Медицинский портал. Щитовидная железа, Рак, диагностика

Формула вычисления плотности. Плотность вещества: формула, расчет

ОПРЕДЕЛЕНИЕ

Плотностью называется количество вещества, приходящееся в среднем на единичный объем тела.

Это количество можно определять по-разному. Если речь идет о числе частиц, то говорят о плотности частиц. Эту величину обозначают буквой n . В СИ она измеряется в м -3 . Если имеется ввиду масса вещества, то вводят плотность массы. Её обозначают через . В Си измеряется в кг/м 3 . Между и n существует связь. Так, если тело состоит из частиц одного сорта, то

= m ×n ,

где m - масса одной частицы.

Плотность массы можно вычислить по формуле:

Данное выражение можно преобразовать так, чтобы получилась формула массы через объем и плотность:

Таблица 1. Плотности некоторых веществ.

Вещество

Плотность, кг/м 3

Вещество

Плотность, кг/м 3

Вещества атомного ядра

Сжатые газы в центре самых плотных звезд

Жидкий водород

Воздух у поверхности Земли

Воздух на высоте 20 км

Сжатое железо в ядре Земли

Наивысший искусственный вакуум

(7,6 - 7,8)×10 3

Газы межзвездного пространства

Газы межгалактического пространства

Алюминий

Человеческое тело

Независимо от степени сжатия плотности жидких и твердых тел лежат в весьма узком интервале значений (табл. 1). Плотности же газов варьируются в весьма широких пределах. Причина заключается в том, что как в твердых телах, так и в жидкостях частицы вплотную примыкают друг к другу. В этих средах расстояние между соседними частицами составляет величину порядка 1 А и сравнимо с размерами атомов и молекул. По этой причине твердые и жидкие тела обладают очень малой сжимаемостью, чем обусловлено малое различие в их плотности. В газах положение иное. Среднее расстояние между частицами значительно превышает их размеры. Например, для воздуха у поверхности Земли оно составляет 10 2 А. Вследствие этого газы обладают большой сжимаемостью, а их плотность может изменяться в очень широких пределах.

Примеры решения задач

ПРИМЕР 1

Задание Определите молярную концентрацию и массовую долю хлорида натрия в растворе, полученном растворением 14,36 г сухой соли в 100 мл воды (плотность раствора 1,146 г/мл).
Решение Первоначально находим массу раствора:

m solution = m(NaCl) + m(H 2 O);

m(H 2 O) = r(H 2 O) ×V(H 2 O);

m(H 2 O) = 1 × 100 = 100 г.

m solution = 14,63 + 100 = 114,63 г.

Рассчитаем массовую долю хлорида натрия в растворе:

w(NaCl) = m(NaCl) / m solution ;

w(NaCl) = 14,63 / 114,63 = 0,1276 (12,76%).

Найдем объем раствора и количество вещества хлорида натрия в нем:

V solution = m solution / r solution ;

V solution = 114,63 / 1,146 = 100 мл = 0,1 л.

n(NaCl) = m(NaCl) / M(NaCl);

M(NaCl) = Ar(Na) + Ar(Cl) = 23 + 35,5 = 58,5 г/моль;

n(NaCl) = 14,63 / 58,5 = 0,25 моль.

Тогда, молярная концентрация раствора хлорида натрия в воде будет равна:

C(NaCl) = n(NaCl) / V solution ;

C(NaCl) = 0,25 / 0,1 = 2,5 моль/л.

Ответ Массовая доля хлорида натрия в растворе равна 12,76%, а молярная концентрация раствора хлорида натрия в воде — 2,5 моль/л.

ПРИМЕР 2

Задание Какую массу медного купороса можно получить упариванием 300 мл раствора сульфата меди с массовой долей сульфата меди 15% и плотностью 1,15 г/мл?
Решение Найдем массу раствора:

m solution = V solution ×r solution ;

m solution = 300 × 1,15 = 345 г.

Рассчитаем массу растворенного сульфата меди:

w(CuSO 4) = m(CuSO 4) / m solution ;

m(CuSO 4) = m solution ×w(CuSO 4);

m(CuSO 4) = 345 × 0,15 = 51,75 г.

Определим количество вещества сульфата меди:

n(CuSO 4) = m(CuSO 4) / M(CuSO 4);

M(CuSO 4) = Ar(Cu) + Ar(S) + 4 ×Ar(O) = 64 + 32 + 4 × 16 = 98 + 64 = 160 г/моль;

n(CuSO 4) = 51,75 / 160 = 0,3234 моль.

В одном моле медного купороса (CuSO 4 × 5H 2 O) содержится 1 моль сульфата меди, поэтому n(CuSO 4) = n(CuSO 4 × 5H 2 O) = 0,3234 моль.

Найдем массу медного купороса:

m(CuSO 4 × 5H 2 O) = n(CuSO 4 × 5H 2 O) ×M(CuSO 4 × 5H 2 O);

M(CuSO 4 × 5H 2 O) = M(CuSO 4) + 5 × M(H 2 O);

M(H 2 O) = 2 ×Ar(H) + Ar(O) = 2 × 1 + 16 = 2 + 16 = 18 г/моль;

M(CuSO 4 × 5H 2 O) = 160 + 5 × 18 = 160 + 90 = 250 г/моль;

m(CuSO 4 × 5H 2 O) = 0,3234 × 250 = 80,85 г.

Ответ Масса медного купороса 80,85 г.

§ 9. Что такое плотность вещества?

Что подразумевают, когда говорят: тяжелый, как свинец или легкий, как пух? Ясно, что крупинка свинца будет легкой, и в то же время гора пуха будет обладать изрядной массой. Те, кто пользуется подобными сравнениями, имеют в виду не массу тел, а какую-то иную характеристику.

Нередко в жизни можно встретить тела, имеющие одинаковый объем, но разные массы. Например, помидор и небольшой мячик. А в магазине большой выбор товаров, имеющих равные массы, но различающихся по объему, например, упаковка масла и пакет кукурузных палочек. Из этого следует, что тела равной массы могут иметь различные объемы, а тела, одинаковые по объему, могут различаться по массе. Значит, существует некая физическая величина, которая связывает обе эти характеристики. Эту величину назвали плотностью (обозначают буквой греческого алфавита ρ - ро).

Плотность - это физическая величина, численно равная массе 1 см3 вещества. Единица измерения плотности кг/м3 или г/см3. Таким образом, плотность вещества не меняется при неизменных условиях и не зависит от объема тела.

Существует несколько способов определения плотности ве­щества. Один из этих способов заключается в определении массы вещества путем взвешивания и измерения занимаемого им объема. Используя полученные значения, можно вычислить плотность, разделив массу тела на его объем.

Масса тела т

Плотность = ----- или ρ = --

Объем тела V

Не всегда плотность вещества надо вычислять. Так, для измерения плотности жидкости существует прибор - ареометр. Его погружают в жидкость, В зависимости от плотности жидкости ареометр погружается в нее на различную глубину.

Зная плотность вещества и объем тела, можно вычислить массу тела и обойтись без весов, т = V* ρ

Зная плотность вещества и массу тела, легко рассчитать его объем.

V = m/ ρ

Это очень удобно, когда форма исследуемого тела сложна, например, раковина улитки или осколок минерала.

Немного истории. Именно таким способом уличил во лжи знаменитый Архимед сиракузского ювелира, изготовившего за 250 лет до нашей эры царю Герону корону не из чистого золота. Плотность вещества короны оказалась меньше плотности золота. Ювелир же никак не предполагал разоблачения, ибо форма короны была невероятно сложна.

Плотности разных веществ определены и занесены в специальные таблицы. Такая таблица есть у вас в тетради практикуме на странице 22.

Из таблицы приведенной в тетради практикуме видно, что наименьшую плотность имеют вещества, находящиеся в газообразном состоянии; наибольшую - вещества, находящиеся твердом состоянии. Это объясняется тем, что молекулы в газах расположены далеко друг от друга, а молекулы в твердых телах - близко. Следовательно, плотность вещества связана с тем, насколько близко или далеко расположены молекулы. Да и сами молекулы разных веществ различаются как по массе, так и по размеру.

Разные вещества имеют различную плотность, которая зависит от массы и размера молекул, а также от их взаимного расположения. Плотность вещества можно вычислить, зная его массу и объем тела. Для измерения плотности жидкостей существует прибор ареометр, а для определения плотности разных веществ составлены специальные таблицы.

Ареометр * Плотность веществ

Проверьте свои знания

1. Какая физическая величина называется плотностью вещества?

2. Какие величины надо знать, чтобы вычислить плотность вещества?

3. Каким прибором можно определить плотность жидкости? Как он устроен?

4. Используя таблицу плотности веществ, определите плотность: алюминия , дистиллированной воды, меда.

5. Используя таблицу плотности вещества, назовите:

а) вещество с наибольшей плотностью;

б) с наименьшей плотностью;

в) с плотностью больше, чем у дистиллированной воды.

б. В природе часто взаимодействуют вещества с различной плотностью. Пользуясь таблицей плотностей веществ, объясните, почему:

а) лед всегда располагается на поверхности воды;

б) бензиновая пленка плавает на поверхности лужи;

в) человеку легче плавать в морской воде, чем в пресной?

В химических лабораториях очень часто приходится определять плотность. В литературе -прежних лет и в справочниках старых изданий приводятся таблицы удельных весов растворов и твердых тел. Этой величиной пользовались вместо плотности, являющейся одной из важнейших физических величин, которыми характеризуют свойства вещества.

Плотностью вещества называют отношение массы тела к его объему:

Следовательно, плотность вещества выражают * в г/см3. Удельным весом у называют отношение веса (силы тяжести) вещества к объему:

Плотность и удельный вес вещества находятся в такой же зависимости между собой, как масса и вес, т. е.

где g - местное значение ускорения силы тяжести при свободном падении. Таким образом, размерность удельного веса "(г/см2 сек2) и плотности (г/см3), а также их числовые значения, выраженные в одной системе единиц, отличаются друг от друга *.

Плотность тела не зависит от его местонахождения на Земле, в то время как удельный вес изменяется в зависимости от того, в каком месте Земли его измерить.

В ряде случаев предпочитают пользоваться так называемой относительной плотностью, представляющей собой отношение плотности данного вещества к плотности другого вещества при определенных условиях. Относительная плотность выражается отвлеченным числом.

Относительную плотность d жидких и твердых веществ принято определять по отношению к плотности дистиллированной воды:


Само собой разумеется, что р и рв должны выражаться одинаковыми единицами.

Относительную плотность d можно также выражать отношением массы взятого вещества к массе дистиллированной воды, взятой в том же объеме, что и вещество, при определенных, постоянных условиях.

Поскольку числовые значения как относительной плотности, так и относительного удельного веса при указанных постоянных условиях являются одинаковыми, пользоваться таблицами относительных удельных весов в справочниках можно так же, как если бы это были таблицы плотности.

Относительная плотность является постоянной величиной для каждого химически однородного вещества и для растворов при данной температуре. Поэтому по

* В ряде случаев плотность выражают в г/мл. Различие между числовыми значениями плотности, выраженными в г/см3 и г/мл, очень незначительно. Его следует принимать во внимание лишь при работах особой точности.

Поэтому по величине относительной плотности во многих случаях можно судить о концентрации вещества в растворе.

* В технической системе единиц (MKXCC). в которой за основную единицу принята не единица массы, а единица силы - килограмм-сила (кГ или кгс), удельный вес выражается в кГ/м3 или Г/см3. Следует отметить, что числовые значения удельного веси, измеренного в Г/см3, и плотности, измеренной в г/см3, совпадают, что нередко вызывает путаницу в понятиях «плотность» и «удельный вес».

Обычно плотность раствора увеличивается с увеличением концентрации растворенного вещества (если оно само имеет плотность больше, чем растворитель). Но имеются вещества, для которых увеличение плотности с увеличением концентрации идет только до известного предела, после которого при увеличении концентрации происходит уменьшение плотности.

Например, серная кислота имеет наивысшую плотность, равную 1,8415 при концентрации 97,35%. Дальнейшее увеличение концентрации сопровождается уменьшением плотности до 1,8315, что соответствует 99,31%.

Уксусная кислота имеет максимальную плотность при концентрации 77- 79%, а 100%-ная уксусная кислота имеет ту же плотность, что и 41%-ная.

Относительная плотность зависит от температуры, при которой ее определяют. Поэтому всегда указывают температуру, при которой делали определение, и температуру воды (объем взят за единицу). В справочниках это показывают при помощи соответствующих индексов, например eft; приведенное обозначение указывает, что относительная плотность определена при температуре 2O0C и за единицу для сравнения взята плотность воды при температуре 4е С. Встречаются также и другие индексы, обозначающие условия, при которых производилось определение относительной плотности, например Я4 Ul и т. д.

Изменение относительной плотности 90%-ной серной кислоты в зависимости от температуры окружающей среды приводится ниже:

Относительная плотность с повышением температуры уменьшается, с понижением ее -увеличивается.

При определении относительной плотности необходимо отмечать температуру, при которой оно проведено, и полученные величины сравнивать с табличными данны-, ми, определенными при той_же температуре.

Если измерение проведено не при той температуре, которая указана в справочнике, то. вводят поправку, вычисляемую как среднее изменение относительной плотпости на один градус. Например, если в интервале между 15 и 20 0C относительная плотность 90%-ной серной кислоты уменьшается на 1,8198-1,8144 = 0,0054, то в среднем можно принять, что при изменении температуры на 1 0С (выше 15 0C) относительная плотность уменьшается на 0,0054: 5 = 0,0011.

Таким образом, если определение вести при 18 0C, то относительная плотность указанного раствора должна быть равна:

Однако для введения температурной поправки к относительной плотности удобнее пользоваться приведенной ниже номограммой (рис. 488). Эта номограмма, кроме того, дает возможность но известной относительной плотности, вычисленной при стандартной температуре 20° С, приближенно определять относительную плотность при других температурах, в чем иногда может возникнуть потребность.Относительную плотность жидкостей можно определять при помощи ареометров, пикнометров, специальных весов и т. п.

Определение относительной плотности ареометрами.

Для быстрого определения относительной плотности жидкости применяют так называемые ареометры (рис. 489). Это-стеклянная трубка (рис. 489, а), расширяющаяся внизу и имеющая на конце стеклянный резервуар, заполненный дробью нли специальной массой, (реже - ртутью). В верхней узкой части ареометра имеется шкала с делениями. Чем меньше относительная плотность жидкости, тем глубже погружается в нее ареометр. Поэтому на его шкале вверху нанесено наименьшее значение относительной плотности, которое можно определить данным ареометром, внизу - наибольшее. Например, у ареометров для жидкостей с относительной плотностью меньше единицы внизу стоит 1,000, выше 0,990, еще выше 0,980 и т. д.

Промежутки между цифрами разделены на более мелкие деления, позволяющие определять относительную плотность с точностью до третьего десятичного знака. У наиболее точных ареометров шкала охватывает значения относительной плотности в пределах 0,2-0,4 единицы (например, Для определения плотности от 1,000 до 1,200, от 1,200 до 1,400 и т. д.). Такие ареометры обычно продают в виде наборов, которые дают возможность определять относительную плотность в широком интервале.

Номограмма для введения температурной поправки

Иногда ареометры снабжены термометрами (рис. 489,6), что позволяет одновременно измерять температуру, при которой проводится определение. Для определения относительной плотности при помощи ареометра жидкость наливают в стеклянный цилиндр (рис. 490) емкостью не менее 0,5 л, сходный по форме с мерным, но без носика и делений. Размер цилиндра должен соответствовать размеру ареометра. Наливать жидкость в цилиндр до краев не следует, так как при погружении ареометра жидкость может перелиться через край. Это бывает даже опасно при измерении плотности концентрированных кислот или концентрированных щелочей и пр. Поэтому уровень жидкости в цилиндре должен быть на несколько сантиметров ниже края цилиндра.

Иногда цилиндр для определения плотности имеет вверху желоб, расположенный концентрически, так что если жидкость при погружении ареометра перельется через край, то она не выльется на стол.

Для определения относительной плотности имеются специальные приборы, поддерживающие постоянный уровень жидкости в цилиндре. Схема одного из таких приборов приведена на рис. 491. Это - цилиндр 2, имеющий на определенной высоте отводную трубку 3 для стекания жидкости, вытесняемой ареометром при погружении его в жидкость. Вытесняемая жидкость поступает в трубку 4, имеющую кран 5, через который жидкость может быть слита. Цилиндр можно наполнять исследуемой жидкостью через уравнительную трубку /, имеющую в верхней части цилиндрическое расширение.

Плотность представляет собой физический параметр вещества, который находится в тесной взаимосвязи с его массой и объемом. Соотношение между этими параметрами обыкновенно определяется формулой p = m / V, где p - это плотность вещества, m - его масса, а V - объем. Таким образом, вещества, имеющие одинаковый объем, но при этом различную массу, во всей видимости, различаются между собой по плотности. То же можно сказать, если при одинаковой массе какие-либо вещества имеют разный объем.

Среди всех прочих веществ на планете Земля самую низкую плотность имеют газы. Жидкости, как правило, характеризуются более высокой по сравнению с ними плотностью, а максимальное значение этого показателя можно встретить у твердых веществ. Так, например, наиболее плотным металлом принято считать осмий.

Измерение плотности

Для измерения плотности , а также других предметных областях, это понятие, принята специальная комплексная единица измерения, основанная на взаимосвязи плотности с массой и объемом вещества. Так, в международной системе единиц измерения СИ единицей, используемой для описания плотности вещества, является килограмм на один кубический метр, которую принято обозначать как кг/м³.

Вместе с тем, в случае, если речь идет об очень малых объемах вещества, в отношении которого необходимо измерить плотность, в применяется использование производной от этой общепринятой единицы, выражаемой как количество граммов на кубический сантиметр. В сокращенном виде эту единицу принято обозначать г/см³.

При этом плотность различных веществ имеет тенденцию к изменению в зависимости от температуры: в большинстве случаев ее понижение влечет за собой увеличение плотности вещества. Так, например, обыкновенный воздух при температуре +20оС имеет плотность, равную 1,20 кг/м³, тогда как при понижении температуры до 0оС его плотность увеличится до 1,29 кг/м³, а при ее дальнейшем понижении до -50оС плотность воздуха достигнет 1,58 кг/м³. Вместе с тем, некоторые вещества представляют собой исключение из этого правила, так как изменение их плотности не подчиняется указанной закономерности: к ним относится, например, вода.

Для измерения плотности веществ применяются различные физические приборы. Так, например, измерить плотность жидкости можно при помощи ареометра, а для того чтобы определить плотность твердого или газообразного вещества, можно воспользоваться пикнометром.

В промышленности и сельском хозяйстве есть необходимость знать плотность используемых веществ, например, массу и объем бетона по его плотности рассчитывают бетонщики при заливке фундамента, колонн, стен, мостовых опор, откосов, плотин и т. д. Плотность вещества - это физическая величина, характеризующая массу тела, отнесенную к его объему.

При этом предполагается, что тело является сплошным, без пустот и примеси другого вещества. Данная величина для различных веществ отражена в справочных таблицах. Но интересно знать, каким образом заполняются такого рода таблицы, как определяют плотность неизвестных веществ. Самые простые способы определения плотности веществ:

Для жидкостей с помощью ареометра;

Для жидкостей и твердых тел путем измерения объема и массы и вычисления по формуле.

Иногда по причине неправильной формы тел или их больших размеров бывает трудно или даже невозможно определить их объем с помощью линейки или мензурки. Тогда возникает вопрос, каким способом определить их плотность, не прибегая к измерению объема, или нет возможности определить массу вещества?

Цель работы: Решение экспериментальных задач по определению плотности различных веществ.

Задачи: 1) Изучить различные методы определения плотности вещества, описанные в литературе

2) Измерить плотность некоторых веществ методами, предложенными в литературе и оценить границы погрешностей каждого метода

3) Определить плотность неизвестного вещества на основе выявленных способов.

4)Представить в виде таблиц плотность растворов соли, сахара и

4 медного купороса различной концентрации.

Материалы и методика исследований: Исследования проводились с распространенными веществами: 10%-ый раствор соли, 10%-ый раствор медного купороса, вода, алюминий, сталь и т. д. Для измерений использовались приборы 4-го класса точности: весы с разновесами, ареометр, сообщающиеся сосуды от жидкостного манометра, а также набор калориметрических тел. Опыты проводились при комнатной температуре (20-250С), в помещении школы, в кабинете физики.

5 11. 3. Определение плотности жидкости а) Метод взвешивания тела в воздухе и неизвестной жидкости

Цель: Определить плотность жидкости (раствора медного купороса). Плотность ρ0 воды равна 1000 кг/м.

Приборы: Динамометр, нить, сосуд с водой, сосуд с неизвестной жидкостью, тело из набора калориметрических тел.

Ход работы: С помощью динамометра определяем вес тела в воздухе (P1), в воде (P2) и в неизвестной жидкости (P3).

FA=ρgV - сила

Архимеда Архимедова сила, действующая на тело в воде, равна

FA=P1-P2, а в неизвестной жидкости:

Согласно закону Архимеда запишем

P1-P2=ρ0Vg, (1)

Решая систему уравнений (1) и (2), находим плотность неизвестной жидкости:

ρ=(P1-P3)/Vg, V=(P1-P2)/ρ0g, ρ=(P1-P3/P1-P2)ρ0.

ρ= (1H-0,6H/1H-0,7H)1000 кг/м3 = 400H кг/м3/0,3H=1333,(3) кг/м3 б) Метод сравнения с плотностью воды

Оборудование: Сообщающиеся сосуды из стеклянных трубок (со шкалой), резиновая трубка, мензурка, пипетка, колбы (или стеклянные банки) с различными жидкостями.

Ход работы: 1. На один конец сообщающихся сосудов надевают резиновую

6 трубку (предварительно зажав последнюю, чтобы через нее в сообщающиеся сосуды не вошел воздух).

2. Пипеткой наливают в сообщающиеся сосуды исследуемую жидкость (до определенного уровня).

3. Наливают (до некоторого уровня) дистиллированную воду в мензурку.

4. Свободный конец резиновой трубки погружают (до дна) в мензурку (рис. 1). При этом уровень жидкости в коленах сообщающихся сосудов изменится (пусть h1 - разность уровней в коленах)

5. Исследуемую жидкость из сообщающегося сосуда выливают и вместо нее наливают дистиллированную воду до прежнего уровня.

6. Вылив из мензурки воду, наливают в нее исследуемую жидкость до прежнего уровня.

7. Снова погружают свободный конец резиновой трубки в мензурку и опять находят разность уровней.

Поскольку высота уровня жидкости обратно пропорциональна ее плотности, можно записать: h1/h2 = ρx/ρв, или ρВ=h2ρВ/h1, где ρВ и ρX - соответственно плотности дистиллированной воды и исследуемой жидкости.

h1= 3,5 см h2= 5 см

ρX= 5 см / 3,5 см 1000кг/м3 = 1428 кг/м3

Таким образом, зная плотность жидкости, можно узнать, какую жидкость мы исследовали. В данном случае это медный купорос.

7 2. Определение плотности твердого тела а) Метод взвешивания образца в воздухе и воде

Оборудование: Весы с разновесом, стакан на 0,5 л, нитки и куски проволоки, исследуемые образцы (куски алюминия, олова, гранита, дерева, пластинка из плексигласа, корковая пробка).

Метод выполнения работы: Предлагаемый метод позволяет определить плотность любого вещества (имеющего плотность больше или меньше, чем у воды) с помощью взвешивания образца в воздухе и воде.

Пусть m1 - масса исследуемого тела. Тогда его вес в воздухе можно найти так:

Р =m1g, (1) где g - ускорение свободного падения. Погруженное в воду это тело имеет вес

Здесь FA- архимедова сила:

(V - объем вытесненной телом воды, ρВ - ее плотность).

Уравновесив весы, получаем:

P2=m2g, (4) где та - масса гирь, которые необходимо поместить на левую чашку, чтобы уравновесить весы. Из (1) - (4) получаем: m2=m1-ρвV (5)

Поскольку объем V равен объему погруженного в воду тела, то можно записать:

V=m1/ρx (6) где ρx - плотность вещества, из которого состоит исследуемое тело. Из (5) и (6) находим:

ρx=m1/(m1-m2)ρв (7)

Порядок выполнения работы:

/. Плотность исследуемых тел больше плотности воды.

1. Определяют массу m1 исследуемого тела.

2. Привязывают исследуемое тело ниткой к левой чашке весов и опускают в стакан с водой (до полного погружения).

3. На эту же чашку помещают гири массой m2 необходимые для уравновешивания весов.

4. По формуле (7) определяют плотность ρx исследуемого тела. Результаты измерений заносят в таблицу 1.

Таблица 1

Вещество m1, 10-3 m2, 10-3 ρx, 103 ρy, 103 ε, %

кг кг кг м-3 кг м-3

Алюминий 21,85 13,65 2,664 2,698 1,2

Олово 62,4 53,85 7,2982 7,298 0,003

Гранит 17,35 10,75 2,628 2. 5-3 5

Плексиглас 3,75 0,75 1,23 1,18 4,2

ΙΙ. Плотность исследуемых тел меньше плотности воды.

1. Измерить массу m1 исследуемого тела.

2. Тело жестко крепят к левой чашке весов с помощью трех кусков медной проволоки (диаметром 0,5 - 0,7 мм; два куска длиной 10 - 15 см, один -30 - 35 см). Для этого их концы скручивают в жгут, в котором укрепляют стальную иглу (или кусочек жесткой заостренной проволоки), а верхние концы коротких проволок крепят к выступам чашки весов (рис. 2).

Уравновешивают весы. Затем накалывают исследуемое тело на иглу.

3. Тело полностью погружают в воду, а на левую чашку весов добавляют гири массой m2 и добиваются равновесия весов. По формуле

ρx=m1/(m1+m2)ρx находят плотность исследуемого тела. Результаты измерений заносят в таблицу 2.

Таблица 2

вещество m3,10-3 m2,10-3кг pх,103 кгм-3 ρy, табл. ε,%

Пробка Дерево 3,7 22,5 0,14 0,2 30

20 25 0,44 0,45 2,2 б) Метод, основанный на условиях плавания тел.

Оборудование: кусок пластилина, сосуд цилиндрической формы с водой

(ρ = 1 г/см3), линейка.

Ход работы: 1. Погружаем в сосуд с водой кусок пластилина и измеряем линейкой изменения уровня h1 жидкости в сосуде.

2. изготавливаем из пластилина «кораблик» и пускаем его плавать в сосуде с водой. Вновь измеряем изменение уровня h2 жидкости.

3. Находим плотность пластилина по формуле:

ρпласт =mпласт/Vпласт = ρSh2 / Sh1 = ρВh2/h1

ρпласт = ρВh2/h1 h1 = 2мм h2 = 4мм

ρпласт =1000 кг/м3 4мм / 2мм = 2000 кг/м3

Определение плотности неизвестного вещества

Цель: Определить плотность неизвестного вещества Х в твердом состоянии. Вещество Х не растворяется в воде и не вступает с ней в химические реакции.

Оборудование: Стеклянный стакан с водой, пробирка, линейка измерительная, неизвестное вещество Х в виде небольших кусков.

Ход работы: Сначала в пробирку поместим только неизвестное вещество Х и отметим глубину Н погружения пробирки. Затем удалим из пробирки вещество Х и нальем столько воды, чтобы глубина погружения Н во втором опыте была точно такой же, как в первом опыте. В этом случае масса воды mв в пробирке во втором опыте равна массе mх неизвестного вещества в первом опыте: mв= mX

Плотность ρX вещества Х можно вычислить, используя равенство ρX=mX/VX = mВ/VX для уменьшения возможных ошибок измерений при определении глубины Н погружения пробирки воспользуемся, следующим приемом.

Нальем в стакан столько воды, чтобы уровень ее был примерно на 1 см ниже края. Нагружая пробирку неизвестным веществом Х малыми порциями, добьемся такой глубины ее погружения, при котором верхний край пробирки находился на уровне верхнего края сосуда. Это положение пробирки можно определить с большой точностью с помощью линейки, положенной сверху стакана.

Заменив затем неизвестное вещество водой, добьемся точно такой же глубины погружения пробирки, постепенно доливая в нее воду.

Измерим высоту h1 уровня воды в пробирке. Объем воды в пробирке равен

VВ= Sh1, где S - площадь внутреннего поперечного сечения пробирки. Опустим использованное ранее в опыте неизвестное вещество в пробирку с водой и измерим высоту уровня h2 воды в ней. Объем вещества Vх выразим через площадь S внутреннего поперечного сечения пробирки и изменение высоты уровня воды h2 - h1 в пробирке при опускании вещества в воду:

Плотность вещества ρX равна

ρX = mX/VX = mВ/VX = ρВVВ/VX=ρВSh1/(S(h2-h1)),

ρX = ρВh1/(h2-h1).

h1 =3. 3 см h2= 3,8 см

ρX = 1000кг/м3

ρX =1000кг/м3 3,3 см/(3,8 см-3,3 см) = 3,3 см

1000 кг/м3 / 0,5 см = 6,6 см 1000 кг /м3 = 6600 кг/м3

Сравнивая с табличными данными наш результат, можно предположить, что неизвестное вещество - цинк.

Определение плотности жидкостей разной концентрации

Цель: Определить плотности растворов соли, сахара и медного купороса разной концентрации. На основе полученных данных составить таблицы. Оборудование: Весы с разновесами, пробирка (250 мл), алюминиевый стаканчик.

Вещества: Сахар, соль, медный купорос. Ход работы: а) Соляной раствор

Для того чтобы получить раствор с разной концентрацией, нужно добавлять по одной чайной ложке (5,6г) соли в воду. После каждой ложки нужно измерить вес и объем получившегося раствора, учитывая, что m стакана= 44,75г.

Загрузка...