлено к положительному полюсу, линия на ЭКГ отклоняется вверх («положительное отклонение»). Когда электрический ток направлен от положительного полюса к отрицательному, отклоняется вниз от изолинии («отрицательное отклонение»). Когда направление тока перпендикулярно к оси, зубцы ЭКГ направлены в любом направлении или могут быть низкими. Если электрическая активность отсутствует или слишком мала для измерения, на ЭКГ отображается прямая линия, что обозначается как изоэлектрическое отклонение.

В плоскости, проходящей через сердце вертикально от верхушки к основанию, электрические токи рассматриваются в направлении на сердце спереди. Фронтальную плоскость обеспечивают шесть отведений от конечностей (I, ІІ, ІІІ, aVR, aVL, aVF) (рис. 1).


В плоскости, проходящей горизонтально через середину сердца, направление электрических токов рассматривается сверху вниз. Такой подход обеспечивают шесть грудных отведений (V 1 -V 6) (рис. 2).

Рис. 2. Горизонтальная плоскость

отведения I, II и III (по Эйнтховену). Эти три отведения называются стандартными, или двухполюсными, отведениями от конечностей.

Для записи стандартных отведений от конечностей электроды размещают на правом предплечье, левом предплечье и левой голени. Четвертый электрод помещают на правую голень, он используется как заземление для стабилизации записи ЭКГ и не влияет на характеристику электрических сигналов, регистрируемых на ЭКГ

Эти отведения называют двухполюсными, потому что каждое имеет два электрода, которые обеспечивают одновременную запись электрических токов сердца, идущих по направлению к двум конечностям. Двухполюсные отведения позволяют измерять потенциал между положительным (+) и отрицательным (-) электродами.

Отведение I. Регистрирует электрические токи между правым (красный электрод) и левым предплечьями (желтый электрод).

Отведение II. Регистрирует электрические токи между правым предплечьем (красный электрод) и левой голенью (зеленый электрод).

Отведение III. Регистрирует электрические токи между левой голенью (зеленый электрод) и левым предплечьем (желтый электрод).

Электрод на правом предплечье всегда рассматривается в качестве отрицательного полюса, на левой голени всегда в качестве положительного. Электрод на левом предплечье может быть либо положительным, либо отрицательным в зависимости от отведения: в отведении I он положительный, а в отведении III - отрицательный.

Когда ток направлен к положительному полюсу, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный). Когда ток идет к отрицательному полюсу, зубец ЭКГ инвертирован (отрицательный). В отведении II ток распространяется от отрицательного к положительному полюсу, поэтому зубцы на обычной ЭКГ направлены вверх.

Понятие о треугольнике Эйнтховена.

Размещение электродов для регистрации отведений I, II и Ш, как показано на рис. 3, образует так называемый треугольник Эйнтховена. Каждая сторона этого равностороннего треугольника между двумя электродами соответствует одному из стандартных отведений Эйнтховен считал, что сердце расположено в центре генерируемого им электрического поля. Поэтому сердце рассматривается как центр этого равностороннего треугольника. Из треугольника Эйнтховена получается фигура с трехосевой системой координат для стандартных отведений I, II и III.

Рис. 3. Треугольник Эйнтховена

Закон Эйнтховена гласит: сумма электрических потенциалов, рёгистрируемых в любой момент в отведениях I и Ш, равна электрическому потенциалу, регистрируемому в отведении П. Этот закон может быть использован для обнаружения ошибок, допущенных при наложении электродов, выяснения причин регистрации необычных сигналов в одном из трех стандартных отведений и для оценки серийных ЭКГ.

Отведения aVR, aVL и aVF (по Голбдбергу). Эти три отведения имеют общее название усиленных однополюсных отведений от конечностей.

В этих отведениях используются те же положения электродов, что и в стандартных отведениях I, II и III, то есть электроды фиксируются на правом предплечье, левом предплечье и левой голени. Электрод, наложенный на правую голень, при записи сигналов в этих отведениях не используется.

В отведениях aVR, aVL и aVF исследуется разность электрических потенциалов между конечностями и центром сердца. Их называют однополюсными, потому что лишь один электрод используют для регистрации электрического сигнала; центр сердца всегда нейтрален, поэтому второго электрода не требуется. Обозначение усиленных отведений от конечностей происходит от первых букв английских слов «а» - augmented (усиленный), «V»-voltage (потенциал), «R»-right (правый), «L»-left (левый), «F»-foot (нога).

В связи с изложенным, все электроды в этих отведениях являются положительными. Отрицательный электрод получают путем сложения сигналов отведений I, ІІ и III, алгебраическая сумма которых равна нулю.

Эти отведения также называют усиленными, так как амплитуда комплексов увеличена на 50% по сравнению со стандартными отведениями. Запись усиленных отведений более удобна для интерпретации.

Соотношения, положенные в основу работы электрокардиографа :

UI= Uвх(L)-Uвх(R);

UII= Uвх(F)-Uвх(R);

UIII= Uвх(F)-Uвх(L);

UaVR=Uвх(R)-(Uвх(L)-Uвх(F))/2;

UaVL=Uвх(L)-(Uвх(F)-Uвх(R))/2;

UaVF=Uвх(F)-(Uвх(L)-Uвх(R))/2;

UVi= Uвх(Ci)-(Uвх(R)+Uвх(L)+Uвх(F))/3, где i=1,2,…,6.

Отведения V1- V6 (по Вильсону). Эти шесть отведений называют однополюсными сердечными, или грудными, отведениями. Их обозначают буквой V, а точки съёма положительных потенциалов j (и соответствующие провода кабеля отведений) - буквой С с номером, соответствующим положению электрода (рис. 4). Отрицательный потенциал берётся с точки, потенциал которой формируется в соответствии с соотношением (j R +j L +j F)/3.

Электроды располагают в следующих точках:

С(V)1 - в четвертом межреберье по правому краю грудины (красный электрод);

С(V)2 - в четвертом межреберье по левому краю грудины (желтый электрод);

C(V)3 - посредине линии, соединяющей точки V2 и V4 (зеленый электрод);

C(V)4 - в пятом межреберье по левой срединно-ключичной линии (коричневый электрод);

C(V)5 - в пятом межреберье по левой передней подмышечной линии (черный электрод);


C(V)6 - в пятом межреберье по левой средней подмышечной линии (фиолетовый электрод).

Рис. 4. Отведения по Вильсону

В грудных отведениях измеряется разность электрических потенциалов между электродами, размещенными на груди, и центральным терминалом. Грудные электроды в любом из отведений V всегда положительны. Отрицательный электрод получают за счет сложения сигналов отведений I, II и III, алгебраическая сумма которых равна нулю.

Основываясь на выше изложенных принципах и с целью стандартизации электрокардиологических измерений у разных людей В.Эйнтховен в 1903г.предложил считать, что начало электрического вектора сердца расположено в центре равностороннего треугольника, вершины которого расположены на медиальных поверхностях нижней трети левого (ЛР) и правого (ПР) предплечья и голени левой ноги (ЛН)

Таким образом выполняется два условия при котором сердце равноудалено от точек регистрации разности потенциалов. С другой стороны фиксированные точки на поверхности организма между которыми

измеряется разность потенциалов удалены далеко от вектора сердца r >> l, то есть диполь сердца является точечным. Внутри треугольника Эйнтховена можно изобразить три петли P,QRS,T, которые описывают мгновенные направления электрического вектора сердца за один кардиоцикл во фронтальной плоскости организма.(Рис.15)

Все петли имеют общую точку, которую называют электрическим центром сердца и располагают ее в центре треугольника.

Разность потенциалов, измеряется между каждой парой вершин треугольника, должна быть равна проекции последовательных мгновенных значений вектора сердца трех петель P,QRS,T.

Отведения, зарегистрированные от каждой пары вершин треугольника Эйнтховена, получили названия стандартных отведений.


Стандартных отведений три, обозначаются они римскими цифрами I,II,III.

В каждую вершину треугольника, расположенную на медиальной поверхности нижней трети предплечий правой руки (ПР), левой руки (ЛР) и голени левой ноги (ЛН) помещают металлические пластинки определенного размера – электроды. Их соединяют

наконечниками через кабель отведения с регистрирующей системой электрокардиографа, клемы которого имеют знаки

«+» и « - ». Для практических целей используется цветовая и буквенная маркировка наконечников кабеля отведений.

Правая рука, ПР – R (right) – красный.

Левая рука, ЛР – L (left) – желтый.

Левая нога, ЛН – F (foot) – зеленый.

Правая нога, ПН – N – черный.

Грудной электрод, С – белый.

Первое стандартное отведение – I - регистрируется между левой рукой (ЛР) и правой рукой (ПР), причем ЛР - + «плюс», а ПР - - «минус». Вектор отведения направлен от ПР к ЛР по стороне треугольника Эйнтховена.

Второе стандартное отведение – II – регистрируется между правой рукой (ПР) и левой ногой (ЛН), причем ПР - - «минус», а ЛН - + «плюс». Вектор отведения, направлен от ПР к ЛН по стороне треугольника Эйнтховена.

Третье стандартное отведение – III - регистрируется между левой ногой (ЛН) и левой рукой (ЛР), причем ЛН - + «плюс», а ЛР - - «минус». Вектор отведения направлен от ЛР к ЛН по стороне треугольника Эйнтховена.

Стандартные отведения являются двухполюсными, так как каждый электрод является активным, то есть воспринимают потенциалы соответствующих точек тела.

Усиленные однополюсные отведения от конечностей .

В 1942 году Е.Гольдберг предложил ввести три усиленных однополюсных отведения от конечностей.

Эти отведения являются однополюсными и формируются из стандартных.(Рис.17)

Если через большое сопротивление (200 – 300 Ом) соединить два проводника, идущих от двух стандартных точек, то потенциал, таким образом образованного полюса, будет приблизительно равным нулю.

Потенциал же третьей конечности будет не равным нулю. Электрод на этой конечности будут являться активным. К активной точке подключают «плюс» измерительного прибора, а «минус» к общей точке двух других стандартных точек. Таким образом, получают усиленное однополюсное отведение.

Физические основы электрокардиографии

Физические основы ЭКГ заключаются в создании модели электрического генератора, который создавал бы разность потенциалов, соответствующую по величине разности потенциалов между какими-то точками на поверхности тела, созданной сердцем как источником электрического поля.

Голландский ученый Эйнтховен предложил теорию ЭКГ, которая используется в медицине по настоящее время (за цикл работ по ЭКГ Эйнтховен в 1924 г удостоен Нобелевской премии).

Основные положения теории Эйнтховена:

1. Электрическое поле, созданное сердцем можно представить как поле, созданное токовым диполем с электрическим моментом токового диполя т, называемого в электрокардиографии интегральным электрическим вектором сердца (ИЭВС) - с.

2. ИЭВС с находится в однородной проводящей среде.

3. ИЭВС с за цикл работы сердца изменяется по величине и по направлению, причем его начало неподвижно и находится в атриовентрикулярном узле, а конец с описывает в пространстве сложную кривую, проекция которой на плоскости (например, фронтальную) в норме имеет 3 петли: Р , QRS и Т (рис.4).

Рисунок 4. Проекции ИЭВС ( с) на стороны равностороннего треугольника (на линии отведений) по теории Эйнтховена для ЭКГ

Эйнтховен предложил проектировать петли (проекции с на фронтальную плоскость) на стороны равностороннего треугольника (рис.4) и регистрировать разность потенциалов между двумя из трех точек равностороннего треугольника (называемого треугольником Эйнтховена) относительно общей точки (общий электрод подключается к правой ноге - ПН). В треугольнике находится с и конец этого вектора за цикл работы сердца описывает петли Р, QRS и Т (рис.4). Направление с, при котором значение | с | - максимально (максимальное значение зубца “R ”), называют электрической осью сердца.

Вершины треугольника условно обозначают ПР (правая рука), ЛР (левая рука), ЛН (левая нога), общая точка ПН (права нога). Стороны треугольника называют линиями отведения .

Регистрация разности потенциалов между вершинами треугольника называют регистрацией ЭКГ в стандартных отведениях: I (первое) отведение – разность потенциалов между вершинами ПР и ЛР относительно ПН, II (второе) отведение – ПР-ЛН, III (третье) отведение – ЛР-ЛН (рис. 4). Существует дополнительный электрод Г – грудные отведения V (грудной электрод фиксирует в нескольких точках на поверхности груди, получая соответственно несколько грудных ЭКГ).

Электроды при снятии ЭКГ фиксируют не в вершинах равностороннего треугольника, а в эквипотенциальных им точках - обычно в нижних частях соответственно правой руки, левой руки, левой ноги, правой ноги (общий электрод).



Примерный вид графической регистрации разности потенциалов II-го отведения показан на рис.5 (L 1 – период сердечных сокращений). Зубец “Р ” соответствует проекции петли “Р” на II-е отведение, Q – петли Q, R – петли R, S – петли S, Т – петли Т .


Рисунок 5. Зубцы ЭКГ: P, Q, R, S, T

Физиологический смысл зубцов ЭКГ:

Зубец “Р ” отражает возбуждение предсердий.

Зубец “Q” – деполяризация межжелудочковой перегородки (на многих отведениях отсутствует).

Зубец “R ” – деполяризация верхушки, передней, задней и боковой стенки желудочков сердца.

Зубец “S ” – возбуждение основания желудочков сердца.

Зубец “Т ” – реполяризация желудочков сердца.

Интервал “P-Q ” – деполяризация предсердий.

Интервал “Q-T ” – систола желудочков.

Интервал комплекса “QRS ” – деполяризация желудочков.

Интервал “Т-Р ” – состояние “покоя” миокарда.

Записанную на бумаге Dj(t) в каком-либо отведении называют электрокардиограммой , а метод регистрации – электрокардиографией.

Если разность потенциалов подать на вертикально отклоняющие пластины осциллографа, то на экране получим кривую, аналогичную рис.5. Метод называется электрокардиоскопией.

Метод регистрации петель P, QRS, T (рис. 4) путем записи их на бумаге называется векторкардиографией.

Если подать разность потенциалов с одного отведения на вертикально отклоняющие пластины, а с другого – на горизонтально отклоняющие пластины электронно-лучевой трубки (осциллографа), то при сложении взаимно перпендикулярных колебаний ЭКГ на экране получатся петли Р, QRS, Т, аналогичные петлям, изображенным на рис.4. Такой метод регистрации называется векторкардиоскопией .

Регистрация ЭКГ в каком-либо отведении дает только часть информации о пространственной кривой, описываемой концом с за цикл работы сердца. Поэтому для получения более полной информации о функционировании сердца используют, кроме стандартных отведений (рис.6), другие отведения, в том числе:

Отведение грудного электрода с каждым из стандартных, обозначаемых соответственно CR, CL, CF - (рис.6а);

Однополюсные отведения, которые образуются одним из стандартных электродов и средней точкой, полученной путем соединения трех стандартных электродов, каждого последовательно с высокоомным резистором. Наиболее распространено из них грудное (рис.6б);

Усиленные отведения – модификация однополюсных, образуемых одним из стандартных электродов и средней точкой, полученной соединением через высокоомный резистор двух других стандартных электродов. Усиленные отведения обозначают как aVR, aVL, aVF (рис. 6 в, г, д).

П Р
I
III

Рисунок 6. I-е II-е III-е стандартные отведения



Рисунок 6а и 6б. Грудные отведения




Рисунок 6в, 6г и 6д. Усиленные отведения

Рассмотренные ранее электрические явления, происходящие постоянно в работающей сердечной мышце, создают электрическое поле. Электрические потенциалы такого поля можно регистрировать при помощи электродов гальванометра, подключив два полюса: положительный и отрицательный. При электрокардиографическом исследовании электроды накладывают на определенные точки человеческого тела. Электроды соединены с гальванометром, который входит в состав электрокардиографа. Соединение двух точек тела, имеющих разные потенциалы, называется электрокардиографическим отведением .

Стандартные отведения

Эйнтховеном для записи ЭКГ были предложены 3 отведения, которые впоследствии получили название стандартных двухполюсных отведений или просто стандартных отведений .

Эйнтховен предположил, что сердце - это точечный источник электрического тока, находящийся в центре равностороннего треугольника (), образованного двумя руками и левой ногой.

  • I стандартное отведение: правая рука (отрицательный полюс) - левая рука (положительный полюс);
  • II стандартное отведение: правая рука (отрицательный полюс) - левая нога (положительный полюс);
  • III стандартное отведение: левая рука (отрицательный полюс) - левая нога (положительный полюс).

I отведение измеряет разность потенциалов между правой и левой рукой - регистрация положительного импульса происходит, если суммарный вектор направлен к левой руке.

II отведение измеряет разность потенциалов между правой рукой и левой ногой - регистрация положительного импульса происходит, если суммарный вектор направлен к левой ноге.

III отведение измеряет разность потенциалов между левой рукой и левой ногой - регистрация положительного импульса происходит, если суммарный вектор направлен к левой ноге.

При патологиях в этих направлениях регистрируются отрицательные сигналы, поскольку вектор имеет другое направление.

Практической кардиографией установлено, что при преобладании потенциалов левой части сердца суммарный вектор возбуждения направлен к левой руке. И, наоборот, при преобладании потенциалов правой части сердца - вектор направлен к левой ноге. Это позволяет диагностировать гипертрофию левого желудочка и предсердия при высоких положительных зубцах ЭКГ в первом отведении; гипертрофию правого желудочка и предсердия при высоких положительных зубцах ЭКГ в третьем отведении.

Сердце расположено в центре генерируемого электрического поля, схематично ограниченного осями отведений. Если опустить перпендикуляры от сердца к оси каждого стандартного отведения, то они разделят ось каждого отведения на две равные части - положительную и отрицательную, как показано на рисунке. Если ЭДС сердца проецируется на положительную часть осей стандартных отведений, то кардиограф регистрирует положительный зубец в этих отведениях. И, наоборот, если ЭДС сердца проецируется на отрицательную часть осей - кардиограф регистрирует отрицательный зубец в этих отведениях.

Если спроецировать оси стандартных отведений (стороны треугольника) непосредственно на сердце, расположенное в центре треугольника Эйнтховена, - то получится .

ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

Загрузка...