Медицинский портал. Щитовидная железа, Рак, диагностика

Стимуляция клеточного деления. Регуляция деления клеток

У одноклеточных организмов, таких как дрожжи, бактерии или простейшие, отбор благоприятствует тому, чтобы каждая отдельная клетка росла и делилась как можно быстрее. Поэтому скорость деления клеток обычно лимитируется только скоростью поглощения питательных веществ из окружающей среды и переработки их в вещество самой клетки. В отличие от этого у многоклеточного животного клетки специализированы и образуют сложное сообщество, так что главная задача здесь - выживание организма, а не выживание или размножение отдельных его клеток. Для того чтобы многоклеточный организм выжил, некоторые его клетки должны воздержаться от деления, даже если нет недостатка в питательных веществах. Но когда возникает надобность в новых клетках, например при репарации повреждения, ранее не делившиеся клетки должны быстро переключаться на цикл деления; а в случаях непрерывного «износа» ткани скорости новообразования и отмирания клеток всегда должны быть сбалансированы. Поэтому здесь должны существовать сложные регуляторные механизмы более высокого уровня, чем тот, который действует у таких простых организмов, как дрожжи. Этот раздел и посвящен такому «социальному контролю» на уровне отдельной клетки. В гл. 17 и 21 мы познакомимся с тем, как он функционирует в многоклеточной системе для поддержания и обновления тканей тела и какие его нарушения происходят при раке, а в гл. 16 увидим, как еще более сложная система управляет клеточным делением в процессах индивидуального развития.

13.3.1. Различия в частоте деления клеток обусловлены разной длительностью паузы после митоза

Клетки человеческого тела, число которых достигает 1013, делятся с весьма разными скоростями. Нейроны или клетки скелетной мышцы не делятся совсем; другие, например клетки печени, обычно делятся только раз в один или два года, а некоторые эпителиальные клетки кишечника,


Рис. 13-22. Деление и миграция клеток в эпителиальной выстилке тонкой кишки мыши. Все клеточные деления происходят только в нижней части трубчатых впячиваний эпителия, называемых криптами. Новообразованные клетки перемешаются вверх и образуют эпителий кишечных ворсинок, где они осуществляют переваривание и всасывание питательных веществ из просвета кишки. Большая часть эпителиальных клеток имеет короткий период жизни и слущивается с кончика ворсинки не позднее чем через пять дней после выхода из крипты. Однако кольцо примерно нз 20 медленно делящихся «бессмертных» клеток (их ядра выделены более темным цветом) остаются связанными с основанием крипты.



Эти так называемые стволовые клетки дают при делении две дочерние клетки: в среднем одна из них остается на месте и далее снова функционирует как недифференцированная стволовая клетка, а другая мигрирует наверх, где дифференцируется и входит в состав эпителия ворсинки. (С изменениями из С. S. Pptten, R. Schofield, L G. Lajtha, Biochim. Biophys. Acta 560: 281-299, 1979.)

чтобы обеспечить постоянное обновление внутренней выстилки кишки, делятся чаще чем два раза в сутки (рис. 13-22). Большинство клеток позвоночных располагается где-то в этих временных пределах: они могут делиться, но обычно делают это не так часто. Почти все различия в частоте деления клеток обусловлены разницей в длине промежутка между митозом и S-фазой; медленно делящиеся клетки останавливаются после митоза на недели и даже годы. Наоборот, время, за которое клетка проходит ряд стадий от начала S-фазы до окончания митоза, очень коротко (у млекопитающих обычно от 12 до 24 ч) и удивительно постоянно, каким бы ни был интервал между последовательными делениями.

Время нахождения клеток в непролиферирующем состоянии (так называемой фазе G0) меняется в зависимости не только от их типа, но и от обстоятельств. Половые гормоны побуждают клетки в стенке матки быстро делиться на протяжении нескольких дней в каждом менструальном цикле, чтобы замещать ткань, утраченную при менструации; потеря крови стимулирует пролиферацию предшественников кровяных клеток;

повреждение печени заставляет выжившие клетки этого органа делиться раз или два в сутки, пока не будет возмещена потеря. Точно так же эпителиальные клетки, окружающие рану, приступают к усиленному делению для восстановления поврежденного эпителия (рис. 13-23).

Для регулирования пролиферации клеток каждого типа в соответствии с потребностью существуют тщательно отлаженные и высокоспецифичные механизмы. Однако, хотя важность такой регуляции


Албертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К. Уотсон Дж. Д. Молекулярная биология клетки: В 3-х т. 2-е изд. перераб. и доп. Т. 2.: Пер. с англ. – М.: Мир, 1993. – 539 с.

Рис. 13-23. Пролиферация клеток эпителия в ответ на ранение. Эпителий хрусталика повреждали с помощью иглы и спустя определенное время добавляли 3Н-тимидин для мечения клеток в фазе S (выделены цветом); затем вновь фиксировали и приготовляли препараты для р.диоавтографии. На схемах слева участки с клетками в фазе S выделены цветом, а с клетками в фазе М - отмечены крестиками; черное пятно в центре - место нанесения раны. Стимуляция клеточного деления постепенно распространяется от раны, вовлекая в деление покоящиеся клетки в фазе G0, я это приводит к необычно сильной реакции на относительно малое повреждение. На 40-часовом препарате клетки, далеко отстоящие от раны, вступают в фазу S первого цикла деления, тогда как клетки около самой раны вступают в S-фазу второго цикла деления. Рисунок справа соответствует участку, заключенному на схеме слева в прямоугольник; он сделан по фотографии 36-часового препарата, окрашенного для выявления клеточных ядер. (По С. Harding, J. R. Reddan, N.J. Unakar, M. Bagchi, Int. Rev. Cytol. 31: 215-300, 1971.)

очевидна, ее механизмы трудно анализировать в сложном контексте целого организма. Поэтому детальное изучение регуляции клеточного деления обычно проводят на культуре клеток, где легко изменять внешние условия и длительное время наблюдать за клетками.

13.3.2. Когда условия для роста становятся неблагоприятными, клетки животных, так же как и дрожжевые клетки, останавливаются в критической точке в G1 - в точке рестрикции

При изучении клеточного цикла in vitro в большинстве случаев используются стабильные клеточные линии (разд. 4.3.4), способные размножаться неопределенно долго. Это линии, специально отобранные для поддержания в культуре; многие из них - так называемые нетрансформированные клеточные линии - широко используются в качестве моделей пролиферации нормальных соматических клеток.

Фибробласты (такие, как различные типы мышиных клеток ЗТЗ) обычно делятся быстрее, если расположить их в культуральной чашке не слишком плотно и использовать культуральную среду, богатую питательными веществами и содержащую сыворотку - жидкость, получаемую при свертывании крови и очищенную от нерастворимых сгустков и кровяных клеток. При нехватке каких-либо важных питательных веществ, например аминокислот, или при добавлении в среду ингибитора белкового синтеза клетки начинают вести себя примерно так же, как описанные выше дрожжевые клетки при недостатке питания: средняя продолжительность фазы Gt возрастает, но на остальной части клеточного цикла все это почти не сказывается. Как только клетка прошла через G1, она уже неизбежно и без задержки проходит фазы S, G2 и М независимо от условий среды. Эту точку перехода в поздней фазе G1 часто называют точкой рестрикции (R), потому что именно здесь клеточный цикл еще может приостановиться, если внешние условия препятствуют его продолжению. Точка рестрикции соответствует точке старта в клеточном цикле дрожжей; так же как и у дрожжей, она может отчасти служить механизмом, регулирующим размеры клетки. Однако у высших эукариот ее функция более сложна, чем у дрожжей, и в фазе G 1 может быть несколько слегка различающихся точек рестрикции, связанных с различными механизмами контроля клеточной пролиферации.


Албертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К. Уотсон Дж. Д. Молекулярная биология клетки: В 3-х т. 2-е изд. перераб. и доп. Т. 2.: Пер. с англ. – М.: Мир, 1993. – 539 с.

Рис. 13-24. Разброс величин длительности клеточного цикла, наблюдаемый обычно в гомогенной популяции клеток in vitro. Такие данные получают, наблюдая отдельные клетки под микроскопом и прямо отмечая время между последовательными делениями.

13.3.3. Длительность цикла пролиферирующих клеток, по-видимому, имеет вероятностный характер

Индивидуальные клетки, делящиеся в культуре, можно непрерывно наблюдать с помощью цейтраферной киносъемки. Такие наблюдения показывают, что даже у генетически идентичных клеток длительность цикла весьма изменчива (рис. 13-24). Количественный анализ показывает, что время от одного деления до следующего содержит случайно меняющуюся компоненту, причем изменяется она главным образом за счет фазы G1. По-видимому, по мере того как клетки приближаются к точке рестрикции в GJ (рис. 13-25), они должны некоторое время «выждать», прежде чем перейти к оставшейся части цикла, причем для всех клеток вероятность в единицу времени пройти точку R примерно одинакова. Таким образом, клетки ведут себя подобно атомам при радиоактивном распаде; если в первые три часа через точку R прошла половина клеток, в следующие три часа через нее пройдет половина оставшихся клеток, еще через три часа - половина тех, что останутся, и т. д. Возможный механизм, объясняющий такое поведение, был предложен ранее, когда речь шла об образовании активатора S-фазы (разд. 13.1.5). Однако случайные изменения длительности клеточного цикла означают, что первоначально синхронная клеточная популяция через несколько циклов утратит свою синхронность. Это неудобно для исследователей, но может быть выгодно для многоклеточного организма: в противном случае большие клоны клеток могли бы проходить митоз одновременно, а поскольку клетки во время митоза обычно округляются и утрачивают прочную связь друг с другом, это серьезно нарушало бы целостность ткани, состоящей из таких клеток.

Оптимальным этапом для изучения хромосом является стадия метафазы, когда хромосомы достигают максимальной конденсации и располагаются в одной плоскости, что позволяет их идентифицировать с высокой точностью. Для изучения кариотипа требуется выполнение нескольких условий:

Стимуляция клеточных делений для получения максимального количества делящихся клеток,

- блокирование клеточного деления в метафазе;

- гипотонизацш клеток и приготовление препарата хромосом для дальнейшего исследования под микроскопом.

Для изучения хромосом можно использовать клетки из активно пролиферирующих тканей (клетки костного мозга, стенок семенников, опухолей) или клеточные культуры, которые получают путём культивирования в контролируемых условиях на специальных питательных средах клеток, выделенных из организма (клетки периферической крови*, лимфоциты Т, клетки красного костного мозга, фибробласты разного происхождения, клетки хориона, опухолевые клетки)

* Техника получения хромосомных препаратов из лимфоцитов периферической крови, культивируемых в изолированных условиях является наиболее простым методом и состоит из следующих этапов:

Забор венозной крови в асептических условиях;

Добавление гепарина для предотвращения свертывания крови;

Перенос материала во флаконы со специальной питательной средой;

Стимуляция клеточных делений добавлением фитогемагглютинина;

Инкубация культуры в течение 72 часов при температуре 37 0 С.

Блокирование клеточного деления на стадии метафазы достигается введением в среду колхицина или колцемида веществ - цитостатиков, разрушающих веретено деления. Получение препаратов для микроскопического анализа включает следующие этапы:

- гипотонизацю клеток, которая достигается добавлением гипотонического раствора хлорида калия; это приводит к набуханию клетки, разрыву ядерной оболочки и дисперсии хромосом;

- фиксацию клеток для остановки жизнедеятельности клетки с сохранением структуры хромосом; для этого используются специальные фиксаторы, например, смесь этилового спирта и уксусной кислоты;

- окрашивание препарата по Гимзе или использование других способов окрашивания;

- анализ под микроскопом с целью выявления численных нарушений (гомогенных или в мозаике) и структурных аберраций;

- фотографирование и вырезание хромосом;

- идентификацию хромосом и составление кариограммы (идиограммы).

Этапы кариотипирования Дифференциальная окраска хромосом

В настоящее время наряду с рутинными методами изучения кариотипа используются методы дифференциальной окраски, позволяющие выявить в хроматидах чередование окрашенных и неокрашенных полос. Они называются бэндами и имеют специфическое и точное распределение, обусловленное особенностями внутренней организации хромосомы

Методы дифференциальной окраски были разработаны в начале 70-х годов ХХ-го века и стали важной вехой в развитии цитогенетики человека. Они имеют широкое практическое применение, т.к.:

Чередование полос не носит случайный характер, а отражает внутреннюю структуру хромосом, например распределение эухроматиновых и гетерохроматиновых участков, богатых AT или GC последовательностями ДНК, участков хроматина с разной концентрацией гистонов и негистонов;

Распределение бэндов идентично для всех клеток одного организма и всех организмов данного вида, что используется для точной идентификации вида;

Метод позволяет точно идентифицировать гомологичные хромосомы, которые являются одинаковыми с генетической точки зрения и имеют сходное распределение бэндов;

Метод обеспечивает точную идентификацию каждой хромосомы, т.к. разные хромосомы имеют разное распределение бэндов;

Дифференциальная окраска позволяет выявить многие структурные нарушения хромосом (делеции, инверсии), которые с трудом обнаруживаются методами простой окраски.

В зависимости от способа предобработки хромосом и техники окрашивания различают несколько методов дифференциальной окраски (G,Q,R,T,C). Используя их, можно получить чередование окрашенных и неокрашенных полос - бэндов, стабильных и специфичных для каждой хромосомы.

Характеристика различных методов дифференциальной окраски хромосом

Название метода

Используемый краситель

Природа бэндов

Практическая роль

Окрашенные -

гетерохроматин;

неокрашенные -

эухроматин

Выявление численных и структурных аномалий хромосом

Куинакрин (флюоресцентный краситель)

Окрашенные -

гетерохроматин;

неокрашенные -

эухроматин

Метод R (реверс)

Окрашенные - эухроматин;

неокрашенные -

гетерохроматин

Выявление численных и структурных аномалий хромосом

Giemsa или флюоресцентный краситель

Окрашенные центромерный гетерохроматин

Анализ полиморфизма хромосом

Giemsa или флюоресцентный краситель

окрашенные - теломерный гетерохроматин

Анализ полиморфизма хромосом

Деление клеток играет большую роль в процессах онтогенеза. Во-первых, благодаря делению из зиготы, которая соответствует одноклеточной стадии развития, возникает многоклеточный организм. Во-вторых, пролиферация клеток, происходящая после стадии дробления, обеспечивает рост организма. В-третьих, избирательному размножению клеток принадлежит заметная роль в обеспечении морфогенетических процессов. В постнатальном периоде индивидуального развития благодаря клеточному делению осуществляется обновление многих тканей в процессе жизнедеятельности организма, а также восстановление утраченных органов, заживление ран.

Зигота, бластомеры и все соматические клетки организма, за исключением половых клеток, в периоде созревания гаметогенеза делятся митозом. Клеточное деление как таковое является одной из фаз клеточного цикла. От продолжительности интерфазы (G­ 1 + S + G 2 -периоды) зависит частота последовательных делений в ряду клеточных поколений. В свою очередь интерфаза имеет разную продолжительность в зависимости от стадии развития зародыша, локализации и функции клеток.

Так, в периоде дробления эмбриогенеза клетки делятся быстрее, чем в другие, более поздние периоды. Во время гаструляции и органогенеза клетки делятся избирательно в определенных областях зародыша. Замечено, что там, где скорость клеточного деления высокая, происходят и качественные изменения в структуре эмбриональной закладки, т.е. органогенетические процессы сопровождаются активным размножением клеток. Показано, что растяжение клеток при их движении стимулирует клеточное деление. В сформировавшемся организме некоторые клетки, например нейроны, вообще не делятся, в то время как в кроветворной и эпителиальной тканях продолжается активное размножение клеток. Клетки некоторых органов взрослого организма в обычных условиях почти не делятся (печень, почка), но при наличии стимула в виде воздействия гормональных или внутритканевых факторов, часть из них может вступить в деление.

При изучении расположения делящихся клеток в тканях обнаружено, что они группируются гнездами. Само по себе деление клеток не придает эмбриональному зачатку определенной формы, и нередко эти клетки располагаются беспорядочно, но в результате последующего их перераспределения и миграции зачаток приобретает форму. Так, например, в зачатке головного мозга деление клеток сосредоточено исключительно в том слое стенки, который прилежит к полости невроцеля. Затем клетки передвигаются из зоны размножения к наружной стороне пласта и образуют ряд выпячиваний, так называемых мозговых пузырей. Таким образом, клеточное деление в эмбриогенезе носит избирательный и закономерный характер. Об этом же свидетельствует открытая в 60-х годах суточная периодичность количества делящихся клеток в обновляющихся тканях.

В настоящее время известен ряд веществ, которые побуждают клетки к делению, например фитогемагглютинин, некоторые гормоны, а также комплекс веществ, выделяющихся при повреждении тканей. Открыты также и тканеспецифичные ингибиторы клеточного деления - кейлоны. Их действие заключается в подавлении или замедлении скорости деления клеток в тех тканях, которые их вырабатывают. Например, эпидермальные кейлоны действуют только на эпидермис. Будучи тканеспецифичными, кейлоны лишены видовой специфичности. Так, эпидермальный кейлон трески действует и на эпидермис млекопитающего.

За последние годы установлено, что многие структуры зародыша образуются клетками, происходящими от небольшого числа или даже одной клетки. Совокупность клеток, являющихся потомками одной родоначальной клетки, называют клоном. Показано, например, что большие по объему участки центральной нервной системы формируются из определенных клеток раннего зародыша. Пока не ясно, в какой именно срок происходит отбор родоначальных клеток, каков механизм этого отбора. Важным следствием такой селекции является то, что многим клеткам раннего зародыша не суждено участвовать в дальнейшем развитии. В опытах на мышах показано, что организм развивается всего из трех клеток внутренней клеточной массы на стадии, когда бластоциста состоит из 64 клеток, а сама внутренняя клеточная масса содержит примерно 15 клеток. Клональные клетки могут быть причиной мозаицизма, когда большие группы клеток отличаются по набору хромосом или аллельному составу.

По-видимому, количество циклов клеточных делений в ходе онтогенеза генетически предопределено. Вместе с тем известна мутация, изменяющая размеры организма за счет одного дополнительного клеточного деления. Это мутация gt (giant), описанная у Drosophila melanogaster. Она наследуется по рецессивному сцепленному с полом типу. У мутантов gt развитие протекает нормально на протяжении всего эмбрионального периода. Однако в тот момент, когда нормальные особи окукливаются и начинают метаморфоз, особи gt продолжают оставаться в личиночном состоянии еще дополнительно 2-5 сут. За это время у них происходит одно, а может быть, и два дополнительных деления в имагинальных дисках, от количества клеток которых зависит размер будущей взрослой особи. Затем мутанты образуют куколку вдвое крупнее обычной. После метаморфоза несколько удлиненной по времени стадии куколки на свет появляется морфологически нормальная взрослая особь удвоенного размера.

У мышей описан ряд мутаций, обусловливающих снижение пролиферативной активности и следующие за этим фенотипические эффекты. К ним относят, например, мутацию or (ocular retardation), затрагивающую сетчатку глаза начиная с 10-х суток эмбрионального развития и приводящую к микрофтальмии (уменьшению размеров глазных яблок), и мутацию tgia, затрагивающую центральную нервную систему с 5-6-х суток после рождения и приводящую к отставанию роста и атрофии некоторых внутренних органов.

Таким образом, деление клеток является чрезвычайно важным процессом в онтогенетическом развитии. Оно протекает с разной интенсивностью в разное время и в разных местах, носит клональный характер и подвержено генетическому контролю. Все это характеризует клеточное деление как сложнейшую функцию целостного организма, подчиняющегося регулирующим влияниям на различных уровнях: генетическом, тканевом, онтогенетическом.

Загрузка...