Медицинский портал. Щитовидная железа, Рак, диагностика

Основные закономерности наследственности. Основные закономерности наследования

Людей всегда интересовали закономерности наследования признаков. Почему дети похожи на своих родителей? Есть ли риск передачи наследственных заболеваний? Эти и многие другие вопросы оставались под завесой тайны вплоть до XIX века. Именно тогда Менделю удалось аккумулировать все накопленные знания по данной теме, а также путем сложных аналитических опытов установить конкретные закономерности.

Вклад Менделя в развитие генетики

Основные закономерности наследования признаков - это принципы, в соответствии с которыми определенные характеристики передаются от родительских организмов к потомству. Их открытие и четкая формулировка явля.тся заслугой Грегора Менделя, который проводил по данному вопросу многочисленные опыты.

Главное достижение ученого - это доказательство дискретного характера наследственных факторов. Иными словами, за каждый признак отвечает конкретный ген. Первые карты были построены для кукурузы и дрозофилы. Последняя является классическим объектом для проведения генетических опытов.

Заслуги Менделя трудно переоценить, о чем говорят и отечественные ученые. Так, знаменитый генетик Тимофеев-Ресовский отметил, что Мендель был первым, кто провел фундаментальные опыты и дал точную характеристику явлениям, которые ранее существовали на уровне гипотез. Таким образом, его можно считать пионером математического мышления в области биологии и генетики.

Предшественники

Стоит отметить, что закономерности наследования признаков по Менделю были сформулированы не на пустом месте. Его исследования основывались на изысканиях предшественников. Стоит особенно отметить следующих ученых:

  • Дж. Госс проводил эксперименты на горохе, скрещивая растения с плодами разного цвета. Именно благодаря этим исследованиям были открыты законы единообразия первого поколения гибридов, а также неполного доминирования. Мендель лишь конкретизировал и подтвердил данную гипотезу.
  • Огюстен Саржэ - это растениевод, выбравший для своих опытов тыквенные культуры. Он первым стал изучать наследственные признаки не в совокупности, а по отдельности. Ему принадлежит утверждение, что при передаче тех или иных характеристик они не смешиваются между собой. Таким образом, наследственность является константной.
  • Ноден проводил исследования на различных видах такого растения, как дурман. Проанализировав полученные результаты, он счел нужным говорить о наличии доминирующих признаков, которые в большинстве случаев будут преобладать.

Таким образом, уже к XIX веку были известны такие явления, как доминантность, единообразие первого поколения, а также комбинаторика признаков у последующих гибридов. Тем не менее всеобщих закономерностей выработано не было. Именно анализ имеющейся информации и выработка достоверной методики исследования являются главной заслугой Менделя.

Методика работы Менделя

Закономерности наследования признаков по Менделю были сформулированы в результате фундаментальных исследований. Деятельность ученого осуществлялась следующим образом:

  • рассматривались не в совокупности, а по отдельности;
  • для анализа выбирались только альтернативные признаки, которые представляют существенную разницу между разновидностями (именно это позволило наиболее четко объяснить закономерности процесса наследования);
  • исследования были фундаментальными (Мендель исследовал большое количество сортов гороха, которые были как чистыми, так и гибридными, а потом скрещивал "потомство"), что позволило говорить об объективности результатов;
  • использование точных количественных методов в ходе анализа полученных данных (используя знания в области теории вероятностей, Мендель снизил показатель случайных отклонений).

Закон единообразия гибридов

Рассматривая закономерности наследования признаков, стоит уделить особое внимание единообразию гибридов первого поколения. Он был открыт путем опыта, в ходе которого производилось скрещивание родительских форм с одним контрастным признаком (форма, окраска и т. д.).

Менделем было принято решение провести эксперимент на двух разновидностях гороха - с красными и белыми цветками. Как результат, гибриды первого поколения получили пурпурные соцветия. Таким образом, появилось основание говорить о наличии доминантных и рецессивных признаков.

Стоит отметить, что данный опыт Менделя был не единственным. Он использовал для экспериментов растения с другими оттенками соцветий, с разной формой плодов, разной высотой стебля и прочие варианты. Опытным путем ему удалось доказать, что все гибриды первого порядка единообразны и характеризуются доминантным признаком.

Неполное доминирование

В ходе изучения такого вопроса, как закономерности наследования признаков, проводились опыты как на растениях, так и на живых организмах. Таким образом, удалось установить, что далеко не всегда признаки находятся в отношениях и подавления. Так, например, при скрещивании кур черного и белого окраса удалось получить серое потомство. Так же было с некоторыми растениями, когда разновидности с пурпурными и белыми цветками на выходе давали розовые оттенки. Таким образом, можно скорректировать первый принцип, указав, что первое поколение гибридов будет иметь одинаковые признаки, при этом они могут быть промежуточными.

Расщепление признаков

Продолжая исследовать закономерности наследования признаков, Мендель счел необходимым подвергнуть скрещиванию двух потомков первого поколения (гетерозиготных). Как результат, было получено потомство, часть которого носило а другая - рецессивный. Из этого можно сделать вывод, что второстепенный признак у первого поколения гибридов не исчезает вовсе, а лишь подавляется и вполне может проявиться в последующем потомстве.

Независимое наследование

Много вопросов вызывают закономерности наследования признаков. Опыты Менделя коснулись также особей, которые отличаются друг от друга сразу по нескольким признакам. По каждому в отдельности предыдущие закономерности соблюдались. Но вот, рассматривая совокупность признаков, не удалось выявить какой-либо закономерности между их комбинациями. Таким образом, есть основания говорить о независимости наследования.

Закон чистоты гамет

Некоторые закономерности наследования признаков, установленные Менделем, носили чисто гипотетический характер. Речь идет о законе чистоты гамет, который заключается в том, что в них попадает лишь по одному аллелю из пары, содержащейся в гене родительской особи.

Во времена Менделя не было технических средств для подтверждения данной гипотезы. Тем не менее ученому удалось сформулировать общее утверждение. Суть его состоит в том, что в процессе образования гибридов наследственные признаки сохраняются в неизменном виде, а не смешиваются.

Существенные условия

Генетика - это наука, изучающая закономерности наследования признаков. Мендель сделал существенный вклад в ее развитие, выработав фундаментальные положения по данному вопросу. Тем не менее, чтобы они выполнялись, необходимо соблюдение следующих существенных условий:

  • исходные формы должны быть гомозиготными;
  • альтернативность признаков;
  • одинаковая вероятность формирования разных аллелей у гибрида;
  • равная жизнеспособность гамет;
  • при оплодотворении гаметы сочетаются случайным образом;
  • зиготы с разными комбинациями генов жизнеспособны в равной степени;
  • численность особей второго поколения должна быть достаточной, чтобы считать полученные результаты закономерными;
  • проявление признаков не должно быть зависимо от влияния внешних условий.

Стоит отметить, что данным признакам соответствует большинство живых организмов, в том числе человек.

Закономерности наследования признаков у человека

Несмотря на то, что изначально генетические принципы исследовались на примере растений, для животных и человека они также справедливы. Стоит отметить такие типы наследования:

  • Аутосомно-доминантный - наследование доминирующих признаков, которые локализуются посредством аутосом. При этом фенотип может быть как сильно выраженным, так и едва заметным. При данном типе наследования вероятность получения ребенком патологического аллеля от родителя составляет 50 %.
  • Аутосомно-рецессивный - наследование второстепенных признаков, соединенных с аутосомами. Заболевания проявляются посредством гомозигот, причем пораженными будут оба аллеля.
  • Доминантный Х-сцепленный тип подразумевает передачу доминантных признаков детерминированными генами. При этом у женщин заболевания встречаются в 2 раза чаще, чем у мужчин.
  • Рецессивный Х-сцепленный тип - наследование происходит по более слабому признаку. Заболевание или его отдельные признаки всегда проявляются у потомства мужского пола, а у женщин - только в гомозиготном состоянии.

Основные понятия

Для того чтобы понять, как работают закономерности наследования признаков Менделя и прочие генетические процессы, стоит ознакомиться с основными определениями и понятиями. К ним относятся следующие:

  • Доминантный признак - преобладающая характеристика, которая выступает в качестве определяющего состояния гена и подавляет развитие рецессивных.
  • Рецессивный признак - характеристика, которая передается по наследству, но не выступает в качестве определяющей.
  • Гомозигота - диплоидная особь или клетка, в хромосомах которой содержатся одинаковые клетки указанного гена.
  • Гетерозигота - диплоидная особь или клетка, которая дает расщепление и имеет разные аллели в рамках одного гена.
  • Аллель - это одна из альтернативных форм гена, которая расположена в определенном месте хромосомы и характеризуется уникальной последовательностью нуклеотидов.
  • Аллель - это пара генов, которые расположены в одних и тех же зонах и контролируют развитие определенных признаков.
  • находятся на разных участках хромосом и несут ответственность за проявление различных признаков.

Заключение

Мендель сформулировал и на практике доказал основные закономерности наследования признаков. Описание их приведено на примере растений и слегка упрощено. Но на практике оно является справедливым для всех живых организмов.

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ

Генетика (греч. genetikоs – что относится к происхождению) – биологическая наука, предметом изучения которой есть наследственность и изменчивость. Наследственность и изменчивость – основные свойства всех живых организмов. Срок “генетика”впервые в 1906 г. предложил английский ученый В.Бетсон.

Наследственность – свойство организмов передавать свои признаки и особенности развития потомству; свойство обеспечивать материальную и функциональную преемственность между поколениями. Наследственность реализуется при размножении. Каждый вид организмов сохраняет и воссоздает себе подобное в ряде поколений. В процессе размножения воссоздается не только подобное, но возникает и новое. Дети всегда похожи на своих родителей, но никогда не бывают их точными копиями. Они отличаются как от своих родителей, так и между собою.

Основная задача генетики – выучить закономерности наследственности и изменчивости с целью разработки способов управления ими в интересах всего человечества. Для осуществления этой задачи генетика использует ряд методов, основной из них – генетический анализ. Его основу составляет гибридологический метод – изучения закономерностей наследования признаков путем гибридизации (скрещивания). Метод разработал Г.Мендель (1865). Генетика применяет также методы других наук: микроскопический, ультрамикроскопический, статистический, физико-химический, популяционный, кибернетический. Изучения наследственности проводится на разных объектах и на разных уровнях (молекулярном, хромосомном, клеточном, организмовом, популяционном). Разнообразие объектов и исследовательских приемов обусловила возникновение следующих разделов генетики: генетика микроорганизмов, генетика растений, генетика животных, генетика человека, цитогенетика, молекулярная генетика, биохимическая генетика, радиационная генетика, популяционная генетика. Существует также такой раздел как генетика поведения. Особенность современной генетики – проникновение во все области молекулярного уровня исследований, углубления связей с другими науками.

Значение генетики. Генетические закономерности лежат в основе всех биологических явлений. Генетика является ведущей наукой современного природоведения. Она составляет теоретическую основу селекции. С помощью генетических методов созданы новые породы животных, сорта растений, штаммы микроорганизмов. Методы генетики применяются для решения продовольственных, экологических, космических и других глобальных проблем человечества. Генетические знания являются составной частью всех научных программ из охраны природы и здоровья население.

Генетика тесно связанная с медициной, ведь около 5 % детей рождаются с разными генетическими дефектами. Для медицины важное значение имеют все генетические науки. Это связано с универсальностью законов генетики, которые впервые были установлены на экспериментальных объектах, а потом оказались приемлемыми также для человека. Данные экспериментальной генетики применяются для диагностики, лечения и профилактики наследственных болезней. С помощью методов генетической инженерии и биотехнологии получают in vitro (вне организма) в промышленных количествах инсулин, интерферон, антибиотики, необходимые для практической медицины.

Генетика человека – раздел общей генетики, которая изучаетнаследственность и изменчивость человека. Основная задача генетики человека – выучить закономерности наследственности и побежалости человека с целью сохранения здоровья ныне существующих и будущих поколений. Методы изучения наследственности человека – генеалогический, близнецовый, цитогенетический, биохимический, популяционно-статистический, дерматоглифики, молекулярно-генетический.

Наследственность человека как самостоятельный предмет исследования впервые выделил в 1865 г. английский ученый Ф.Гальтон (1822-1911), которого считают одним из основателей генетики. Он родился в одном и том же году, который и Г.Мендель (1822-1884).Ф.Гальтон приходится двоюродным братом Ч.Дарвину (1809-1882) – автору первой научной эволюционной теории. Оба они – внуки английского врача и натуралиста Э.Дарвина (1731-1802), известного своими прогрессивными взглядами на природу. Ф.Гальтон предложил ряд методов генетического анализа человека (генеалогический, близнецовый, статистический, дерматоглифики), изучал вопросы количественной оценки признаков человека (характер, интеллект, талантливость, трудоспособность) и их наследования, создал особое направление в генетике – евгенику (греч.eu – добрый, genesis – род, происхождения) и определил основную цель ее – улучшить человека и человеческий род в целом. Пути такого “улучшение” он усматривал в выборочном размножении одних людей (например, одаренных, талантливых) и ограничении других браков. Теоретически евгеника основывалась на реальных фактах наследственной обусловленности нормальных и патологических признаков, а практически осуществлялась в ряде стран (фашистская Германия) как антигуманное признание отдельных категорий население неполноценными, которые в законодательном порядке подлежали принудительной стерилизации (“расовая гигиена”). Евгенические программы надолго задержали развитие генетики человека.

Основные научные направления развития современной генетики человека:

Цитогенетика изучает хромосомы человека, их структурно-функциональную организацию, картирование, разрабатывает методы хромосомного анализа. Достижения цитогенетики используют для диагностики хромосомных болезней человека. Популяционная генетика исследует генетическую структуру человеческих популяций, частоту аллелей отдельных генов (нормальных и патологических) в популяциях людей, прогнозирует и оценивает генетические последствия загрязнения окружающая среда, влияние антропогенных факторов среды на биологические процессы, которые протекают в человеческих популяциях (мутационный процесс). Эти исследования разрешают прогнозировать частоту некоторых наследственных болезней в поколениях и планировать профилактические мероприятия. Биохимическая генетика изучает биохимическими методами пути реализации генетической информации от гена к признаку. С помощью биохимических методов разработанные экспресс-методы диагностики ряда наследственных болезней, в том числе методы пренатальной (дородовой) диагностики. Разработка системы защиты генофондалюдей от ионизирующей радиации – одно из основных задач радиационной генетики. Иммунологическая генетика (иммуногенетика) изучает генетическую обусловленность иммунологических признаков организма, иммунных реакций.Фармакологическая генетика (фармакогенетика)исследуетгенетическую обусловленность реакций отдельных людей на лечебные средства и действие последних на наследственный аппарат.

Особенности генетики человека

В отличие от классических объектов генетики, человек – специфический и сложный объект генетического анализа. Специфичность человека состоит в том, что она объединяет в себе законы органической эволюции и законы социальной жизни. Гибридологический метод, основу которого составляет система экспериментальных скрещиваний, для человека неприемлемый. Экспериментальные браки для человека невозможные. Генетические эксперименты на людях запрещенные. Существуют и другие особенности, которые создают трудность при изучении наследственности и изменчивости человека.

Основные из них такие:

1.Медленная смена поколений (приблизительно через 25-30 лет). Продолжительность жизни человека, как объекта наблюдений, может превышать продолжительность жизни исследователя.

2.Небольшле количество детей в каждой семье.

3.Сложный кариотип, который включает 46 хромосом (24 группы сцепления – 22 пары автосом, Х-, Y-хромосомы). Для сравнения – у дрозофилы 8 хромосом (4 группы сцепления).

4.Человеку присущ значительный генотипический полиморфизм, который, вместе с разными экологическими и социальными условиями, обуславливает высокую степень фенотипического полиморфизма.

Медицинская генетика как наука

Медицинская генетика – раздел генетики человека, который изучает роль наследственности в патологии человека. Предметом изучения медицинской генетики являются наследственные болезни человека и болезни с наследственной склонностью.

Медицинская генетика изучает этиологию и патогенез наследственных болезней, разрабатывает методы диагностики, лечения и профилактики, исследует соотносительную роль наследственных и ненаследственных факторов в развития болезней с наследственной склонностью. Основная задача медицинской генетики – изучения наследственных болезней человека с целью предупреждения их развития в ряде поколений, охрана наследственности человека от вредных факторов среды.

Объектом медицинской генетики является человек с наследственной патологией, а также его семья, здоровые и больные родственники. Врач и медицинская сестра любой специальности встречаются с наследственными болезнями. За каталогами, опубликованными за последние годы, в 1966 г. было известно 1487, 1982 г. – около 4000, 2000 г. – 6678 наследственных болезней.

Медицинская генетика связана со всеми клиническими науками. Разделом медицинской генетики является клиническая генетика. Конечная цель в них единая – предоставить помощь больному, предотвратить появление наследственных болезней в поколениях. Тем не менее, каждая клиническая наука изучает конкретные наследственные болезни соответственно своему профилю.

Медицинская генетика исследует генетические закономерности, общие для всех наследственных болезней или большой группы их. При этом она опирается на генетику человека: развивается в одних и тех же направлениях и применяет те же исследовательские приемы, которые и генетика человека.

Современная медицинская генетика и медицина в борьбе за здоровье людей в каждом поколении ориентируются прежде всего на профилактику наследственных болезней путем пренатальной (дородовой) диагностики, медико-генетического консультирования, выявления гетерозиготных носителей патологических генов, советов супружеским парам с повышенным риском рождения больного ребенка, разработке законодательных актов, направленных против загрязнения окружающей среды мутагенами.

Медицинская генетика исследует строение генов человека, осуществляет искусственный синтез их, разрабатывает вместе с клиническими науками способы лечения наследственных болезней с помощью генов (генотерапия и генохирургия).

Теория, рассматривающая генотип как целостную систему, основана на двух постулатах:

1. Один ген влияет на формирование нескольких признаков.

2. Каждый признак организма развивается в результате взаимодействия многих генов.

Под взаимодействием генов понимается не непосредственное воздействие одного гена на другой (одного участка молекулы ДНК на другой участок). В действительности взаимодействие генов имеет биохимическую природу. Оно основано на взаимодействии синтезируемых под контролем генов генетических продуктов (РНК, затем белков).

Белки могут вступать друг с другом в различные реакции: одни белки подавляют действие других белков или, наоборот, дополняют действие друг друга, могут вызывать различные мутации генов, вследствие чего ген кодирует белок в измененной форме. Все эти взаимодействия между белками, синтезируемым под контролем генов, приводят к формированию организмов, обладающих определенным набором признаков.

Известны два вида взаимодействия генов: аллельное и неаллельное .

Различают две основных группы взаимодействия генов: взаимодействие между аллельными генами и взаимодействие между неаллельнимы генами. Однако следует понимать, что это не физическое взаимодействие самих генов, а взаимодействие первичных и вторичных продуктов, которые обусловят тот или иной признак. В цитоплазме происходит взаимодействие между белками - ферментами, синтез которых опрелятся генами, или между веществами, которые образовываются под влиянием этих ферментов.

Гены, которые занимают идентичные (гомологические) локусы в гомологичных хромосомах, называются аллельными. У каждого организма есть по два аллельных гена.

Взаимодействие аллельных генов

В состав генотипа входит большое количество генов, функционирующих и взаимодействуют как целостная система. Г. Мендель в своих опытах обнаружил только одну форму взаимодействия между аллельными генами - полное доминирование одной аллели и полную рецесивнисть другой. Генотип организма нельзя рассматривать как простую сумму независимых генов, каждый из которых функционирует вне связи с другими. Фенотипное проявления того или иного признака являются результатом взаимодействия многих генов.

Известны такие формы взаимодействия между аллельными генами: полное доминирование, неполное доминирование, кодоминированием и сверхдоминирование.

Основная форма взаимодействия - полное доминирование , которое впервые описано Г. Менделем. Суть его заключается в том, что в гетерозиготном организме проявление одной из аллелей доминирует над проявлением другой. При полном доминировании расщепленияпо генотипу 1:2:1 не совпадает с расщеплением по фенотипу - 3:1. В медицинской практике с двух тысяч моногенных наследственных болезнейпочти в половины имеет место доминированое проявления патологических генов над нормальными. В гетерозигот патологический аллель проявляется в большинстве случаев признаками заболевания (доминантный фенотип).

Неполное доминирование - форма взаимодействия, при которой у гетерозиготного организма (Аа) доминантный ген (А) не полностью подавляет рецессивный ген (а), вследствие чего проявляется промежуточный между родительскими признак. Здесь расщепление по генотипу и фенотипу совпадает и составляет 1:2:1

При кодоминировании в гетерозиготных организмах каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система групп крови, в частности система АBО, когда эритроциты человека несут на поверхности антигены, контролируемые обеими аллелями. Такая форма проявления носит название кодоминированием.

Границы между кодоминированием, неполным доминированием и промежуточным наследованием фенотипически достаточно расплывчаты. Так, в некоторых источниках кодоминирование рассматривается как отсутствие доминантно-рецессивных отношений, то есть представляет собой промежуточное наследование. В то же время некоторые случаи неполного доминирования (например, у некоторых видов появляются розовые цветки у гибридов F 1 от скрещивания красноцветковых и белоцветковых растений) можно также рассматривать как промежуточное наследование. Причиной путаницы является то, что во всех трёх случаях гибриды первого поколения обладают промежуточным вариантом признака.

Кодоминирование и неполное доминирование, несмотря на фенотипическое сходство, имеют различные механизмы появления. Кодоминирование имеет место при полноценном проявлении двух аллелей; неполное же доминирование происходит тогда, когда доминантный аллель не полностью подавляетрецессивный, то есть у гетерозигот доминантный аллель проявляется слабее, чем у гомозигот по этому аллелю. Указанные генотипы при неполном доминировании отличаются экспрессивностью, то есть степенью выраженности признака.

Сверхдоминирование - когда доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном. Так, у дрозофилы при генотипе АА-нормальная продолжительность жизни; Аа - удлиненная триватисть жизни; аа - летальный исход.

Фенотипически, как правило, в случае сверхдоминирования гетерозиготы не обладают особыми внешними признаками. Преимущество связано с биохимическими особенностями.

Одним из характерных примеров сверхдоминирования является повышенная частота аллеля гена серповидноклеточной анемиив популяциях человека, живущих в условиях высокой вероятности заражения малярией. Мутантный аллель защищает организм от заболевания малярией. Гомозиготы по нормальному аллелю могут заболеть малярией и погибнуть, гомозиготы по мутантному аллелю - с высокой вероятностью гибнут от анемии. Гетрозиготы по этому гену не болеют серповидноклеточной анемией и устойчивы к малярии.

Преимущество гетерозигот так же показано по многим генам и у многих организмов. Для Drosophila melanogaster показаны эффекты сверхдоминирования по гену алкогольдегидрогеназы в лабораторных популяциях.

В ряде случаев аллель гена, с которым связано сверхдоминирование, является рецессивно летальным и поддерживается в популяции за счёт преимущества гетерозигот. К таким случаям относится, например, система летальных аллелей гена lethal giant larvae . Гетерозиготы, имеющие нормальный и мутантный вариант этого гена, в ряде случаев, характеризуются повышенной жизнеспособностью.

Как и всякое явление, приводящее к изменению приспособленности особей в популяциях, сверхдоминирование связано сгенетическим грузом. Более приспособленные гетерозиготные организмы при скрещивании как между собой, так и с представителями других генетических классов должны давать менее приспособленное потомство. Генетический груз, связанный с поддержанием генетического разнообразия в популяции при сверхдоминировании называется сегрегационным.

Крайним случаем сверхдоминирования, является полная нежизнеспособность гомозигот. Такие ситуации характерны для лабораторных популяций Drosophila melanogaster несущих сбалансированные летали. Очевидно, что в этом случае при скрещивании гетерозигот между собой половина потомства будет относится к нежизнеспособным генотипическим классам. Рассмотрим гипотетический случай, когда число генов, для которых имеет место сверхдоминирование велико и сверхдоминирование настолько сильно, что гомозиготы по любому из генов нежизнеспособны. Тогда плодовитость особей в популяции должна быть очень велика, чтобы компенсировать убыль популяции за счёт выщепления особей нежизнеспособных генотипических классов. Для каждого из таких сверхдоминантных генов ресщепление приводит к нежизнеспособности половины потомства. Для 10 генов жизнеспособной будет только 1/1024 часть потомков.

Следствием из модели является то, что в природных популяциях сверхдоминирование не может одновременно давать больших преимуществ гетерозиготам и распространяться на большое число генов. Иначе платой за повышенную приспособленность части особей будет необходимость в поддержании плодовитости на недостижимом уровне.

Молекулярные основы доминирования были неизвестны Менделю. В настоящее время ясно, что локус, соответствующий определённому гену, состоит из длинных последовательностей, включающих сотни и тысячи нуклеотидов ДНК. Центральная догма молекулярной биологии гласит, что ДНК → РНК → белок, то есть ДНК транскрибируется в мРНК, а мРНК транслируется в белок. В этом процессе различные аллели могут транскрибироваться или не транскрибироваться, а будучи затранскрибированными, транслироваться в различные формы одного и того же белка- изоформы. Часто белки функционируют как ферменты, катализирующие химические реакции в клетке, которые прямо или косвенно определяют фенотип. У любого диплоидного организма аллели, соответствующие одному локусу, являются либо одинаковыми (у гомозигот), либо разными (у гетерозигот). Даже если на уровне последовательностей ДНК аллели различны, то их белки могут быть идентичными. В отсутствие различий между белковыми продуктами невозможно сказать, какой из аллелей доминирует (в этом случае имеет место кодоминирование). Даже если два белковых продукта слегка отличны друг от друга, они, вероятно, дают одинаковый фенотип и могут осуществлять одинаковые ферментативные реакции (если они являются ферментами). В этом случае также невозможно сказать, какой из аллелей доминирует.

Доминирование, как правило, возникает, когда один из аллелей является нефункциональным на молекулярном уровне, то есть не транскрибируется или даёт нефункциональный белковый продукт. Это может быть результатом мутации, изменяющей последовательность ДНК аллеля. У гомозиготы по нефункциональным аллелям, как правило,проявляется характерный фенотип из-за отсутствия определённого белка.Например, у людейи других животных непигментированная кожа альбиносовпроявляются из-за гомозиготности по аллелю, препятствующему синтез кожного пигмента меланина. Важно понимать, что рецессивность определяется у аллеля не по отсутствию какой-либо функции: у гетерозигот это является результатом взаимодействия с альтернативным аллелем. Возможны три основных типа таких взаимодействий:

1.В типичном случае единичный функциональный аллель дает достаточно белка, чтобы получить фенотип, идентичный фенотипу гомозиготы по функциональному аллелю. Это называется гаплодостаточностью (англ. haplosufficiency). Например, если принять количество фермента, производимого функциональной гетерозиготой, за 100%, то каждый из функциональных аллелей будет ответственна за выработку 50% общего количества фермента. Единственный функциональный аллель гетерозиготы даёт 50% фермента, и этого достаточно для поддержания нормального фенотипа. Если гетерозигота и гомозигота по функциональному аллелю имеют одинаковый фенотип, то функциональный аллель доминирует над нефункциональным. Так происходит с геном альбинизма: гетерозигота производит количество фермента, которого достаточно для образования предшественника меланина, и особь имеет нормальную пигментацию.

2.Реже наличие единственного функционального аллеля не обеспечивает нормальный фенотип, однако его дефектность выражена не так ярко, как у гомозиготы по нефункциональным аллелям. Это происходит тогда, когда функциональный аллель не является гаплодостаточным. Обычно к этим случаям относят понятия гаплонедостаточности и неполного доминирования. Промежуточный вариант этого взаимодействия имеет место тогда, когда гетерозигота имеет фенотип, промежуточный между двумя гомозиготами. В зависимости от того, к какой из гомозигот ближе вариант признака гетерозиготы, говорят о неполном доминировании одной аллели над другой. Примером такого взаимодействия может служить описанный выше случай с гемоглобином человека.

3.Редко единственная функциональная аллель гетерозиготы даёт неполноценный генный продукт, и её фенотип схож с фенотипом гомозиготы по нефукциональным аллелям. Такие случаи гаплонедостаточности крайне необычны. В этих случаях нефукциональная аллель доминирует над фукциональной. Такая ситуация может происходить тогда, когда нефукциональная аллель даёт дефектный белок, который подавляет функцию белка, образуемого нормальной аллелью. Дефектный белок «доминирует» над стандартным, и фенотип гетерозиготы более походит на фенотип гомозиготы по дефектным алеллям. Следует обратить внимание на то, что доминантными часто некорректно называют дефектные аллели, вызываемый которыми в гомозиготном состоянии фенотип не изучен, однако в сочетании с нормальным аллем они дают характерный фенотип. Этот феномен происходит при некоторых генетических заболеваниях, вызванных тринуклеотидными повторами, например, болезни Хантингтона.

Множественный аллелизм

У каждого организма есть только по два аллельных гена. Вместе с тем нередко в природе количество аллелей может быть более двух, если какой то локус может находится в разных состояниях. В таких случаях говорят омножественные аллели или множественный аллеломорфизм.

Множественные аллели обозначаются одной буквой с разными индексами, например: А 1 , А 2 , А 3 ... Аллельные гена локализуются в одинаковых участках гомологичных хромосом. Поскольку в кариотипе всегда присутствуют по две гомологичных хромосомы, то и при множественных аллелях каждый организм может иметь одновременно лишь по два одинаковых или различных аллели. В половую клетку (вместе с различием гомологичних хромосом) попадает только по одному из них. Для множественных аллелей характерное влияние всех аллелей на один и тот же признак. Отличие между ними заключается лишь в степени развития признака.

Второй особенностью является то, что в соматических клетках или в клетках диплоидных организмов содержится максимум по две аллели из нескольких, поскольку они расположены в одном и том же локусе хромосомы.

Еще одна особенность присуща множественным аллелям. По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и т.д. Одним из примеров проявления множественных аллелей у человека есть группы крови системы АВО.

Термин «группа крови» характеризует системы эритроцитарных антигенов, контролируемых определенными локусами, содержащими различное число аллельных генов, таких, например, как A, B и 0 («ноль») в системе AB0. Термин «тип крови» отражает её антигенный фенотип (полный антигенный «портрет», или антигенный профиль) - совокупность всех групповых антигенных характеристик крови, серологическое выражение всего комплекса наследуемых генов группы крови.

Две важнейшие классификации группы крови человека - это система AB0 и резус-система.

Система AB0

Предложена ученым Карлом Ландштейнером в 1900 году. Известно несколько основных групп аллельных генов этой системы: A¹, A², B и 0. Генный локус для этих аллелей находится на длинном плече хромосомы 9. Основными продуктами первых трёх генов - генов A¹, A² и B, но не гена 0 - являются специфические ферменты гликозилтрансферазы, относящиеся к классу трансфераз. Эти гликозилтрансферазы переносят специфические сахара - N-ацетил-D-галактозамин в случае A¹ и A² типов гликозилтрансфераз, и D-галактозу в случае B-типа гликозилтрансферазы. При этом все три типа гликозилтрансфераз присоединяют переносимый углеводный радикал к альфа-связующему звену коротких олигосахаридных цепочек.

В плазме крови человека могут содержаться агглютинины α и β , в эритроцитах - агглютиногены A и B , причём из белков A и α содержится один и только один, то же самое - для белков B и β.

Таким образом, существует четыре допустимых комбинации; то, какая из них характерна для данного человека, определяет его группу крови:

· α и β: первая (0)

· A и β: вторая (A)

· α и B: третья (B)

· A и B: четвёртая (AB)

Фенотип А (II) может быть у человека, унаследовавшего от родителей или два гена А (АА), или гены А и 0 (А0). Соответственно фенотип В (III) - при наследовании или двух генов В (ВВ), или В и 0 (В0). Фенотип 0 (I) проявляется при наследовании двух генов 0. Таким образом, если оба родителя имеют II группу крови (генотипы A0 и А0), кто-то из их детей может иметь первую группу (генотип 00). Если у одного из родителей группа крови A (II) с возможным генотипом АА и А0, а у другого B (III) с возможным генотипом BB или В0 - дети могут иметь группы крови 0 (I), А (II), B (III) или АВ (IV).

У родителя с группой крови I(0) не может быть ребёнка с группой крови IV(AB), вне зависимости от группы крови второго родителя.У родителя с группой крови IV(AB) не может быть ребёнка с группой крови I(0), вне зависимости от группы крови второго родителя. Исключения возможны в крайне редких случаях, при подавлении А и В генов h-геном(вероятно подавление другими генами) так называемый Бомбейский феномен .

Множественный алелизм имеет важное биологическое и практическое значение, поскольку усиливает комбинативну изменчивость, особенно генотипического.

Система Rh (резус-система)

Резус-фактор крови - это антиген (белок), который находится на поверхности красных кровяных телец (эритроцитов). Он обнаружен в 1940 году Карлом Ландштейнером и А.Вейнером. Около 85 % европейцев (99 % индийцев и азиатов) имеют резус и соответственно являются резус-положительными. Остальные же 15 % (7 % у африканцев), у которых его нет, - резус-отрицательный. Резус крови играет важную роль в формировании так называемой гемолитической желтухи новорожденных, вызываемой вследствие резус-конфликта иммунизованной матери и эритроцитов плода.

Известно, что резус крови - это сложная система, включающая более 40 антигенов, обозначаемых цифрами, буквами и символами. Чаще всего встречаются резус-антигены типа D (85 %), С (70 %), Е (30 %), е (80 %) - они же и обладают наиболее выраженной антигенностью. Система резус не имеет в норме одноименных агглютининов, но они могут появиться, если человеку с резус-отрицательной кровью перелить резус-положительную кровь.

Резус-фактор наследуется по рецессивно-доминантному типу наследования. Положительный резус - доминантный признак, отрицательный - рецессивный. Фенотип Rh+ проявляется как при гомозиготном, так и при гетерозиготном генотипе (++ или +-), фенотип Rh- проявляется только при гомозиготном генотипе (только --).

У пары Rh- и Rh- могут быть дети только Rh-. У пары Rh+ и Rh-, а также у пары Rh+ и Rh+ могут быть дети как Rh+, так и Rh-, либо только Rh+, в зависимости от генотипа родителей Rh+.

Доноры и реципиенты крови должны иметь «совместимые» группы крови. В России по жизненным показаниям и при отсутствии одногруппных по системе АВ0 компонентов крови (за исключением детей) допускается переливание резус-отрицательной крови 0(I) группы реципиенту с любой другой группой крови в количестве до 500 мл. Резус-отрицательная эритроцитная масса или взвесь от доноров группы А(II) или В(III), по витальным показаниям могут быть перелиты реципиенту с AB(IV) группой, независимо от его резус-принадлежности. При отсутствии одногруппной плазмы реципиенту может быть перелита плазма группы АВ(IV).

В середине XX века предполагалось, что кровь группы 0(I)Rh- совместима с любыми другими группами. Люди с группой 0(I)Rh- считались «универсальными донорами», и их кровь могла быть перелита любому нуждающемуся. В настоящее время подобные гемотрансфузии считаются допустимыми в безвыходных ситуациях, но не более 500 мл.

Несовместимость крови группы 0(I)Rh- с другими группами наблюдалась относительно редко, и на это обстоятельство длительное время не обращали должного внимания. Таблица ниже иллюстрирует, люди с какими группами крови могли отдавать / получать кровь (знаком Да отмечены совместимые комбинации). Например, обладатель группы A(II)Rh− может получать кровь групп 0(I)Rh− или A(II)Rh− и отдавать кровь людям, имеющим кровь групп AB(IV)Rh+, AB(IV)Rh−, A(II)Rh+ или A(II)Rh−.

Взаимодействие неалельних генов

Известно много случаев, когда признак или свойства детерминируются двумя или более неалельнимы генами, которые взаимодействуют между собой. Хотя и здесь взаимодействие условно, потомучто взаимодействуют не гены, а контролируемые ими продукты. При этом имеет место отклонение от менделивских закономерностей расщепления.

Различают четыре основных типа взаимодействия генов: комплементарность, эпистаз, полимерию и модифицирующее действие (плейотропия).

Комплементарность это такой тип взаимодействия неаллельних генов, когда один доминантный ген дополняет действие другого неаллельного доминантного гена, и они вместе определяют новый признак, который отсутствует у родителей. Причем соответственный признак развивается только в присутствии обоих неаллельних генов. Например, сера окраска шерсти у мышей контролируется двумя генами (А и В). Ген А детерминирует синтез пигмента, однако как гомозиготы (АА), так и гетерозиготы (Аа) - альбиносы. Другой ген В обеспечивает скопления пигмента преимущественно у основания и на кончиках волос. Скрещивания дигетерозигот (АаВЬ х АаВЬ) приводит к расщеплению гибридов в соотношении 9:3:4. Числовые соотношения при комплементарном взаимодействии могут быть как 9:7; 9:6:1 (видоизменение менделивского расщепления).

Примером комплементарного взаимодействия генов у человека может быть синтез защитного белка - интерферона. Его образование в организме связано с комплементарным взаимодействием двух неаллельних генов, расположенных в разных хромосомах.

Эпистаз -это такое взаимодействие неаллельных генов, при котором один ген подавляет действие другого неаллельного гена. Угнетение могут вызывать как доминантные, так и рецессивные гены (А> В, а> В, В> А, В> А), и в зависимости от этого розличают эпистаз доминантный и рецессивный. Подавляющий ген получил названиеингибитора или супрессора. Гены-ингибиторы в основном не детерминируют развитие определенного признака, а лишь подавляют действие другого гена.

Ген, эффект которого подавляется, получил название гипостатичного. При епистатичном взаимодействияи генов расщепление по фенотипу в F2 составляет 13:3; 12:3:1 или 9:3:4 и др. Окрас плодов тыквы, масть лошадей определяются этим типом взаимодействия.

Если ген-супрессор рецессивный, то возникает криптомерия (греч. хриштад - тайный, скрытый). У человека таким примером может быть "Бомбейский феномен". В этом случае редкий рецессивный аллель "х" в гомозиготном состоянии (мм) подавляет активность гена jB (определяющий В (III) группу крови системы АВО). Поэтому женщина с генотипом jв_хх, фенотипно имеет I группу крови - 0 (I).

Большинство количественных признаков организмов определяется несколькими неаллельнимы генами (полигенами). Взаимодействие таких генов в процессе формирования признака называется полимерным . В этом случае две или более доминантных аллели в равной степени влияют на развитие одной и того же признаки. Поэтому полимерные гены принято обозначать одной буквой латинского алфавита с цифровым индексом, например: А 1 А 1 и а 1 а 1 . Впервые однозначные факторы были выявлены шведским генетиком Нильсон-Эле (1908 г.) при изучении наследования цвета в пшеницы. Было установлено, что этот признак зависит от двух полимерных генов, поэтому при скрещивании доминантних и рецессивных дигомозигот - окрашенной (А 1 А 1 , А 2 А 2) с бесцветной (а 1 а 1 , а 2 а 2) - в F 1 , все растения дают окрашенные семена, хотя онисветлее, чем родительские экземпляры, которые имеют красное семя. В F 2 , при скрещивании особей первого поколения проявляется расщепление по фенотипу в соотношении 15:1, потому бесцветным является лишь рецессивные дигомозиготы (а 1 а 1 а 2 а 2). В пигментированных экземплярах интенсивность цвета очень отличается в зависимости от количества полученных ими доминантних аллелей: максимальная в доминантных дигомозигот (А 1 А 1 , А 2 А 2) и минимальная у носителей одного из доминантных аллелей.

Важная особенность полимерии - суммация действия неаллельних генов на развитие количественных признаков. Если при моногенном наследовании признака возможны три варианта "доз" гена в генотипе: АА, Аа, аа, то при полигенных количество их возрастает до четырех и более. Суммация "доз" полимерных генов обесчивает существования непрерывных рядов количественных изменений.

Биологическое значение полимерии заключается еще и в том, что признаки, кодируемые этими генами, более стабильны, чем те, которые кодируются одним геном. Организм без полимерных генов был бы очень неустойчивым: любая мутация или рекомбинация приводила бы к резкой изменчивости, а это в большинстве случаев имеет неблагоприятный характер.

У животных и растений есть много полигенных признаков, среди нихи ценные для хозяйства: интенсивность роста, скороспелость, яйценоскость. количество молока, содержание сахаристых веществ и витаминов и т.п.

Пигментация кожи у человека определяется пятью или шестью полимерными генами. В коренных жителей Африки (негроидной расы) преобладают доминантные аллели, у представителей европеоидной расы - рецессивные. Поэтому мулаты имеют промежуточную пигментацию, но при браках мулатов у них возможно появление как более, так и менее интенсивно пигментированных детей.

Многие морфологические, физиологические и патологические особенности человека определяются полимерными генами: рост, масса тела, величина артериального давления и др. Развитие таких признаков у человека подчиняется общим законам полигенного наследования и зависит от условий среды. В этихв случаях наблюдается, например, склонность к гипертонической болезни, ожирению и др. Данные признаки при благоприятных условиях среды могут не проявиться или проявиться незначительно. Эти полигенные признаки отличаются от моногенных. Изменяя условия среды можно обеспечить профилактику ряда полигенных заболеваний.

Плейотропия

Влияние одного гена на развитие двух и большего числа признаков называется множественным, или плейотропным, действием, а само явление получило название плейотропии (от греческого pleistos - множественный, наибольший). Биохимическая природа плейотропного действия гена выяснена довольно хорошо. Один белок-фермент, образующийся под контролем одного гена, определяет развитие не только данного признака, но и воздействует на вторичные реакции биосинтеза различных других признаков и свойств, вызывая их изменения.

Плейотропия широко распространена: большинство генов у всех организмов обладают множественным действием. Это явление впервые было обнаружено Г. Менделем. Он обнаружил, что у растения с кукурузными цветками одновременно всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. Эти три признака определялись действием одного гена. Недавно было установлено, что многим индуцированным мутациям гороха свойственна высокая степень плейотропии, проявляющаяся в изменении до десяти и более признаков. Н. И. Вавилов и О. В. Якушкина, изучая наследование некоторых признаков у персидской пшеницы, выяснили, что доминантный ген черной окраски колоса одновременно вызывает опущение колосковых чешуй.

В генотипе человека известны гены, обладающие плейотропным действием. Например, известен ген, вызывающий характерную картину синдрома марфана. Такие люди отличаются длительным ростом конечностей, особенно ног и пальцев рук (паучьи пальцы). К тому же этот ген вызывает дефект в хрусталике глаза.

Другим примером плейотропности гена у человека может послужить мутация серповидноклеточности. В этом случае мутация нормального аллеля ведет к изменению в молекулярной структуре белка гемоглобина. В результате мутированные эритроциты теряют способность к транспорту кислорода и вместо нормальной, круглой, приобретают серповидную форму. У людей, гомозиготных по этому признаку, развивается острая анемия, как правило, люди гибнут при рождении. Люди, гетерозиготные по этому аллелю, часто проявляют серповидноклеточность без нарушения транспорта кислорода и при этом обладают повышенной устойчивостью против малярийных комаров. В результате складывается парадоксальная ситуация, в которой ген летален у человека в гомозиготном состоянии, тем не менее он получает широкое распространение. Причиной служит то, что гетерозиготные люди меньше заболевают тропической малярией. В этом случае увеличение идет на гетерозигот, число которых в популяциях больше, чем людей, гомозиготных по этой мутации. Это явление было обнаружено в Средиземноморье и в некоторых других районах.

Плейотропное действие генов – это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена. В дрозофилы ген белого цвета глаз одновременно влияет на цвет тела, длины, крыльев, строение полового аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известна наследственная болезнь - арахнодактилия ("паучьи пальцы"-очень тонкие и длинные пальцы), или болезнь Марфана. Ген, отвечающий за эту болезнь, вызывает нарушение развития соединительной ткани и одновременно влияет на развитие нескольких признаков: нарушение строения хрусталика глаза, аномалии в сердечно-сосудистой системе.

Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген проявляет свой множественный эффект. Например, при болезни Хартнупа мутация гена приводит к нарушению всасывания аминокислоты триптофана в кишечнике и его реабсорбции в почечных канальцах. При этом поражаются одновременно мембраны эпителиальных клеток кишечника и почечных канальцев с расстройствами пищеварительной и выделительной систем.

При вторичной плейотропии есть один первичный фенотипний проявление гена, вслед за которым развивается ступенчатый процесс вторичных изменений, приводящих к множественным эффектам. Так, при серповидно клеточной анемии у гомозигот наблюдается несколько патологических признаков: анемия, увеличенная селезенка, поражение кожи, сердца, почек и мозга. Поэтому гомозиготы с геном серповидно клеточной анемии гибнут, как правило, в детском возрасте. Все эти фенотипные проявления гена составляют иерархию вторичных проявлений. Первопричиной, непосредственным фенотипним проявлением дефектного гена является аномальный гемоглобин и эритроциты серповидной формы. Вследствие этого происходят последовательно другие патологические процессы: слипание и разрушение эритроцитов, анемия, дефекты в почках, сердце, мозге - эти патологические признаки вторичны.

При плейотропии, ген, воздействуя на какой то один основнй признак, может также менять, модифицировать проявление других генов, в связи с чем введено понятие о генах-модификаторах. Последние усиливают или ослабляют развитие признаков, кодируемых "основным" геном.

Показателями зависимости функционирования наследственных задатков от характеристик генотипа является пенетрантность и экспрессивность .

Рассматривая действие генов, их аллелей необходимо учитывать и модифицирующее влияние среды, в которой розвивается организм. Если растения примулы скрещивать при температуре 15-20 ° С, то в F1 согласно менделивской схеме, все поколения будут иметь розовые цветы. Но когда такое скрещивание проводить при температуре 35 °С, то все гибриды будут иметь цветы белого цвета. Если же осуществлять скрещивания при температуре около 30 ° С, то возникает разноесоотношение (от 3:1 до 100%) растений с белыми цветами.

Такое колебание классов при расщеплении в зависимости от условий среды получило название пенетрантность - сила фенотипного проявления. Итак, пенетрантность – это частота проявления гена, явление появления или отсутствия признака у организмов, одинаковых по генотипу.

Пенетрантность значительно колеблется как среди доминантных, так и среди рецессивных генов. Наряду с генами, фенотип которых появляется только при сочетании определенных условий и достаточно редких внешних условий (высокая пенетрантность), у человека есть гены, фенотипное проявление которых происходит при любых соединениях внешних условий (низкая пенетрантность). Пенетрантностью измеряется процентом организмов с фенотипным признаком от общего количества обследованных носителей соответствующих аллелей.

Если ген полностью, независимо от окружающей среды, определяет фенотипное проявление, то он имеет пенетрантность 100 процентов. Однако некоторые доминантные гены проявляются менее регулярно.

Так, полидактилия имеет четкое вертикальное наследования, но бывают пропуски поколений. Доминантная аномалия – преждевременное половое созревание - присуще только мужчинам, однако иногда может передаться заболевания от человека, который не страдал этой патологией. Пенетрантностью указывает, в каком проценте носителей гена оказывается соответствующий фенотип. Итак, пенетрантность зависит от генов, от среды, от того и другого. Таким образом, это не константное свойство гена, а функция генов в конкретных условиях среды.

Экспрессивность (лат. ехргеssio – выражение) – это изменение количественного проявления признака в разных особей-носителей соответствующего аллелей.

При доминантных наследственных заболеваниях экспрессивность может колебаться. В одной и той же семье могут проявляться наследственные болезни от легких, едва заметных дотяжелых: различные формы гипертонии, шизофрении, сахарного диабета и т.д. Рецессивные наследственные заболевания в пределах семьи проявляются однотипно и имеют незначительные колебанийния экспрессивности.

наследственность мутация генная болезнь

Наслемдственность -- способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Методы изучения наследственности человека

· Генеалогический метод -- составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков;

· Цитогенетический метод -- изучение хромосомных наборов здоровых и больных людей. Результат изучения -- определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений;

· Биохимический метод -- изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения -- определение нарушений в составе крови, в околоплодной жидкости и т. д.;

· Близнецовый метод -- изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения -- определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма;

· Популяционный метод -- изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения -- определение распространения мутаций и естественного отбора в популяциях человека.

ь Моногибридное скрещивание

М оногибридным называется скрещивание, при котором родители различаются по проявлению лишь одного из признаков. В одном из опытов Г. Мендель в качестве родителей выбрал особей чистых линий (то есть особей, которые при скрещивании друг с другом на протяжении многих поколений давали потомство с набором тех же самых признаков). Он исследовал наследование окраски семян гороха -- она может быть желтой или зеленой. Г. Мендель ставил опыт таким образом, что в одном эксперименте материнские растения имели желтые семена, а отцовские -- зеленые, а в другом -- наоборот. Такая система из двух скрещиваний носит название реципрокного скрещивания. При этом одно из скрещиваний (любое) называется ПРЯМЫМ, а другое -- ОБРАТНЫМ. (в данном случае результаты прямого и обратного скрещивания были одинаковыми.) Из гибридов первого поколения Г. Мендель путем самоопыления получал гибриды второго поколения и т. д. В нашем случае схема скрещивания будет выглядеть так.

зеленые семена х желтые семена

Из схемы видно, что у всех особей F1 проявился признак только одного родителя, а именно -- желтая окраска семян. Проявляющийся в первом поколении гибридов признак Г. Мендель назвал доминантным (а само явление -- доминированием), а исчезающий -- редессивным . Описанная закономерность известна под названием закона-(или правила) единообразия первого поколения. Иногда ее также называют первым законом Менделя, что не совсем верно. Сам ученый формулировал лишь «закон комбинации различающихся признаков», включающий в себя, по сути, правило расщепления и правило независимого наследования. Кроме того, важно заметить, что правило единообразия гибридов первого поколения отражает не закономерности наследования признаков, а особенности их реализации в организме. При размножении гибридов F1 во втором поколении, наряду с доминантным, у части особей проявился отсутствовавший в фенотипе гибридов" первого поколения рецессивный признак. Г. Мендель обнаружил, что особей с доминантным признаком примерно втрое больше, чем с рецессивным (то есть произошло расщепление в соотношении 3: 1). Эти результаты легли в основу закона расщепления. Дальнейшее размножение гибридов F2 показало, что особи с рецессивным признаком давали в ряду поколений только особей, у которых- также проявлялся лишь рецессивный признак; а группа с доминантным признаком оказалась разнородной. Одна ее часть в ряду поколений давала только особей с проявлением доминантного признака, а другая при размножении расщеплялась в соотношении по фенотипу 3:1. Рассматриваемые организмы диплоидны, то есть состоят из клеток, содержащих двойной набор хромосом. Гомологичные хромосомы имеют идентичные участки -- гены, в которых содержится информация о том или ином признаке, например, цвете семян. Однако признак этот может проявляться в фенотипе различным образом -- семена могут быть зелеными, а могут быть и желтыми. Собственно цвет (желтый или зеленый) определяется тем или иным состоянием гена (последовательностью нуклеотидов в цепи ДНК). В рассматриваемом случае ген окраски семян имеет две альтернативные формы (аллеля). Аллели -- формы (их может быть не только две, но и больше -- явление множественного аллелизма) одного и того же гена, располагающиеся в одинаковых участках (локусах) гомологичных хромосом. Таким образом, соматические клетки содержат два аллеля одного гена. При этом, несмотря на то, что аллели могут быть разными (гетерозиготное состояние), в фенотипе проявляется только один из них -- он называется доминантным. Рецессивный же аллель влияет на фенотип только в том случае, если он, находится в обоих гомологичных хромосомах (гомозиготное состояние). Образующиеся в результате мейоза гаплоидные гаметы содержат всего лишь один аллель того или иного гена. На схеме доминантные аллели обозначаются латинской заглавной буквой, а рецессивные -- прописной (буква при этом используется одна и та же, что подчеркивает, что оба аллеля ответственны за проявление одного и того же признака). Схема нашего скрещивания с учетом сказанного будет выглядеть так:

В скрещивании участвуют и особи чистых линий. Это означает, что они гомозиготны по выбранному признаку. При оплодотворении материнская и отцовская гаметы сливаются. Поскольку доминантный аллель подавляет работу рецессивного, а все гибриды F1 имеют одинаковый гетерозиготный генотип Аа, у них проявляется желтая окраска семян. Гибриды F1 способны образовывать 2 типа гамет: А и а, каждая из которых с равной вероятностью может слиться с любой другой. В результате в F2 образуются следующие генотипы: АА, аа, Аа и Аа (или: АА, 2Аа, аа). Как видно, генотипов с двумя рецессивными генами втрое меньше. Этим объясняется расщепление по фенотипу 3:1. Расщепление по генотипу составляет 1: 2: 1, то есть 1АА: 2Аа: 1аа. Гомозиготы АА и аа могут образовывать гаметы только одного типа, поэтому при самоопылении у их потомков расщепления не происходит. Гетерозиготы же Аа размножаются аналогично гибридам F1.

ь Дигибридное скрещивание

Г. Мендель продолжил свои исследования, но для экспериментов выбрал растения, отличающиеся друг от друга двумя признаками, то есть по двум парам аллелей. Скрещивание таких организмов называется дигибридным . В одном из экспериментов семена гороха отличались не только окраской, но и формой (часть из них была гладкой, а часть -- морщинистой):

Р желтые гладкие семена х зеленые морщинистые семена

Все потомки первого поколения имели гладкие семена желтого цвета. Во втором поколении гибридов проявилось уже четыре фенотипа: желтые гладкие, зеленые гладкие, желтые морщинистые и зеленые морщинистые семена. Причем расщепление по фенотипу каждого признака в отдельности было таким же, как и при моногибридном скрещивании -- количество желтых семян было втрое больше, чем зеленых, а количество гладких -- втрое больше, чем морщинистых. На основании этого был сформулирован еще один принцип, который известен под названием закон независимого наследования (распределения) признаков, суть которого состоит в том, что альтернативные проявления одного признака могут сочетаться с любыми альтернативными проявлениями другого признака. Попробуем объяснить этот закон на основании хромосомной теории наследственности. Согласно этой теории аллели локализуются в гомологических хромосомах. В опытах Г. Менделя гены, кодирующие цвет и форму семян, располагались в разных хромосомах (обозначим ген окраски как А -- желтая и а -- зеленая, а ген формы как В -- гладкая и b -- морщинистая). В протекании процесса мейоза, приводящего к образованию гамет, есть одно непреложное правило: гомологичные хромосомы должны разойтись к разным полюсам и «уйти» в разные гаметы. А вот какая именно из гомологических хромосом (с доминантным или рецессивным геном -- это, разумеется, относится только к гете-розиготам) отойдет к какому полюсу, дело случая. В нашем примере:

Различные варианты генотипов (и соответствующих им фенотипов), образующиеся при слиянии гамет в результате скрещивания, удобно рассчитывать по решетке Пеннета, располагая их в ячейках, на которые она поделена.

ь Сцепление генов

Как выяснилось закон независимого распределения генов справедлив лигаь для генов, расположенных в разных хромосомах. На самом деле в любом организме число генов очень велико (десятки тысяч), а число их носителей -- хромосом -- ограничено: так, у человека 23 пары хромосом, у кукурузы -- 10, а у дрозофилы -- всего 4. Соответственно, в каждой хромосоме должно быть по несколько сотен или тысяч генов. Из того факта, что при образовании гамет к полюсам клетки в мейозе отходят хромосомы, а не гены, следует, что гены, локализованные в одной хромосоме, должны наследоваться вместе. Это подтверждают опыты Томаса Ханта Моргана, проведенные на плодовой мушке дрозофиле. Он исследовал дигибридное скрещивание для двух признаков: цвета тела (серое и черное) и длины крыла (длинные и зачаточные).

· Р серое тело, длинные крылья (GGLL) Х черное тело, зачаточеные крылья (ggll)

· гаметы: GL gl

· F1 серое тело, длинные крылья GgLl

· Поскольку оба гена лежат в одной хромосоме, образуется только 2 типа гамет: GL и gl

Таким образом, в F2 наблюдается расщепление по фенотипу 3: 1 вместо ожидаемого в соответствии с генетикой Менделя 9:3:3:1. Закономерность, суть которой сводится к тому, что гены, локализованные в одной хромосоме, наследуются преимущественно вместе, известна под названием закона Моргана. Слово преимущественно не случайно, ибо сам Морган обнаружил и объяснил отклонения от этого правила. Так как гены, лежащие в одной хромосоме, наследуются вместе, их называют сцепленными. Все гены одной хромосомы образуют ГРУППУ сцепления. Введем еще одно понятие. Анализирующим называется скрещивание изучаемого организма с формой, имеющей рецессивный гомозиготный генотип и соответственно образующей только один тип гамет с рецессивными аллелями. При анализирующем скрещивании (в данном случае оно является также и возвратным) серой длиннокрылой гетерозиготы из F1 с черной короткокрылой гомозиготой из родительского поколения Р у Т. X. Моргана помимо форм с ожидаемыми фенотипами -- серое тело, длинные крылья и черное тело, зачаточные крылья -- в соотношении 1: 1 появились особи со смешанными признаками:

Р серое тело, длинные крылья (GgLl) Х черное тело, зачаточеные крылья (ggll)

Fа(анализир.) 41,5 % серое тело, длинные крылья 41,5 % черное тело, зачаточные крылья 8,5 % серое тело, зачаточные крылья 8,5 % черное тело, длинные крылья

Т. X. Морган, объясняя полученные результаты, предположил, что гомологичные хромосомы, образующие на первой стадии мейоза хиазмы (перекресты), способны обмениваться отдельными участками в результате возникающих разрывов и последующих рекомбинаций. Это явление было названо кроссинговером. Оно приводит к тому, что аллели из гомологичных хромосом меняются друг с другом местами. Таким образом, в данном случае, кроме «нормальных» гамет GL и gl, образуются (в гораздо меньшем количестве) гаметы GI и gL. Именно они и определяют появление «неожиданных» особей. Процесс обмена участками между гомологичными хромосомами приводит к генетической рекомбинации. Особей, образующихся из гамет с новым сочетанием аллелей, называют рекомбинантными. Чем дальше друг от друга на хромосоме расположены гены, тем чаще между ними происходит кроссинговер и тем выше процент появляющихся рекомбинантных особей. На этом явлении основано построение генетических карт -- определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

ь Взаимодействие генов

Более поздними исследованиями было показано, что, кроме сцепления, отклонения от менделевского наследования вызываются еще рядом причин, одной из которых являются эффекты, связанные с взаимодействием генов. Оказалось, что как аллельные, так и неаллельные гены способны взаимодействовать друг с другом, вызывая появление новых признаков. Взаимодействие аллельных генов Неполное доминирование -- явление, при котором доминантный ген не полностью подавляет работу рецессивного, в результате развивается промежуточный признак. Примером может служить окраска цветка у растения ночная красавица с расщеплением по фенотипу в F2 1:2:1. Р красный цветок (АА) Х белый цветок (аа)

· F1 фенотип: розовый цветок генотип: Аа гаметы: А А Х а а

· F2 фенотип: 1/4 красный цветок 2/4 розовый цветок 1/4 белый цветок генотип: АА Аа аа

Множественный аллелизм -- явление существования более двух альтернативных аллельных генов, имеющих различные проявления в фенотипе. Например, четыре группы крови у человека определяются сочетанием в генотипе аллелей А, В и О одного и того же гена I. Взаимодействие неаллельных генов Комплементарное взаимодействие -- (взаимодополнительное действие генов) -- явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака. Комбинативное взаимодействие -- явление, когда два неаллельных гена, взаимодействуя между собой обусловливают развитие нового признака, при этом каждый ген имеет собственное фенотипическое проявление. Эпистаз -- тип взаимодействия генов, при котором один ген подавляет действие другого (неаллельного) гена. Полимерия -- явление, когда несколько неаллель-ных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Часто явление полимерии наблюдается при наследовании количественных признаков -- удойность коров, яй-ценосность, вес тела и т. д. Плейотролия -- множественное действие гена. В этом случае один ген отвечает за развитие нескольких признаков.

Читайте также:
  1. II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  2. II. Основные принципы и правила служебного поведения государственных гражданских служащих Федеральной налоговой службы
  3. II. Принципы разработки учебно-методического комплекса дисциплины (УМКД)
  4. q]1:1: Закономерности формирования совокупного спроса и совокупного предложения на товары и факторы производства на мировом рынке являются объектом изучения
  5. R Принципы купирования пароксизмов мерцания и трепетания предсердий
  6. Авария, инцидент. Основные закономерности возникновения и развития аварий на опасных производственных объектах
  7. Амебиаз. Балантидиаз. Клиника, диагностика, осложнения, принципы терапии.

1. Гибридологический метод

2. Наследование при моногибридном скрещивании

3. Анализирующее скрещивание

4. Наследование при неполном доминировании

5. Отклонения от ожидаемого расщепления

6. Тетрадный анализ, или генетическое расщепление

История современной генетики начинается с устверждения теории гена в 1900г., когда Е.Чермак, К.Коренс и Г. де Фриз независимо друг от друга открыли законы наследования отдельных признаков, не предполагая, что эти законы были открыты Г.Менделем.

На протяжении столетий предшественники Менделя изучали наследование совокупности всех признаков у гибридного потомства. Г.Мендель положил в основу изучения наследования новые принципы.

Первая особенность метода Менделя состояла в получении в течение нескольких поколений константных форм, которые он в дальнейшем подвергал скрещиванию.

Второй особенностью метода Менделя является анализ наследования отдельных пар признаков в потомстве скрещиваемых растений одного вида гороха, отличающихся по одной, двум и трём парам контрастных, альтернативных признаков, например, цветки пурпурные и белые, форма семян гладкая и морщинистая и т.п. В каждом поколении вёлся учёт отдельно по каждой такой паре альтернативных признаков, без учёта других различий между скрещиваемыми растениями.

Третья особенность этого метода заключалась в использовании количественного учёта гибридных растений, различающихся по отдельным парам альтернативных признаков, в ряду последовательных поколений.

Четвёртой особенностью метода Менделя было применение индивидуального анализа потомства от каждого гибридного растения.

Перечисленные простые приёмы исследования составили принципиально новый гибридологический метод изучения наследования, открывший целую эпоху в изучении наследственности и изменчивости. Совокупность генетических методов изучения наследования называют генетическим анализом.

Моногибридное скрещивание . Моногибридным называют такое скрещивание, в котором родительские формы различаются по одной паре альтернативных, контрастных признаков.

Доминирование, закон единообразия гибридов первого поколения. Закон расщепления. Любое скрещивание начинается с выявления признака. Признак - это определенное отдельное качество организма, по которому одна его часть отличается от другой или одна особь от другой. Признаком в генетическом смысле можно назвать любую особенность, выявляемую при описании организма: высоту, вес, форму носа, цвет глаз, форму листьев, окраску цветка, размер молекулы белка или его электрофоретическую подвижность. Признаки должны проявляться постоянно. Чтобы убе­диться в их константности, Мендель на протя­жении двух лет предварительно проверял раз­личные формы гороха. Признаки должны быть контрастными. Мендель отобрал 7 признаков, каждый из которых имел по два контрастных проявления. Например, зрелые семена по мор­фологии были либо гладкими, либо морщини­стыми, по окраске - желтыми или зелеными, окраска цветка была белой или пурпурной.



После определения признаков можно при­ступать к скрещиваниям, в которых использу­ют генетические линии - родственные орга­низмы, воспроизводящие в ряду поколений одни и те же наследственно константные при­знаки. Потомство от скрещивания двух особей с различной наследственностью называют гиб­ридным, а отдельную особь - гибридом.

После того как Мендель скрестил формы гороха, различающиеся по 7 признакам, у гиб­ридов проявился, или доминировал, только один из пары родительских признаков. При­знак другого родителя (рецессивный) у гибридов первого поколения не проявлялся. Позднее это явление доминирования было названо пер­вым законом Менделя (законом единообразия гибридов первого поколения или законом до­минирования).



Мендель скрестил полученные гибриды между собой. Как он сам пишет, «в этом по­колении наряду с доминирующими признака­ми вновь появляются также рецессивные в их полном развитии и притом в ясно выраженном среднем отношении 3: 1, так что из каждых четырех растений этого поколения три полу­чают доминирующий и одно - рецессивный признак» [Мендель, 1923. С. 12]. Всего в дан­ном опыте было получено 7324 семени, из ко­торых гладких было 5474, а морщинистых - 1850, откуда выводится соотношение 2,96: 1. Данные этого опыта свидетельствуют о том, что рецессивный признак не теряется и в сле­дующем поколении он снова проявляется (выщепляется) в чистом виде. Г. де Фриз в 1900 г. назвал это явление законом расщепления, а позднее его назвали вторым законом Менделя.

Разные классы потомков (с доминантным и рецессивным проявлением) Мендель вновь самоопылил. Оказалось, что признаки с рецес­сивным проявлением сохраняются неизменны­ми в последующих поколениях после само­опыления. Если же самоопылить растения из доминирующего класса, то вновь будет рас­щепление, на этот раз в соотношении 2: 1.

Прежде чем перейти к изложению наследования признаков, необходимо сообщить о некоторых символах, принятых в генетике.

Скрещивание обозначают знаком умноже­ния - X. В схемах на первом месте принято ставить генотип женского пола. Пол принято обозначать следующими символами:

женский – ♀ (зеркало Венеры),

мужской – ♂ (щит и копьё Марса).

Родительские организмы, взятые в скрещи­вание, обозначают буквой P (от латинского Parento - родители). Гибридное поколение обо­значают буквой F (от латинского Filii - дети) с цифровым индексом, соответствующим по­рядковому номеру гибридного поколения [Лобашев, 1967. С. 105]. Доминирующий признак Мендель предложил обозначать заглавной буквой, а рецессивный - той же буквой, но строчной.

Для облегчения расчёта сочетаний разных типов гамет английский генетик Р.Пэннет предложил запись в виде решётки – таблицы с числом строк (столбцов) по числу типов гамет, образуемых скрещиваемыми особями (широко известна как решётка Пэннета), а на пересечении вписывают образующиеся сочетания гамет. Так, в скрещивании Аа X Аа будут следующие гаметы и их сочетания:

Гаметы А а
А АА Аа
а Аа аа

Скрещивание, выполненное Менделем, можно показать на следующей схеме:

P AA X aa

F 1 Aa X Aa

F 2 AA Aa Aa aa

с проявлением с проявлением

Доминантного рецессивного

признака признака

В F 2 можно выделить два типа расщепления: 3: 1 по внешнему проявлению и 1: 2: 1 по наследственным потенциям. Для «внешней» характеристики признака В.Иогансен в 1909 г. предложил термин «фенотип», а для характеристики истинно наследственных задатков – «генотип». Поэтому расщепление по генотипу в F 2 моногибридного скрещивания составляет ряд 1: 2: 1, а по фенотипу – 3: 1.

Константные формы АА и аа , которые в последующих поколениях не дают расщепления, У.Бэтсон в 1902 г. предложил называть гомозиготными, а формы Аа , дающие расщепление, - гетерозиготными.

Как мы видели, у гибридов F 1 рецессивная аллель а, хотя и не проявляется, но и не смешивается с доминантной аллелью А 1 , а в F 2 обе аллели вновь проявляются в чистом виде. Такое явление можно объяснить, лишь исходя из допущения, что гибрид F 1 Аа образует не гибридные, а «чистые гаметы», при этом указанные аллели оказываются в разных гаметах. Гаметы, несущие аллели А и а , образуются в равном числе; исходя из этого становится понятным расщепление по генотипу 1: 2: 1. Несмешивание аллелей каждой пары альтернативных признаков в гаметах гибридного организма называется правилом чистоты гамет, в основе которого лежат цитологические механизмы мейоза.

Анализирующее скрещивание. Чтобы проверить, является ли данный организм гомо- или гетерозиготным, можно, как предложил Мендель, скрестить его с ис­ходной гомозиготой по рецессивным аллелям. Такой тип скрещивания получил название ана­лизирующего.

Аа X аа АА X аа

1Аа: 1аа Аа

Если особь была гомозиготной по доминантно­му признаку, все потомки принадлежат к одно­му классу. Если в результате анализирующего скрещивания расщепление и по фенотипу, и по генотипу составляет 1: 1, это свидетельствует о гетерозиготности одного из родителей.

Неполное доминирование и кодоминирование. Кроме полного доминирования, описанно­го Менделем, найдены также неполное, или частичное, доминирование и кодоминирование. При неполном доминировании гетерозигота имеет фенотип, промежуточный меж­ду фенотипами гомозигот. При этом правило Менделя о единообразии фенотипа в F 1 соблю­дается. В F 2 и по фенотипу, и по генотипу рас­щепление выражается соотношением 1: 2: 1. Примером неполного доминирования может служить промежуточная розовая окраска цветка у гибридов ночной красавицы Mirabilis jalapa, полученных от скрещивания красноцветковой и белоцветковой форм.

Неполное доминирование оказалось широ­ко распространенным явлением и было отмече­но при изучении наследования окраски цветка у львиного зева, окраски оперения у андалуз­ских кур, шерсти у крупного рогатого скота и овец и др. [см. подробнее: Лобашев, 1967].

Кодоминирование – это явление, когда оба аллеля дают равноценный вклад в формирование фенотипа. Так, если материнский организм имеет группу крови А, а отцовский В, то у детей бывает группа крови АВ.

Полное доминирование Неполное доминирование Кодоминирование

Типы доминирования различных аллелей

Отклонения от ожидаемого расщепления. Мендель отмечал, что «в гибридах и их потомках в последующих поколениях не должно происходить заметного нарушения в плодовитости». В расщеплениях будут нарушения, если классы имеют разную жизне­способность. Случаи отклонений от ожидаемо­го соотношения 3: 1 довольно многочисленны.

Много десятилетий известно, что при скре­щивании желтых мышей между собой в потом­стве наблюдается расщепление по окраске на желтых и черных в соотношении 2: 1. Анало­гичное расщепление было обнаружено в скре­щиваниях лисиц платиновой окраски между собой, в потомстве от которых появлялись как платиновые, так и серебристо-черные лисицы. Детальный анализ этого явления показал, что лисицы платиновой окраски всегда гетерози­готны, а гомозиготы по доминантному аллелю этого гена гибнут на эмбриональной стадии, гомозиготы по рецессивному аллелю имеют серебристо-черную окраску.

У овец доминантный аллель, дающий ок­раску ширази (серый каракуль), летален в гомозиготе, в результате чего ягнята гибнут вско­ре после рождения, и расщепление также сме­щается в сторону 2: 1 (ширази - черные). Летальным в гомозиготе является также доми­нантный аллель, обусловливающий линейное расположение чешуи у карпа [Лобашев, 1967]. Множество таких мутаций известно у дрозофилы (N, Sb, D, Cy, L и др.). Во всех случаях получается расщепление 2: 1 вместо 3: 1. Это отклонение не только не свидетельствует об ошибочности законов Менделя, но дает дополнительные доказательства их справедливости. Однако на этих примерах видно, что для вы­явления одного из классов потомков требует­ся провести дополнительную работу.

Тетрадный анализ, или гаметическое расщепление. При развитии половых клеток в результате двух мейотических делений у моногибрида Aa , т.е. организма, гетерозиготного по одному гену, из одной диплоидной клетки возникают 4 клетки (клеточная тетрада): две клетки несут аллели А , а две другие – а. Именно механизм мейоза является тем биологическим процессом, который обеспечивает расщепление по типам гамет в отношении 2А: 2а или 1А: 1а . Следовательно, расщепление по типам гамет в случае одной аллельной пары будет 1: 1. Расщепление 3: 1, или 1: 2: 1 установлено на зиготах как следствие сочетания гамет в процессе оплодотворения.

При рассмотрении микроспорогенеза у растений можно было убедиться в том, что в результате двух мейотических делений образуется клеточная тетрада из 4-х микроспор, имеющих гаплоидный набор хромосом и расщепление в отношении 2А: 2а. У покрытосеменных каждую тетраду учесть невозможно, т.к. зрелые пыльцевые зерна из клеточной тетрады распадаются и не сохраняются вместе. У таких растений можно учесть расщепление только по совокупности всех пыльцевых зерен. У кукурузы известна одна пара аллелей гена, которая определяет крахмалистый или восковидный типы пыльцевых зерен. Если пыльцевые зерна гибридной кукурузы (Аа ) обработать йодом, то крахмалистые приобретают синюю окраску, и восковидные – красноватую, и их можно подсчитать. Это расщепление 1: 1.

Ещё в 20-х г. были найдены объекты (мхи), у которых удалось проанализировать расщепление в пределах одиночной тетрады. Данный метод, позволяющий устанавливать расщепление гамет после двух делений созревания (мейоза), был назван тетрадным анализом. Этот метод впервые позволил непосредственно доказать, что менделевское расщепление является результатом закономерного хода мейоза, что оно представляет не статистическую, а биологическую закономерность. Приведём пример тетрадного анализа при исследовании одной аллельной пары у дрожжей. У дрожжей рода Saccharomyces встречаются клетки, дающие красные и белые колонии. Эти альтернативные признаки определяются одной аллельной парой гена окраски А – белый цвет, а – красный. При слиянии гаплоидных гамет образуется диплоидная зигота F 1 . Она вскоре приступает к мейозу, в результате чего в одном аске образуется тетрада гаплоидных спор. Разрезав аск и вынув каждую спору отдельно переносят их на субстрат, где они размножаются. Каждая из 4-х гаплоидных клеток начинает делиться и образуются 4 колонии. Две из них оказываются белыми и две красными, т.е. наблюдается расщепление, точно соответствующее 1А: 1а.

1. Что помешало предшественникам Менделя подойти к анализу наследственных признаков? В чём проявилась гениальность Менделя?

2. Какие основные законы Менделя Вам известны? В чём их сущность? Знаете ли Вы о вторичном их открытии?

3. Все ли случаи наследования признаков не противоречат законам Менделя, их дополняют? Какие это дополнения?

4. Что такое доминантный и рецессивный признак, гомо- и гетерозиготность, гено- и фенотип?

5. В чём заключается сущность закона чистоты гамет?

6. Какой вид наследственности называется промежуточным?

Генетика как наука. Основные понятия генетики

Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

Изменчивость – это способность организмов приобретать новые признаки – различия в пределах вида.

Наследование — это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

— скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

— был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

— было прослежено не только первое поколение, но и последующие по этому признаку.

Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум — дигибридным, по трем и более — полигибридным.

Основные понятия генетики

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака — прописной, а рецессивного — строчной. Так в зиготе и в соматических клетках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

АА – особь, гомозиготная по доминантному признаку

аа – особь, гомозиготная по рецессивному признаку

Аа – особь гетерозиготная

Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

Моногибридное скрещивание

Опыты Мендель проводил на горохе. При скрещивании сортов гороха, имеющих желтые и зеленые семена (скрещивались гомозиготные организмы или чистые линии), все потомство (т.е. гибриды первого поколения) оказалось с желтыми семенами. Противоположный признак (зеленые семена) как бы исчезает. Обнаруженная закономерность получила название правило единообразия (доминирования) гибридов первого поколения (или первый закон Г. Менделя).

Опыты по скрещиванию записывают в виде схем:

А – ген желтой окраски

а – ген зеленой окраски

Р — (parents – родители)

F — (filii – дети)

Р ♀АА х ♂аа

F1 Аа – 100% желтые

Итак, все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

Таким образом, первое правило (закон) Менделя единообразия гибридов первого поколения можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу

Правило расщепления. Второй закон Менделя

Если скрестить гибриды первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками, т.е. возникает расщепление в определенном численном соотношении. В опытах с горохом желтых семян оказывается в три раза больше, чем зеленых. Эта закономерность получила название второго закона (правило) Менделя, или закона (правило) расщепления.

Р ♀ Аа х ♂ Аа

G (А) (а) (А) (а)

F2 АА; Аа, Аа; аа

желтые зеленые

Расщепление по фенотипу 3:1, по генотипу 1АА:2Аа:1аа

Второй закон (правило) Менделя: при скрещивании двух гетерозиготных особей, анализируемых по одной альтернативной паре признаков (т.е. гибридов), в потомстве ожидается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Ди- и полигибридное скрещивание. Третий закон Менделя

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

А – ген желтого цвета

а – ген зеленого цвета

В – ген гладкой формы

в – ген морщинистой формы

Р ♀ААВВ х ♂аавв

ж. гл. з. морщ.

F1 АаВв – желтые гладкие

При скрещивании гибридов первого поколения между собой произошло расщепление по фенотипу:

Р ♀ АаВв х ♂АаВв

9 частей – желтых гладких

3 части – желтых морщинистых

3 части – зеленых гладких

1 часть – зеленых морщинистых

Из этого скрещивания видно, что во втором поколении имелись не только особи с сочетанием признаков родителей, но и особи с новыми комбинациями признаков.

Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Кроме законов, Мендель сформулировал две гипотезы: факторальную и гипотезу «чистоты гамет», с помощью которых он попытался объяснить установленные закономерности.

Факторальная гипотеза указывает на то, что в клетках содержится фактор (ген), который и несет признак. Родители передают потомкам не признаки, а эти факторы.

Гипотеза «чистоты гамет»: организм по каждому признаку несет два наследственных фактора (один от отца, второй от матери). Эти наследственные факторы, находясь в клетках, не сливаются друг с другом и при формировании гамет расходятся в разные гаметы.

Анализирующее скрещивание

Рецессивный аллель проявляется только в гомозиготном состоянии. Поэтому о генотипе организма проявляющего рецессивный признак можно судить по фенотипу.

Гомозиготная и гетерозиготная особи, проявляющие доминантные признаки по фенотипу неотличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип родителей по потомству.

Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

Р ♀ АА х ♂ аа

Р ♀ Аа х ♂ аа

G (А) (а) (а)

Как видно из схемы, при анализирующем скрещивании для потомства гетерозиготной особи характерно расщепление 1:1.

Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F1Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях - А и а. Такие альтернативные состояния гена называются аллелями.

Анализируя результаты моногибридных скрещиваний, Г. Мендель установил правило (иногда именуемое законом) чистоты гамет. Оно подразумевает, что любая гамета любого организма несет по одному аллелю каждого гена, аллели в них не перемешиваются. Это означает, что у особей генотипа АА формируются гаметы одного вида - А, у особей генотипа аа - также одного типа - а. Такие особи, образующие гаметы только одного сорта (по крайней мере по тому гену, который находится в центре внимания), являются гомозиготными (или гомозиготами). Таким образом, нетрудно убедиться, что чистые линии состоят из гомозиготных особей. Гибриды Рх генотипа Аа формируют гаметы двух сортов - А и а, каждый из которых «чист» в отношении аллеля А или а. Такие особи (или генотипы), образующие гаметы нескольких видов, называются гетерозиготными (или гетерозиготами). В основе закона единообразия гибридов первого поколения лежит механизм расхождения хромосом в мейозе. Каждый из аллелей лежит в своей хромосоме (или хроматиде), и при расхождении хромосом (в первом делении мейоза), а затем и хроматид (во втором делении мейоза) вместе с ними в гаплоидные клетки отходит по одному из соответствующих аллелей. Таким образом, закон единообразия гибридов первого поколения является следствием основополагающего правила чистоты гамет, которое определяет и другие законы наследования.

Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а - рецессивное. В этом заключается еще одно правило менделизма.- правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

Иногда у гетерозигот проявляются признаки обоих родителей - это отсутствие доминирования, или ко доминирование.

Закон расщепления в моногибридном скрещивании

Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 - с рецессивным проявлением признака.

Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа: 1/2 аа.

Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 - 3:1, 1:2:1, 2:1, а в анализирующем скрещивании - 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А - по гену А, по признаку В - по гену В). При скрещивании гибридов F1, полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, - в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких.

В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента - у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента - у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще - глаза бесцветные (белые).

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Условия выполнения законов наследования

Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F2 1/4 АА: 2/4 Аа: 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа: 1/3 аа.

Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

Представления о том, что для живых существ характерны наследственность и изменчивость, сложились еще в древности. Было замечено, что при размножении организмов из поколения в поколение передается комплекс признаков и свойств, присущих конкретному виду (проявление наследственности). Однако столь же очевидно и то, что между особями одного вида существуют некоторые различия (проявление изменчивости).

Знание о наличие этих свойств использовалось при выведении новых сортов культурных растений и пород домашних животных. Исстари в сельском хозяйстве применялась гибридизация, т. е. скрещивание организмов, отличающихся друг от друга по каким-либо признакам. Однако до конца XIX в. такая работа осуществлялась методом проб и ошибок, поскольку не были известны механизмы, лежащие в основе проявления подобных свойств организмов, а существовавшие на этот счет гипотезы имели чисто умозрительный характер.

В 1866 г. вышел в свет труд Грегора Менделя, чешского исследователя, «Опыты над растительными гибридами». В нем были описаны закономерности наследования признаков в поколениях растений нескольких видов, которые Г. Мендель выявил в результате многочисленных и тщательно выполненных экспериментов. Но его исследование не привлекло внимания современников, не сумевших оценить новизну и глубину идей, опередивших общий уровень биологических наук того времени. Лишь в 1900 г., после открытия законов Г. Менделя заново и независимо друг от друга тремя исследователями (Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии), начинается развитие новой биологической науки - генетики, изучающей закономерности наследственности и изменчивости. Грегора Менделя справедливо считают основоположником этой молодой, но очень бурно развивающейся науки.

Основные понятия современной генетики.

Наследственностью называется свойство организмов повторять в ряду поколений комплекс признаков (особенности внешнего строения, физиологии, химического состава, характера обмена веществ, индивидуального развития и т. д.).

Изменчивость - явление, противоположное наследственности. Она заключается в изменении комбинаций признаков или появлении совершенно новых признаков у особей данного вида.

Благодаря наследственности обеспечивается сохранение видов на протяжении значительных промежутков (до сотен миллионов лет) времени. Однако условия окружающей среды меняются (иногда существенно) с течением времени, и в таких случаях изменчивость, приводящая к разнообразию особей внутри вида, обеспечивает его выживание. Какие-то из особей оказываются более приспособленными к новым условиям, это и позволяет им выжить. Кроме того, изменчивость позволяет видам расширять границы своего местообитания, осваивать новые территории.

Сочетание двух указанных свойств тесно связано с процессом эволюции. Новые признаки организмов появляются в результате изменчивости, а благодаря наследственности они сохраняются в последующих поколениях. Накапливание множества новых признаков приводит к возникновению других видов

Виды изменчивости

Различают наследственную и ненаследственную изменчивость.

Наследственная (генотипическая) изменчивость связана с изменением самого генетического материала. Ненаследственная (фенотипическая, модификационная) изменчивость - это способность организмов изменять свой фенотип под влиянием различных факторов. Причиной модификационной изменчивости являются изменения внешней среды обитания организма или его внутренней среды.

Норма реакции

Это границы фенотипической изменчивости признака, возникающей под действием факторов внешней среды. Норма реакции определяется генами организма, поэтому норма реакции по одному и тому же признаку у разных индивидов различна. Размах нормы реакции различных признаков также варьирует. Те организмы, у которых норма реакции шире по данному признаку, обладают более высокими адаптивными возможностями в определенных условиях среды, т. е. модификационная изменчивость в большинстве случаев носит адаптивный характер, и большинство изменений, возникших в организме при воздействии определенных факторов внешней среды, являются полезными. Однако фенотипические изменения иногда утрачивают приспособительный характер. Если фенотипическая изменчивость клинически сходна с наследственным заболеванием, то такие изменения называются фенокопией.

Комбинативная изменчивость

Связана с новым сочетанием неизменных генов родителей в генотипах потомства. Факторы комбинативной изменчивости.

1.Независимое и случайное расхождение гомологичных хромосом в анафазе I мейоза.

2.Кроссинговер.

3.Случайное сочетание гамет при оплодотворении.

4.Случайный подбор родительских организмов.

Мутации

Это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, части хромосом или отдельные гены. Они возникают под действием мутагенных факторов физического, химического или биологического происхождения.

Мутации бывают:

1) спонтанные и индуцированные;

2) вредные, полезные и нейтральные;

3) соматические и генеративные;

4) генные, хромосомные и геномные.

Спонтанные мутации - это мутации, возникшие ненаправленно, под действием неизвестного мутагена.

Индуцированные мутации - это мутации, вызванные искусственно действием известного мутагена.

Хромосомные мутации - это изменения структуры хромосом в процессе клеточного деления. Различают следующие виды хромосомных мутаций.

1.Дупликация - удвоение участка хромосомы за счет неравного кроссинговера.

2.Делеция - потеря участка хромосомы.

3.Инверсия - поворот участка хромосомы на 180°.

4.Транслокация - перемещение участка хромосомы на другую хромосому.

Геномные мутации - это изменение числа хромосом. Виды геномных мутаций.

1.Полиплоидия - изменение числа гаплоидных наборов хромосом в кариотипе. Под кариотипом понимают число, форму и количество хромосом, характерные для данного вида. Различают нуллисомию (отсутствие двух гомологичных хромосом), моносомию (отсутствие одной из гомологичных хромосом) и полисомию (наличие двух и более лишних хромосом).

2.Гетероплоидия - изменение числа отдельных хромосом в кариотипе.

Генные мутации встречаются наиболее часто.

Причины генных мутаций:

1) выпадение нуклеотида;

2) вставка лишнего нуклеотида (эта и предыдущая причины приводят к сдвигу рамки считывания);

3) замена одного нуклеотида на другой.

Передача наследственных признаков в ряду поколений особей осуществляется в процессе размножения. При половом - через половые клетки, при бесполом наследственные признаки передаются с соматическими клетками.

Единицами наследственности (ее материальными носителями) являются гены. В функциональном отношении конкретный ген отвечает за развитие какого-то признака. Это не противоречит тому определению, которое мы давали гену выше. С химической точки зрения ген - участок молекулы ДНК. Он содержит генетическую информацию о структуре синтезируемого белка (т. е. последовательности аминокислот в белковой молекуле).

Совокупность всех генов в организме определяет совокупность конкретных белков, синтезируемых в нем, что в конечном счете приводит к формированию специфических признаков.

У прокариотной клетки гены входят в состав единственной молекулы ДНК, а у эукариотной - в молекулы ДНК, заключенные в хромосомах. При этом в паре гомологичных хромосом в одних и тех же участках располагаются гены, отвечающие за развитие какого-то признака (например, окраска цветка, форма семян, цвет глаз у человека). Они получили название аллельных генов. В одну пару аллельных генов могут входить либо одинаковые (по составу нуклеотидов и определяемому ими признаку), либо отличающиеся гены.

Понятие «признак» связано с каким-то отдельным качеством организма (морфологическим, физиологическим, биохимическим), по которому мы можем отличить его от другого организма. Например: глаза голубые или карие, цветки окрашенные или неокрашенные, рост высокий или низкий, группа крови I(0) или II(A) и т. д.

Совокупность всех генов у организма называется генотипом, а совокупность всех признаков - фенотипом.

Фенотип формируется на базе генотипа в определенных условиях внешней среды в ходе индивидуального развития организмов.

Основные закономерности наследственности и изменчивости

Генетика наука, изучающая закономерности и механизмы наследственности и изменчивости

Наследственность общее свойство всех организмов сохранять и передавать из поколение в поколение признаки своего строения и жизнедеятельности

  • совокупность механизмов, обеспечивающих структурно-функциональную преемственность организмов в ряду поколений (т. е. наследование)

Наследование — процесс воспроизведения в поколениях общего плана структурно-функциональной организации и отдельных признаков у особей одного биологического вида

Изменчивость – общее свойство живых организмов приобретать отличия в строениеии и жизнедеятельности потомков от предков

v ведёт к возникновению индивидуальных различий между особями одного вида

Этапы развития генетики

  • Открытие законов наследственности. В 1856 г. Г. Мендель (чех.) выявил важнейшие законы наследственности (в работе « Опыты над растительными гибридами ») и показал, что:

* признаки определяются дискретными (отдельными) наследственными факторами, которые передаются через половые клетки

* отдельные признаки организма при скрещивании не исчезают, а сохраняются в потомстве в том же виде как и у родителей (дискретная концепция наследственности)

* каждому признаку в организме соответствуют два наследственных фактора, получаемых от женской и мужской особи

  • Официальное рождение генетики . В 1900 г. Г. де Фриз (гол.) , К. Корренс (гер.) и К. Чермак (австр.) на разных объектах независимо переоткрыли законы Менделя и признали его приоритет
  • Развитие хромосомной теории.

В!911 г. Т. Морган (США) сформулировал хромосомную теорию наследственности и экспериментально доказал, что основными носителями генов являются хромосомы, что гены в хромосомах располагаются линейно

  • Открытие нуклеиновых кислот как наследственного материала. В 1928 г. Ф. Гриффит и О. Эвери показали, что свойства от одной клетки к другой могут передаваться только с ДНК
  • Расшифровка строения молекулы ДНК. В 1953 г. Ф. Крик (англ.) и Дж. Уотсон (амер.) предложили модель двойной спирали структуры ДНК, которая многократно проверялась и была признана правильной

n Современная генетика включает несколько дисциплин: цитогенетика, онтогентика, селекция биохимическая генетика, иммуногенетика, медицинская цитогенетика, генетика человека

n Генетика тесно связана с биохимией, молекулярной биологией, цитологией, эмбриологией, теорией эволюции и т. д.

Методы генетики

1. Гибридологический метод (открыт Менделем) — выведение закономерностей наследования на основе количественного учёта (математической обработки) гибридного потомства, полученного при скрещивании родителей, отличающихся одним или несколькими признаками

  • Мендель выделял и учитывал не весь комплекс родительских признаков и их потомков, а анализировал наследование по отдельным альтернативным признакам (одному или нескольким: моно- , ди — , тригибридное, полигибридное и т. д. скрещивание)
  • Производился точный количественный учёт (математическая, статистическая обработка) наследования каждого альтернативного признака в ряду поколений
  • Исследовался аналогично характер потомства каждого гибрида в отдельности
  • Неприменим для изучения генетики человека, поскольку у него возможно только полигибридное скрещивание и чрезвычайно немногочисленное потомство

2. Генеалогический метод — составление и анализ родословных

3. Близнецовый метод — наследование признаков у близнецовс целью оценки соотносительной роли наследственности и среды в развитии признака

4. Цитогенетический метод — изучение хромосом с помощью микроскопа

5. Популяционно-статистический — изучение распространения отдельных генов или хромосомных аномалий в популяциях

6. Мутационный метод — обнаружение мутаций и их наследование в зависимости от способа размножения организма

7. Рекомбинационный метод — выявление рекомбинаций по отдельным парам генов в одной хромосоме и составление на этой основе генетических карт хромосом с указанием относительного расположения отдельных генов

8. Биохимический метод установление последовательности аминокислот в полипептидной цепи и определении мутаций на этой основе

Метод математического моделирования изучение процессов сцепления и взаимодействия генов

10. Метод гибридизации соматических клеток — культивирование соматических клеток и тканей на питательных стерильных средах

11. Дополнительные методы иммунологические, физиологические, психологические, метод условных рефлексов и т. д.

Предыдущая47484950515253545556575859606162Следующая

Загрузка...