Медицинский портал. Щитовидная железа, Рак, диагностика

Шифры замены. До сих пор неразгаданные шифры и таинственные коды

Необходимость в шифровании переписки возникла еще в древнем мире, и появились шифры простой замены. Зашифрованные послания определяли судьбу множества битв и влияли на ход истории. Со временем люди изобретали все более совершенные способы шифрования.

Код и шифр - это, к слову, разные понятия. Первое означает замену каждого слова в сообщении кодовым словом. Второе же заключается в шифровании по определенному алгоритму каждого символа информации.

После того как кодированием информации занялась математика и была разработана теория криптографии, ученые обнаружили множество полезных свойств этой прикладной науки. Например, алгоритмы декодирования помогли разгадать мертвые языки, такие как древнеегипетский или латынь.

Стеганография

Стеганография старше кодирования и шифрования. Это искусство появилось очень давно. Оно буквально означает «скрытое письмо» или «тайнопись». Хоть стеганография не совсем соответствует определениям кода или шифра, но она предназначена для сокрытия информации от чужих глаз.

Стеганография является простейшим шифром. Типичными ее примерами являются проглоченные записки, покрытые ваксой, или сообщение на бритой голове, которое скрывается под выросшими волосами. Ярчайшим примером стеганографии является способ, описанный во множестве английских (и не только) детективных книг, когда сообщения передаются через газету, где малозаметным образом помечены буквы.

Главным минусом стеганографии является то, что внимательный посторонний человек может ее заметить. Поэтому, чтобы секретное послание не было легко читаемым, совместно со стеганографией используются методы шифрования и кодирования.

ROT1 и шифр Цезаря

Название этого шифра ROTate 1 letter forward, и он известен многим школьникам. Он представляет собой шифр простой замены. Его суть заключается в том, что каждая буква шифруется путем смещения по алфавиту на 1 букву вперед. А -> Б, Б -> В, ..., Я -> А. Например, зашифруем фразу «наша Настя громко плачет» и получим «общб Обтуа дспнлп рмбшеу».

Шифр ROT1 может быть обобщен на произвольное число смещений, тогда он называется ROTN, где N - это число, на которое следует смещать шифрование букв. В таком виде шифр известен с глубокой древности и носит название «шифр Цезаря».

Шифр Цезаря очень простой и быстрый, но он является шифром простой одинарной перестановки и поэтому легко взламывается. Имея подобный недостаток, он подходит только для детских шалостей.

Транспозиционные или перестановочные шифры

Данные виды шифра простой перестановки более серьезны и активно применялись не так давно. В Гражданскую войну в США и в Первую мировую его использовали для передачи сообщений. Его алгоритм заключается в перестановке букв местами - записать сообщение в обратном порядке или попарно переставить буквы. Например, зашифруем фразу «азбука Морзе - тоже шифр» -> «акубза езроМ - ежот рфиш».

С хорошим алгоритмом, который определял произвольные перестановки для каждого символа или их группы, шифр становился устойчивым к простому взлому. Но! Только в свое время. Так как шифр легко взламывается простым перебором или словарным соответствием, сегодня с его расшифровкой справится любой смартфон. Поэтому с появлением компьютеров этот шифр также перешел в разряд детских.

Азбука Морзе

Азбука является средством обмена информации и ее основная задача - сделать сообщения более простыми и понятными для передачи. Хотя это противоречит тому, для чего предназначено шифрование. Тем не менее она работает подобно простейшим шифрам. В системе Морзе каждая буква, цифра и знак препинания имеют свой код, составленный из группы тире и точек. При передаче сообщения с помощью телеграфа тире и точки означают длинные и короткие сигналы.

Телеграф и азбука был тем, кто первый запатентовал «свое» изобретение в 1840 году, хотя до него и в России, и в Англии были изобретены подобные аппараты. Но кого это теперь интересует... Телеграф и азбука Морзе оказали очень большое влияние на мир, позволив почти мгновенно передавать сообщения на континентальные расстояния.

Моноалфавитная замена

Описанные выше ROTN и азбука Морзе являются представителями шрифтов моноалфавитной замены. Приставка «моно» означает, что при шифровании каждая буква изначального сообщения заменяется другой буквой или кодом из единственного алфавита шифрования.

Дешифрование шифров простой замены не составляет труда, и в этом их главный недостаток. Разгадываются они простым перебором или Например, известно, что самые используемые буквы русского языка - это «о», «а», «и». Таким образом, можно предположить, что в зашифрованном тексте буквы, которые встречаются чаще всего, означают либо «о», либо «а», либо «и». Исходя из таких соображений, послание можно расшифровать даже без перебора компьютером.

Известно, что Мария I, королева Шотландии с 1561 по 1567 г., использовала очень сложный шифр моноалфавитной замены с несколькими комбинациями. И все же ее враги смогли расшифровать послания, и информации хватило, чтобы приговорить королеву к смерти.

Шифр Гронсфельда, или полиалфавитная замена

Простые шифры криптографией признаны бесполезными. Поэтому множество из них было доработано. Шифр Гронсфельда — это модификация шифра Цезаря. Данный способ является значительно более стойким к взлому и заключается в том, что каждый символ кодируемой информации шифруется при помощи одного из разных алфавитов, которые циклически повторяются. Можно сказать, что это многомерное применение простейшего шифра замены. Фактически шифр Гронсфельда очень похож на шифр Виженера, рассмотренный ниже.

Алгоритм шифрования ADFGX

Это самый известный шифр Первой мировой войны, используемый немцами. Свое имя шифр получил потому, что приводил все шифрограммы к чередованию этих букв. Выбор самих же букв был определен их удобством при передаче по телеграфным линиям. Каждая буква в шифре представляется двумя. Рассмотрим более интересную версию квадрата ADFGX, которая включает цифры и называется ADFGVX.

A D F G V X
A J Q A 5 H D
D 2 E R V 9 Z
F 8 Y I N K V
G U P B F 6 O
V 4 G X S 3 T
X W L Q 7 C 0

Алгоритм составления квадрата ADFGX следующий:

  1. Берем случайные n букв для обозначения столбцов и строк.
  2. Строим матрицу N x N.
  3. Вписываем в матрицу алфавит, цифры, знаки, случайным образом разбросанные по ячейкам.

Составим аналогичный квадрат для русского языка. Например, создадим квадрат АБВГД:

А Б В Г Д
А Е/Е Н Ь/Ъ А И/Й
Б Ч В/Ф Г/К З Д
В Ш/Щ Б Л Х Я
Г Р М О Ю П
Д Ж Т Ц Ы У

Данная матрица выглядит странно, так как ряд ячеек содержит по две буквы. Это допустимо, смысл послания при этом не теряется. Его легко можно восстановить. Зашифруем фразу «Компактный шифр» при помощи данной таблицы:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Фраза К О М П А К Т Н Ы Й Ш И Ф Р
Шифр бв гв гб гд аг бв дб аб дг ад ва ад бб га

Таким образом, итоговое зашифрованное послание выглядит так: «бвгвгбгдагбвдбабдгвдваадббга». Разумеется, немцы проводили подобную строку еще через несколько шифров. И в итоге получалось очень устойчивое к взлому шифрованное послание.

Шифр Виженера

Данный шифр на порядок более устойчив к взлому, чем моноалфавитные, хотя представляет собой шифр простой замены текста. Однако благодаря устойчивому алгоритму долгое время считался невозможным для взлома. Первые его упоминания относятся к 16-му веку. Виженер (французский дипломат) ошибочно считается его изобретателем. Чтобы лучше разобраться, о чем идет речь, рассмотрим таблицу Виженера (квадрат Виженера, tabula recta) для русского языка.

Приступим к шифрованию фразы «Касперович смеется». Но, чтобы шифрование удалось, нужно ключевое слово — пусть им будет «пароль». Теперь начнем шифрование. Для этого запишем ключ столько раз, чтобы количество букв из него соответствовало количеству букв в шифруемой фразе, путем повтора ключа или обрезания:

Теперь по как по координатной плоскости, ищем ячейку, которая является пересечением пар букв, и получаем: К + П = Ъ, А + А = Б, С + Р = В и т. д.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Шифр: Ъ Б В Ю С Н Ю Г Щ Ж Э Й Х Ж Г А Л

Получаем, что "касперович смеется" = "ъбвюснюгщж эйхжгал".

Взломать так сложно, потому что для работы частотного анализа необходимо знать длину ключевого слова. Поэтому взлом заключается в том, чтобы наугад бросать длину ключевого слова и пытаться взломать засекреченное послание.

Следует также упомянуть, что помимо абсолютно случайного ключа может быть использована совершенно разная таблица Виженера. В данном случае квадрат Виженера состоит из построчно записанного русского алфавита со смещением на единицу. Что отсылает нас к шифру ROT1. И точно так же, как и в шифре Цезаря, смещение может быть любым. Более того, порядок букв не должен быть алфавитным. В данном случае сама таблица может быть ключом, не зная которую невозможно будет прочесть сообщение, даже зная ключ.

Коды

Настоящие коды состоят из соответствий для каждого слова отдельного кода. Для работы с ними необходимы так называемые кодовые книги. Фактически это тот же словарь, только содержащий переводы слов в коды. Типичным и упрощенным примером кодов является таблица ASCII — международный шифр простых знаков.

Главным преимуществом кодов является то, что расшифровать их очень сложно. Частотный анализ почти не работает при их взломе. Слабость же кодов — это, собственно, сами книги. Во-первых, их подготовка — сложный и дорогостоящий процесс. Во-вторых, для врагов они превращаются в желанный объект и перехват даже части книги вынуждает менять все коды полностью.

В 20-м веке многие государства для передачи секретных данных использовали коды, меняя кодовую книгу по прошествии определенного периода. И они же активно охотились за книгами соседей и противников.

"Энигма"

Всем известно, что "Энигма" — это главная шифровальная машина нацистов во время II мировой войны. Строение "Энигмы" включает комбинацию электрических и механических схем. То, каким получится шифр, зависит от начальной конфигурации "Энигмы". В то же время "Энигма" автоматически меняет свою конфигурацию во время работы, шифруя одно сообщение несколькими способами на всем его протяжении.

В противовес самым простым шифрам "Энигма" давала триллионы возможных комбинаций, что делало взлом зашифрованной информации почти невозможным. В свою очередь, у нацистов на каждый день была заготовлена определенная комбинация, которую они использовали в конкретный день для передачи сообщений. Поэтому даже если "Энигма" попадала в руки противника, она никак не способствовала расшифровке сообщений без введения нужной конфигурации каждый день.

Взломать "Энигму" активно пытались в течение всей военной кампании Гитлера. В Англии в 1936 г. для этого построили один из первых вычислительных аппаратов (машина Тьюринга), ставший прообразом компьютеров в будущем. Его задачей было моделирование работы нескольких десятков "Энигм" одновременно и прогон через них перехваченных сообщений нацистов. Но даже машине Тьюринга лишь иногда удавалось взламывать сообщение.

Шифрование методом публичного ключа

Самый популярный из алгоритмов шифрования, который используется повсеместно в технике и компьютерных системах. Его суть заключается, как правило, в наличии двух ключей, один из которых передается публично, а второй является секретным (приватным). Открытый ключ используется для шифровки сообщения, а секретный — для дешифровки.

В роли открытого ключа чаще всего выступает очень большое число, у которого существует только два делителя, не считая единицы и самого числа. Вместе эти два делителя образуют секретный ключ.

Рассмотрим простой пример. Пусть публичным ключом будет 905. Его делителями являются числа 1, 5, 181 и 905. Тогда секретным ключом будет, например, число 5*181. Вы скажете слишком просто? А что если в роли публичного числа будет число с 60 знаками? Математически сложно вычислить делители большого числа.

В качестве более живого примера представьте, что вы снимаете деньги в банкомате. При считывании карточки личные данные зашифровываются определенным открытым ключом, а на стороне банка происходит расшифровка информации секретным ключом. И этот открытый ключ можно менять для каждой операции. А способов быстро найти делители ключа при его перехвате — нет.

Стойкость шрифта

Криптографическая стойкость алгоритма шифрования — это способность противостоять взлому. Данный параметр является самым важным для любого шифрования. Очевидно, что шифр простой замены, расшифровку которого осилит любое электронное устройство, является одним из самых нестойких.

На сегодняшний день не существует единых стандартов, по которым можно было бы оценить стойкость шифра. Это трудоемкий и долгий процесс. Однако есть ряд комиссий, которые изготовили стандарты в этой области. Например, минимальные требования к алгоритму шифрования Advanced Encryption Standart или AES, разработанные в NIST США.

Для справки: самым стойким шифром к взлому признан шифр Вернама. При этом его плюсом является то, что по своему алгоритму он является простейшим шифром.

Хотела в сегодняшнем посте написать об очень интересной книге — великолепных сказках Дж.Родари, но думаю, оставлю эту тему на потом, после ночного инцидента. А ночью у нас оторвалась книжная полка — не выдержала тонны книг, стоявших на ней. Слава богу, Глеб спал на нижнем этаже кровати, Марк с нами, а полка упала на верхний и никто не пострадал. Но писать пост об очередной книге расхотелось))

А напишу о шифрах, криптографии, всевозможных знаках, символах и головоломках для детей. И самое главное, как такие игры связаны с развитием ребенка.
Развитие математических способностей напрямую связано с развитием логики, памяти и абстрактного мышления. Кроме того в математике особое значение уделяется символами и знакам. Прекрасно помню, что в начальных классах у многих детей был ступор в решении уравнений, потому что они не могли понять, как число можно заменить буквой. А уж решать задачи в общем виде и подавно не умеют даже многие выпускники. Хотя на самом деле — здесь нет ничего сложного, а практиковаться можно начать уже с 4-5 лет.

Головоломки для детей в виде различных тайных записей, шифров, загадок — удачны еще и тем, что пробуждают у ребенка живой интерес, любознательность, жажду игры, желание думать и разгадывать!

А вот и вам загадка: в шифровании?

Головоломки для детей: шифры и криптограммы

- шифрование с помощью замены — отличные головоломки для детей. В этом типе шифрования каждая буква заменяется на другую, например, буква «О» на букву «Ш», буква «К» на букву «Р» , буква «Т» на букву «Ц». Таким образом, слово КОТ будет выглядеть как РШЦ .

Детям постарше можно предложить разгадывать шифрограммы самостоятельно. Например, написав фразу «мой кот бегемот» , вот таким образом «ешу ршц юздзешц» и сказав, что: е-м; у-й, р-к, ю-б . Скорее всего для детей 7-8 лет этой информации будет уже достаточно. Детям помладше нужно расписать каждую букву: для них даже обычная замена одних символов на другие может оказаться сложной задачей.

- шифрование картинками или ребусами . Здесь все просто: каждому слову или букве придумываем картинку. А потом пытаемся таким образом писать письма.

На длинную веревку привязываем другие веревочки. У веревочки есть цвет и количество узелков и каждая комбинацией цвет+узелки что-то значит. Например, белая и 1 узелок — прыгать, красная и 2 узелка означает бежать, синяя и 3 узелка — лечь. Таким образом, можно передавать послания и даже писать письма. Обозначения можно записать, а можно полагаться на память.

- шифровая табличка
Чтобы сделать такую табличку, вам понадобятся небольшой кусочек картона, в котором надо будет прорезать квадратные дырочки. Теперь наложите картон на обычный лист бумаги. В каждом отверстии напишите букву, так чтобы в итоге получилось слово или предложение. Теперь снимите картон, и остальное место заполните любыми случайными буквами. Прочитать такой шифр можно, только если под рукой есть шифрограмма.

- чтение наоборот. Это даже не шифрование, потому что, догадавшись один раз о способе шифровки — уже точно знаешь, как разгадать все остальные. Но детям обычно нравится такие незамысловатые коды.

Внимание! Если ребенок только научился читать и путает с какой стороны надо читать — справа или слева — не используйте пока эту игру. Это может еще больше его запутать.
С другой стороны, если ребенок наоборот хорошо читает, то можно играть устно, например, на прогулке — игра очень хорошо развивает логику и память.

- писать молоком, свечкой . Здесь тоже все просто — узнав один раз, что надо подержать над огнем (кстати, только вместе с родителями) или закрасить краской, шифр легко разгадывается. Но ощущение чуда все равно остается))

- шифрование с помощью клавиатуры . Если ребенок знаком с клавиатурой, то можно писать шифры, например английскими буквами. Ребенок будет находить эту букву на клавиатуре, и смотреть, какая русская буква написана на той же клавише. Собственно, это почти то же самое, что шифрование заменой, только замена английскими буквами и ее уже сделали за нас))

А вообще в разделе знаковая система можно найти много других полезных игр. А чтобы перестать искать игры в интернете, а начать играть и заниматься с детьми, нажмите

определить неизменяемые части. Забегая вперед, можно привести в качестве примера шифрмашину "Энигма" (см. главу 9), которая содержала несколько колес; внутри этих колес были провода; распайка проводов внутри колес не менялась, но ежедневно изменялся порядок расположения колес внутри самой машины. Таким образом, распайка проводов являлась неизменяемой частью, а порядок колес - переменной. Взлом системы - это самая трудоемкая часть работы; она может продолжаться несколько недель или даже месяцев и потребовать применения математических методов, поиска и использования ошибок операторов и даже сведений, добытых шпионами.

После того, как определены все неизменяемые части системы, необходимо определить все переменные части (такие, как начальные положения колес в шифрмашине "Энигма", которые менялись для каждого сообщения). Это - задача вскрытия ключей сообщения . После ее решения сообщения будут дешифрованы.

Итак, взлом относится к системе шифрования в целом, авскрытие ключей связано с дешифрованием отдельных сообщений.

Коды и шифры

Хотя слова код ишифр часто употребляются нестрого, мы проведем разграничение между этими понятиями. Вкоде часто встречающиеся элементы текста (которые могут состоять из одной или более букв, чисел или слов) обычно заменяются четырьмя или пятью буквами или числами, которые называютсякодовыми группами и берутся изкодовой книги . Для особенно часто употребительных выражений или знаковкодовая книга может предлагать несколькокодовых групп . Это делается для того, чтобы криптограф мог варьировать ими с целью затруднить их идентификацию. Так, например, в четырехзначном цифровом коде для слова "понедельник" могут быть три альтернативные кодовые группы - к примеру, 1538, либо 2951, либо 7392. Коды мы рассмотрим в главе 6.

Коды - это частный случайсистемы шифрования , однако не всесистемы шифрования являютсякодами . Мы будем использовать словошифр по отношению к методамшифрования , в которых используются некодовые книги , а шифрованный текст получается из исходного открытого текста согласно определенному правилу. В наше время вместо слова "правило" предпочитают пользоваться словом "алгоритм ", особенно если речь идет о компьютерной программе. Различие между понятиямикода ишифра иногда не совсем четкое, особенно для простых систем. Пожалуй, можно считать, что шифр Юлия Цезаря использует одностраничную кодовую книгу, где каждой букве алфавита сопоставлена буква, стоящая в алфавите на три позиции далее. Однако для большинства систем, которые мы рассмотрим, это отличие будет довольно четким. Так, например, "Энигма", которую часто

ошибочно называют "кодом Энигма", безусловно является вовсе не кодом , а

шифрмашиной.

Исторически сложилось так, что вплоть до сравнительно недавнего времени в криптографии преобладали две основные идеи, и многие системы шифрования (в том числе почти все из описанных в первых одиннадцати главах этой книги) были основаны на одной из них или на обеих сразу. Первая идея сводилась к тому, чтобы перетасовать буквы алфавита (как обычно тасуют колоду карт) с целью получить нечто, что можно рассматривать как случайный порядок, перестановку или анаграмму букв. Вторая идея состоит в том, чтобы преобразовать буквы сообщения в числа (например, положив A=0, B=1, ..., Z=25), и затем прибавлять к ним (число за числом) другие числа, называемые гаммой , которые, в свою очередь, могут быть буквами, преобразованными в числа. Если в результате сложения получается число, большее чем 25, вычтем из него 26 (этот способ называетсясложением по модулю 26). Результат затем преобразуется обратно

в буквы. Если числа, прибавляемые к тексту, получены при помощи довольно трудно предсказуемого процесса, то зашифрованное таким способом сообщение очень трудно, или даже невозможно дешифровать без знания гаммы.

Любопытно отметить, что шифр Юлия Цезаря, каким бы незамысловатым он ни был, можно считать примером и того, и другого типа. В первом случае наше "тасование колоды" эквивалентно простому перемещению последних трех карт в начало колоды, так что все буквы смещаются вниз на три позиции, а X, Y и Z оказываются в начале. Во втором случае гаммой является число 3, повторенное бесконечное число раз. Нельзя себе и представить ничего "слабее" такого гаммы.

Перевод сообщения на другой язык, пожалуй, тоже можно было бы считать определенным видом шифрования с использованием кодовой книги (то есть словаря), но это всё-таки слишком вольное употребление словакод . Однако такой способ перевода на другой язык, когда за каждым словом лезут

в словарь как в кодовую книгу, определенно не следует рекомендовать. Это известно каждому, кто пытался изучать иностранный язык. *) С другой стороны, иногда вполне резонно воспользоваться малоизвестным языком для передачи сообщений, актуальность которых ограничена во времени. Рассказывают, например, что во время второй мировой войны в американских войсках в Тихом океане в качестве телефонистов иногда использовали солдат из индейского племени навахо, чтобы те передавали

*) Вспоминаю, как некий школьник писал сочинение на французском языке о том, как в средние века один путешественник приезжает ночью в гостиницу и стучится в дверь. В ответ он слышит "What Ho! Without." ("Какого чёрта! Убирайся!" -прим. перев. ). Это выражение школьник перевел на французский дословно, подставив французские слова: "Que Ho! Sans." (получилось "Что за хо! Без." -прим. перев. ).Учитель французского языка, прочитав это, потерял на мгновение дар речи, а потом заметил; "Вы, наверно, нашли эти слова в словаре, который раздают бесплатно с мешками сахара".

сообщения на своем родном языке, вполне обоснованно допуская, что даже в случае перехвата телефонных переговоров противник едва ли нашел бы в своих рядах человека, владеющего этим языком и способного понять содержание сообщения.

Другой способ скрыть содержание информации - использовать некую персональную скоропись. Этим методом еще в средние века пользовались авторы личных дневников - например, Самюэль Пепис (Samuel Pepys). Такие коды нетрудно вскрыть, если записей в дневнике достаточно. Регулярные повторения некоторых символов (к примеру, знаков, обозначающих дни недели) служат хорошим подспорьем для прочтения некоторых слов и выражений. Примером более основательного труда может послужить дешифрование древней микенской письменности, известной как "линейное письмо Б", где знаки соответствовали слогам древнегреческого языка; заслуга дешифрования этого вида письменности принадлежит Майклу Вентрису*) (см. ).

Широкое распространение компьютеров и возможность практического построения сложных электронных микросхем на кремниевых кристаллах произвели революцию как в криптографии, так и в криптоанализе. В результате некоторые современные системы шифрования основываются на передовых математических концепциях и требуют солидной вычислительной и электронной базы. Поэтому в докомпьютерную эпоху пользоваться ими было практически невозможно. Некоторые из них описаны в главах 12 и 13.

Оценка стойкости системы шифрования

Когда предлагается новая система шифрования, то очень важно оценить ее стойкость ко всем уже известным методам вскрытия в условиях, когда криптоаналитику известен тип используемой системы шифрования, но не во всех деталях. Оценивать стойкость системы шифрования можно для трёх разных ситуаций:

(1)криптоаналитику известны только шифрованные тексты;

(2)криптоаналитику известны шифрованные тексты и исходные открытые тексты к ним;

(3)криптоаналитику известны как шифрованные, так и открытые тексты, которые он сам подобрал.

Первый случай отражает "типичную" ситуацию: если в этих условиях систему шифрования можно вскрыть за короткое время, то пользоваться ею не следует. Вторая ситуация возникает, например, если одинаковые сообщения шифруются как по новой системе, так и по старой, которую

*) Линейное письмо Б (Linear B) - одна из наиболее древних систем греческой письменности. Обнаружено на глиняных табличках в Кноссе (о. Крит) и в Пилосе. Расшифрована Майклом Вентрисом (1922-1956), английским архитектором и лингвистом (прим. перев. ).

криптоаналитик умеет читать. Такие ситуации, относящиеся к случаям серьёзного нарушения правил защиты информации, происходят весьма часто. Третья ситуация возникает, главным образом, когда криптограф, желая оценить стойкость созданной им системы, предлагает своим коллегам, играющим роль противника, вскрыть его шифр и позволяет им продиктовать ему тексты для зашифрования. Это - одна из стандартных процедур проверки новых систем. Очень интересной задачей для криптоаналитика - составить тексты так, чтобы после их зашифрования получить максимум информации о деталях системы. Структура этих сообщений зависит от того, как именно производится зашифрование. Вторая и третья ситуации могут также возникнуть, если у криптоаналитика есть шпион в организации криптографа: именно так обстояло дело в 30-х годах прошлого века, когда польские криптоаналитики получили открытые и шифрованные тексты сообщений, зашифрованных на немецкой шифрмашине "Энигма". Система шифрования, которую невозможно вскрыть даже в такой ситуации (3), является действительно стойким шифром. Это именно то, к чему стремится криптограф, и чего страшится криптоаналитик.

Коды, обнаруживающие и исправляющие ошибки

Другой класс кодов предназначен для обеспечения безошибочной передачи информации, а не для сокрытия еесодержания . Такие коды называютсяобнаруживающими и исправляющими ошибки , они являются предметом широкомасштабных математических исследований. Эти коды с самых первых дней существования компьютеров используются для защиты от ошибок в памяти и в данных, записанных на магнитную ленту. Самые первые версии этих кодов, такие, например, как коды Хэмминга, способны обнаружить и исправитьединичную ошибку в шестиразрядном символе. В качестве более позднего примера можно привести код, который использовался на космическом корабле "Маринер" для передачи данных с Марса. Созданный с учетом возможного значительного искажения сигнала на его долгом пути к Земле, этот код был способен корректировать до семи ошибок в каждом 32-разрядном "слове". Простым примером кода другого уровня,обнаруживающего , но неисправляющего ошибки, является код ISBN (International Standard Book Number - Международный Стандартный Книжный Номер).Он состоит из десяти знаков (десяти цифр либо девяти цифр с буквой X на конце, которая обозначает число 10), и позволяет осуществить проверку на отсутствие ошибок в номере ISBN. Проверка выполняется следующим образом: вычислим сумму

(первая цифра) 1+(вторая цифра) 2+(третья цифра) 3+...+(десятая цифра) 10.

Павлова Диана

Шифры, коды, криптография в математике.

Скачать:

Предварительный просмотр:

Открытая гуманитарная научно-практическая конференция

Исследовательских работ «Поиск и творчество»

Исследовательская работа:

«Шифры и коды».

Выполнила:

Павлова Диана Борисовна

обучающаяся 9 «Б» класса

МОУ СОШ №106

Руководитель:

Липина Светлана Владимировна

Учитель математики

Волгоград 2013

Введение …………………………………………………………………… .3

Глава 1. Шифры …………………………………………………………….4

Глава 2. Криптография ……………………………………………………. 5

Глава 3. Способы шифрования …………………………………………….6

3.1. Шифры замены …………………………………………………………6

3.2. Шифры перестановки ………………………………………………….6

Глава 4. Разнообразие шифров ……………………………………………7-12

4.1. Шифр по описанию Плутарха ………………………………………...7

4.2. «Квадрат Полибия» …………………………………………………….7

4.3. Шифр Цезаря ……………………………….………………………….8

4.4 Шифр Гронфельда …………………………………………………………8

4.5 Шифр Вижинера …………………………………………………………..8

4.6 Матричный способ кодирования …………………………………………9-10

4.7 Шифр «Поворотная решётка»…………………………………………….10

4.8 Гаммирование………………………………………………………………10

4.9 Криптография Второй мировой войны ……..……………………………11-12

4.10 Роль криптографии в мировой индустрии................................................12

Заключение ……………………………………………………………………..13

Приложения …………………………………………………………………….14-15

Используемая литература ………………………………………………………16

Введение.

Цель: изучить применение основ математики для составления шифров

Задачи:

выяснить, что включает в себя понятие «криптология»;

узнать, какие известны способы шифрования;

изучить сферы использования шифров.

Актуальность темы: т рудно найти человека, который не смотрел сериалы: «Приключения Шерлока Холмса и Доктора Ватсона», «Семнадцать мгновений весны», где использовались зашифрованные тайные сообщения. С помощью кодов и шифров можно посылать различные сообщения и быть уверенным в том, что их сможет прочитать только тот человек, который знает к нему ключ. Можно ли в настоящее время использовать знания по шифрованию? Ответить на этот и другие вопросы поможет данная работа.

Проблема: недостаточное комплексное изучение шифров.

Объект исследования: шифры.

Предмет исследования: тематические задачи.

Методы исследования: сравнительные характеристики, решение задач.

Новизна и практическое значение: д анная работа поможет узнать много интересных фактов о шифрах. Она рассчитана на людей разных возрастных групп: детей, подростков, юношей, девушек и т.д. Учащиеся, познакомятся с материалами, выходящими за рамки школьной программы, и смогут применить изученный материал по математике в нестандартной ситуации.

Глава 1. Шифры.

Шифр (от араб. صِفْر ‎‎, ṣifr « ноль », откуда фр. chiffre «цифра»; родственно слову цифра ) - какая-либо система преобразования текста с секретом (ключом ) для обеспечения секретности передаваемой информации.Шифр может представлять собой совокупность условных знаков (условная азбука из цифр или букв) либо алгоритм преобразования обычных цифр и букв. Процесс засекречивания сообщения с помощью шифра называется шифрованием . Наука о создании и использовании шифров называется криптографией . Криптоанализ - наука о методах получения исходного значения зашифрованной информации.

Типы шифров.

Шифры могут использовать один ключ для шифрования и дешифрования или два различных ключа. По этому признаку различают:

  • симметрический использует один ключ для шифрования и дешифрования.
  • использует один ключ для шифрования и дешифрования.
  • Асимметричный шифр использует два различных ключа.

Шифры могут быть сконструированы так, чтобы либо шифровать сразу весь текст, либо шифровать его по мере поступления. Поэтому существуют:

  • Блочный шифр шифрует сразу целый блок текста, выдавая шифротекст после получения всей информации.
  • Поточный шифр шифрует информацию и выдает шифротекст по мере поступления. Таким образом имея возможность обрабатывать текст неограниченного размера используя фиксированный объем памяти.

Глава 2. Криптография.

Как только люди научились писать, у них сразу же появилось желание сделать написанное понятным не всем, а только узкому кругу. Даже в самых древних памятниках письменности учёные находят признаки намеренного искажения текстов: изменение знаков, нарушение порядка записи и т.д.Изменение текста с целью сделать его понятным только избранным дало начало науке криптографии (греч. «тайное письмо»). Процесс преобразования текста, написанного общедоступным языком, в текст, понятный только адресату, называют шифрованием, а сам способ такого преобразования называют шифром. Но если есть желающие скрыть смысл текста, то найдутся и желающие его прочитать. Методы чтения таких текстов изучает наука криптоанализ. Хотя сами методы криптографии и криптоанализа до недавнего времени были не очень тесно связаны с математикой, во все времена многие известные математики участвовали в расшифровке важных сообщений. И часто именно они добивались заметных успехов, ведь математики в своей работе постоянно имеют дело с разнообразными и сложными задачами, а каждый шифр - это серьезная логическая задача. Постепенно роль математических методов в криптографии стала возрастать, и за последнее столетие они существенно изменили эту древнюю науку.

Одним из математических методов криптоанализа является частотный анализ. Сегодня защита информации одна из самых технологичных и засекреченных областей современной науки. Поэтому тема «Математика и шифры» современна и актуальна. Термин «криптография» далеко ушел от своего первоначального значения - «тайнопись», «тайное письмо». Сегодня эта дисциплина объединяет методы защиты информационных взаимодействий совершенно различного характера, опирающиеся на преобразование данных по секретным алгоритмам, включая алгоритмы, использующие секретные параметры. Голландский криптограф Моуриц Фрис так написал о теории шифрования: «Вообще криптографические преобразования имеют чисто математический характер».

Простым примером таких математических преобразований, используемых для засекречивания, служит равенство:

у = ах+b, где x - буква сообщения,

у - буква шифр текста, полученная в результате операции шифрования,

а и b являются постоянными величинами, определяющими данное преобразование.

Глава 3. Способы шифрования.

3.1. Шифры замены.

С древнейших времен основная задача шифрования была связана с сохранением тайны переписки. Сообщение, попадавшее в руки постороннему ч еловеку, должно было быть непонятно ему, а посвященный человек мог без труда расшифровать послание. Приемов тайнописи великое множество. Невозможно описать все известные шифры. Наиболее простейшими из криптографических шифров являются шифры замены или подстановки, когда одни символы сообщения заменяются другими символами, согласно некоторому правилу. К шифрам замены относится и один из первых известных кодов в истории человечества – код Цезаря , применявшийся в древнем Риме. Суть этого ко да состояла в том, что буква алфавита заменялась другой с помощью сдвига по алфавиту на одно и то же число позиций.

3.2 Шифры перестановки.

К классу «перестановка» принадлежит и шифр, называемый «решетка Кардано».Это прямоугольная карточка с отверстиями, чаще всего квадратная, которая при наложении на лист бумаги оставляет открытыми лишь некоторые его части. Число строк и столбцов в карточке четно. Карточка сделана так, что при ее последовательном использовании (поворачивании) каждая клетка лежащего под ней листа окажется занятой. Карточку сначала поворачивают вдоль вертикальной оси симметрии на 180°, а затем вдоль горизонтальной оси также на 180°.И вновь повторяют ту же процедуру: Если решетка Кардана - квадрат, то возможен второй вариант самосовмещений фигуры, а именно, последовательные повороты вокруг центра квадрата на 90°.

Глава 4. Разнообразие шифров.

4.1. Шифр по описанию Плутарха.

Потребность шифровать сообщения возникла давно. В V - VI вв. до н. э. греки применяли специальное шифрующее устройство. По описанию Плутарха, оно состояло из двух палок одинаковой длины и толщины. Одну оставляли себе, а другую отдавали отъезжающему. Эти палки называли скиталами. Если правителям нужно было сообщить какую-нибудь важную тайну, они вырезали длинную и узкую, вроде ремня, полоску папируса, наматывали ее на свою скиталу, не оставляя на ней никакого промежутка, так чтобы вся поверхность палки была охвачена полосой. Затем, оставляя папирус на скитале в том виде, как он есть, писали на нем все, что нужно, а написав, снимали полосу и без палки отправляли адресату. Так как буквы на ней разбросаны в беспорядке, то прочитать написанное он мог, только взяв свою скиталу и намотав на нее без пропусков эту полосу.

Аристотелю принадлежит способ дешифрования этого шифра. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, сдвигая ее к вершине. В какой-то момент начнут просматриваться куски сообщения. Так можно определить диаметр скиталы.

Человек – социальное существо. Мы учимся взаимодействовать с другими, наблюдая за их реакцией на наши действия с первых дней жизни. При любом взаимодействии мы используем то, что искусствоведы называют «культурными кодами». А ведь культурные коды – самые сложные в дешифровке, здесь нет специальной программы, которая подскажет, что может значить приподнятая бровь или беспричинные, казалось бы, слёзы; нет однозначного ответа; более того, даже сам «кодирующий» может не знать, что он имел в виду под своим действием! Наука понимать окружающих – это то, что мы постигаем всю жизнь, и чем лучше развито это умение, тем, как правило, гармоничнее складывается общение с окружающими и любая деятельность, в которой нужны согласованные действия.

Изучение криптографии в обеих её ипостасях (шифровка и дешифровка) позволяет научиться находить связь между шифрованным, запутанным, непонятным посланием и смыслом, который в нём таится. Проходя исторический путь от шифра Юлия Цезаря до RSA-ключей, от розеттского камня до эсперанто, мы учимся воспринимать информацию в непривычном нам виде, разгадываем загадки, привыкаем к многовариантности. И главное – учимся понимать: как разных, непохожих на нас людей, так и математико-лингвистические механизмы, которые лежат в основе каждого, абсолютно каждого послания.

Итак, приключенческий рассказ о криптографии для детей, для всех, у кого есть дети, и для всех, кто когда-нибудь был ребёнком.

Трепещут на ветру флаги, ржут разгорячённые кони, бряцают доспехи: это Римская империя обнаружила, что в мире ещё есть кто–то, кого они не завоевали. Под командованием Гая Юлия Цезаря находится огромная армия, которой надо быстро и точно управлять.

Шпионы не дремлют, враги готовятся перехватить посланников императора, чтобы узнать все его блестящие планы. Каждый кусок пергамента, попадающий не в те руки – это вероятность проиграть сражение.

Но вот захвачен посланник, злоумышленник разворачивает записку… и ничего не понимает! «Наверное, – чешет он в затылке, – это на каком–то неизвестном языке…». Рим торжествует, его планы в безопасности.

Что же такое шифр Цезаря? Самый простой его вариант – это когда мы вместо каждой буквы ставим следующую по алфавиту: вместо «а» – «б», вместо «е» – «ж», а вместо «я» – «а». Тогда, например, «Я люблю играть» станет «А мявмя йдсбуэ». Давайте посмотрим на табличку, сверху в ней будет буква, которую шифруем, а снизу – на которую заменяем.

Алфавит как бы «сдвинут» на одну букву, правда? Поэтому этот шифр ещё называют «шифром сдвига» и говорят «используем шифр Цезаря со сдвигом 10» или «со сдвигом 18». Это значит, что надо «сдвинуть» нижний алфавит не на 1, как у нас, а, например, на 10 – тогда у нас вместо «а» будет «й», а вместо «у» – «э».

Сам Цезарь использовал этот шифр со сдвигом 3, то есть его таблица шифрования выглядела вот так:

Точнее, она бы так выглядела, если бы Цезарь жил в России. В его случае алфавит был латинский.

Такой шифр достаточно легко взломать, если вы профессиональный шпион или Шерлок Холмс. Но он до сих пор подходит для того, чтобы хранить свои маленькие секреты от посторонних глаз.

Вы и сами можете устроить свой маленький домашний заговор. Договоритесь о своём числе сдвига, и вы сможете оставлять друг другу шифрованные записки на холодильнике о сюрпризе на чей-нибудь день рождения, отправлять шифрованные сообщения и, может быть, если случится длинная разлука, даже писать друг другу тайные, кодированные письма!

Но вся история криптографии – это история борьбы между искусством зашифровывать послания и искусством их расшифровывать. Когда появляется новый способ закодировать сообщение, находятся те, кто пытаются этот код взломать.

Что такое «взломать код»? Это значит – придумать способ его разгадать, не зная ключа и смысла шифра. Шифр Цезаря тоже когда-то был взломан – так называемым «методом частотного анализа». Посмотрите на любой текст – гласных в нём гораздо больше, чем согласных, а «о» гораздо больше, чем, например, «я». Для каждого языка можно назвать самые часто и редко используемые буквы. Надо только найти, какой буквы больше всего в зашифрованном тексте. И скорее всего это будет зашифрованная «о», «е», «и» или «а» – самые часто встречающиеся буквы в русских словах. А как только ты знаешь, какой буквой обозначили, например, «а», ты знаешь, и на сколько «сдвинут» шифрованный алфавит, а значит, можешь расшифровать весь текст.

Когда разгадку кода Цезаря узнал весь мир, криптографам пришлось придумать что-нибудь помощнее. Но, как часто бывает, люди не стали изобретать что–то совсем новое, а усложнили уже имеющееся. Вместо того, чтобы шифровать все буквы по одному и тому же сдвинутому алфавиту, в тайных посланиях их стали использовать несколько. Например, первую букву шифруем по алфавиту со сдвигом 3, вторую – со сдвигом 5, третью – со сдвигом 20, четвертую – снова со сдвигом 3, пятую – со сдвигом 5, шестую – со сдвигом 20 и так далее, по кругу. Такой шифр называют полиалфавитным (то есть многоалфавитным). Попробуйте, так ваш шифр уже может разгадать только тот, кто посвящён в тайны криптографии!

Казалось бы, злоумышленники должны были запутаться и тайны должны были навсегда остаться тайнами. Но если шифр один раз был взломан, то и любые более сложные его варианты тоже будут однажды взломаны.

Давайте представим, что кто–то зашифровал послание двумя алфавитами. Первая буква – со сдвигом 5, вторая – со сдвигом 3, третья – снова 5, четвертая снова 3 – как на табличке ниже.

Мы можем разделить все зашифрованные буквы на две группы: буквы, зашифрованные со сдвигом 5 (1, 3, 5, 7, 9, 11, 13, 15, 17, 19) и буквы, зашифрованные со сдвигом 3 (2, 4, 6, 8, 10, 12, 14, 16, 18, 20). И внутри каждой группы искать, какие буквы встретились нам чаще остальных – так же, как в шифре Цезаря, только мороки побольше.

Если шифровщик использовал три алфавита, то мы разделим буквы на три группы, если пять – то на пять. А дальше снова идет в ход тот же самый частотный анализ.

Можно задать вопрос – откуда дешифраторы знали, что алфавитов три, а не, например, пять? На самом деле они не знали. И перебирали все возможные варианты. Поэтому дешифровка занимала гораздо больше времени, но все же была возможной.

В криптографии сообщение, которое надо передать, называется «открытым текстом», а зашифрованное сообщение – «шифрованным текстом». И правило, по которому текст зашифрован, называется «ключом шифра».

Незаметно подкрался XX век. Человечество всё больше надеется на машины: поезда заменяют повозки, радио появляется почти в каждом доме, и уже встали на крыло первые самолеты. И шифровку тайных планов в конце концов тоже передают машинам.

Во время Второй мировой войны было изобретено очень много машин для шифрования сообщений, но все они опирались на идею того, что полиалфавитный шифр можно ещё больше запутать. Запутать настолько, что, хотя по идее его и можно будет разгадать, на практике это ни у кого не получится. Запутать настолько, насколько это способна сделать машина, но не способен человек. Самая известная из таких шифровальных машин – «Энигма», использовавшаяся Германией.

theromanroad.files.wordpress.com

Но, пока самой главной тайной Германии была конструкция «Энигмы», самой главной тайной её противников было то, что к середине войны все страны уже «Энигму» разгадали. Если бы об этом стало известно в самой Германии, они бы начали придумывать что-то новое, но до конца войны они верили в идеальность своей шифровальной машины, а Франция, Англия, Польша, Россия читали тайные немецкие сообщения как открытую книгу.

Всё дело в том, что польский ученый Мариан Реевский однажды подумал о том, что раз придумали машину для шифровки сообщений, то можно придумать и машину для расшифровки, и первый свой образец называл «Бомба». Не из-за «взрывного» эффекта, как можно было бы подумать, а в честь вкусного, круглого пирожного.

Потом математик Алан Тьюринг построил на его основе машину, которая полностью расшифровывала код «Энигмы», и которую, между прочим, можно считать первым прародителем наших современных компьютеров.

Самый сложный код за всю Вторую мировую придумали американцы. На каждый боевой корабль США был откомандирован… индеец. Их язык был настолько непонятен и малоизучен, звучал так странно, что дешифровщики не знали, как и подступиться, и флот США безбоязненно передавал информацию на языке индейского племени чокта.

Вообще, криптография – это же не только о том, как загадать загадку, но и о том, как её разгадать. Не всегда такие загадки специально придумывают люди – иногда их подбрасывает сама история. И одной из главных загадок для криптографов долгое время была загадка древнеегипетского языка.

Никто не знал, что же значат все эти иероглифы. Что египтяне имели в виду, рисуя птиц и скарабеев. Но в один счастливый день французская армия обнаружила в Египте «Розеттский камень».

На этом камне была надпись – одна и та же, на древнегреческом, египетском буквенном (демотический текст) и египетском иероглифическом. Историки того времени хорошо знали древнегреческий, поэтому что же написано на камне они узнали быстро. Но главное, что, зная перевод, они смогли раскрыть тайны древнего египетского языка. Демотический текст был расшифрован достаточно быстро, а вот над иероглифами историки, лингвисты, математики, криптографы ломали голову долгие годы, но в конце концов всё-таки разгадали.

И это была большая победа криптографов – победа над самим временем, которое надеялось спрятать от людей их историю.

Но среди всех этих разгаданных шифров есть три особенных. Один – это метод Диффи – Хеллмана. Если маленькое сообщение зашифровать этим методом, то, чтобы его расшифровать, надо взять все компьютеры в мире и занять их этим на много-много лет. Именно он используется сегодня в Интернете.

Второй – это квантовое шифрование. Оно, правда, ещё не совсем придумано, зато, если люди сделают квантовые компьютеры такими, как о них мечтают, то такой шифр будет знать, когда его пытаются расшифровывать .

А третий особенный шифр – это «книжный шифр». Его удивительность в том, что им просто что-то зашифровать и непросто – расшифровать. Два человека выбирают одну и ту же книгу, и каждое слово из своего письма в ней ищут и заменяют тремя цифрами: номер страницы, номер строки и номер слова в строке. Это очень просто сделать, правда? А разгадать совсем не просто: откуда шпиону знать, какую книгу вы выбрали? И самое главное, компьютеры в этом деле тоже особо не помогут. Конечно, если подключить очень много умных людей и очень много мощных компьютеров, такой шифр не устоит.

Но есть главное правило безопасности. Её, этой безопасности, должно быть столько, чтобы зашифрованное послание не стоило тех огромных усилий, которые надо потратить на её расшифровку. То есть чтобы злодею – шпиону пришлось потратить столько сил, чтобы разгадать ваш код, сколько он не готов тратить на то, чтобы узнать ваше сообщение. И это правило работает всегда и везде, как в дружеских школьных переписках, так и в мире настоящих шпионских игр.

Криптография – это искусство загадывать и разгадывать загадки. Искусство сохранить тайны, и искусство их раскрывать. С криптографией мы учимся понимать друг друга и придумываем, как сохранить что-то важное для себя в безопасности. А чем лучше мы умеем и то и другое, тем спокойнее и деятельнее может быть наша жизнь.

Загрузка...