Медицинский портал. Щитовидная железа, Рак, диагностика

Способы получения и физические свойства кислорода. Кислород – характеристика элемента, распространённость в природе, физические и химические свойства, получение

Вездесущий, всемогущий и невидимый — это все о нем. Еще он не имеет ни вкуса, ни запаха. Создается впечатление, что разговор идет о том, чего вообще не существует. Однако это вещество есть, мало того: без него человечество попросту задохнулось бы. Поэтому, наверное, Лавуазье с ходу назвал этот газ «жизненным газом».

Кислород всемогущий

По мнению людей религиозных, вездесущим, всемогущим и в то же время невидимым может быть только бог. В действительности же все эти три эпитета вполне можно отнести к химическому элементу с атомным номером 8 - кислороду. Если бы растения в процессе фотосинтеза не превращали воду и углекислый газ в органические соединения, и этот процесс не сопровождался высвобождением связанного кислорода, то, исчерпав довольно быстро запасы атмосферного кислорода, весь животный мир, включая человечество, вскоре задохнулся бы.

Кислород — вездесущ: из него в значительной степени состоят не только воздух, вода и земля, но и мы с вами, наши еда, питье, одежда; в подавляющем большинстве окружающих нас веществ есть кислород. Могущество кислорода проявляется уже в том, что мы им дышим, а ведь дыхание это синоним жизни. И еще кислород можно считать всемогущим потому, что могучая стихия огня, как правило, сильно зависит от нашего кандидата в вездесущие и всемогущие.

Что касается третьего эпитета — «невидимый», то здесь, вероятно, нет нужды в доказательствах. При обычных условиях элементарный кислород не только бесцветен и потому невидим, но и не воспринимаем, не ощутим никакими органами чувств. Правда, недостаток, а тем более отсутствие кислорода мы ощутили бы моментально...

Открытие: XVIII век

То, что кислород невидим, безвкусен, лишен запаха, газообразен при обычных условиях, надолго задержало его открытие. Многие ученые прошлого догадывались, что существует вещество со свойствами, которые, как мы теперь знаем, присущи кислороду.

Открытие кислорода (англ. Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение.

Кислород открыли почти одновременно и независимо друг от друга два выдающихся химика второй половины XVIII в.— швед Карл Вильгельм Шееле и англичанин Джозеф Пристли. Шееле получил кислород раньше, но его трактат «О воздухе и огне», содержавший информацию о кислороде, был опубликован позже, чем сообщение об открытии Пристли.

Джозеф
Пристли

«1 августа 1774 года я попытался извлечь воздух из ртутной окалины и нашел, что воздух легко может быть изгнан из нее посредством линзы. Этот воздух не поглощался водой. Каково же было мое изумление, когда я обнаружил, что свеча горит в этом воздухе необычайно ярким пламенем. Тщетно пытался я найти объяснение этому явлению».

И все-таки главная фигура в истории открытия кислорода — не Шееле и не Пристли. Они открыли новый газ — и только. Позже Фридрих Энгельс напишет об этом: «Оба они так и не узнали, что оказалось у них в руках. Элемент, которому суждено было революционизировать химию, пропадал в их руках бесследно... Собственно открывшим кислород поэтому остается Лавуазье, а не те двое, которые только описали кислород, даже не догадываясь, что они описывают».

Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В1779 г. Лавуазье ввел для кислорода название Oxygenium (от греч. «окис» - «кислый» и «геннао» - рождаю») — «рождающий кислоты».

«Окислительный» элемент

Кислород — бесцветный (в толстом слое — голубой) газ без вкуса и запаха. Он немного тяжелее воздуха и малорастворим в воде. При охлаждении до -183°С кислород превращается в подвижную жидкость голубого цвета, а при -219°С — замерзает.

Как и положено элементу, занимающему место в правом верхнем углу таблицы Менделеева, кислород — один из самых активных элементов-неметаллов и обладает ярко выраженными окислительными свойствами. Если можно так выразиться, окислительнее кислорода — только один элемент, фтор. Именно поэтому баки с жидким кислородом — необходимая принадлежность большинства жидкостных ракетных двигателей. Получено соединение кислорода даже с таким химически пассивным газом, как ксенон.

Для развития активной реакции кислорода с большинством простых и сложных веществ нужно нагревание — чтобы преодолеть потенциальный барьер, препятствующий химическому процессу. С помощью катализаторов, снижающих энергию активации, процессы могут идти и без подогрева, в частности, соединение кислорода с водородом.

Высокая окислительная способность кислорода лежит в основе горения всех видов топлива, включая порох, для горения которых не нужен кислород воздуха: в процессе горения таких веществ кислород выделяется из них самих.

Процессы медленного окисления различных веществ при обычной температуре имеют для жизни не меньшее значение, чем горение — для энергетики.

Медленное окисление веществ пищи в нашем организме — «энергетическая база» жизни. Заметим попутно, что наш организм не слишком экономно использует вдыхаемый кислород: в выдыхаемом воздухе кислорода примерно 16%. Тепло преющего сена — результат медленного окисления органических веществ растительного происхождения. Медленное окисление навоза и перегноя согревает парники.

Применение: «море энергии»

Кислород применяется в лечебной практике , причем не только при легочных и сердечных заболеваниях, когда затруднено дыхание. Подкожное введение кислорода оказалось эффективным средством лечения таких тяжелых заболеваний, как гангрена, тромбофлебит, слоновость, трофические язвы.

Не менее важен он и для промышленности . Обогащение воздуха кислородом делает эффективнее, быстрее, экономичнее многие технологические процессы, в основе которых — окисление. А на таких процессах пока держится почти вся тепловая энергетика. Превращение чугуна в сталь тоже невозможно без кислорода. Именно кислород «изымает» из чугуна избыток углерода. Одновременно улучшается и качество стали. Нужен кислород и в цветной металлургии . Жидкий кислород служит окислителем ракетного топлива .

При сжигании водорода в токе кислорода образуется весьма обыкновенное вещество — Н 2 O. Конечно, ради получения этого вещества не следовало бы заниматься сжиганием водорода (который, кстати, часто именно из воды получают). Цель этого процесса иная, она будет ясна, если ту же реакцию записать полностью, учитывая не только химические продукты, но и энергию, выделяющуюся в ходе реакции: Н 2 +0,5O 2 =H 2 O+68317 калорий.

Почти семьдесят больших калорий на грамм-молекулу! Так можно получить не только, «море воды», но и «море энергии». Для этого и получают воду в реактивных двигателях, работающих на водороде и кислороде.

Та же реакция используется для сварки и резки металлов . Правда, в этой области водород можно заменить ацетиленом. Кстати, ацетилен все в больших масштабах получают именно с помощью кислорода, в процессах термоокислительного крекинга: 6СН 4 + 4O 2 = С 2 Н 2 + 8Н 2 + ЗСО + СO 2 + ЗН 2 O.

Это только один пример использования кислорода в химической промышленности. Кислород нужен для производства многих веществ (достаточно вспомнить об азотной кислоте), для газификации углей, нефти, мазута...

Любое пористое горючее вещество, например, опилки, будучи пропитанными голубоватой холодной жидкостью — жидким кислородом, становится взрывчатым веществом. Такие вещества называются оксиликвитами и в случае необходимости могут заменить динамит при разработке рудных месторождений.

Ежегодное мировое производство (и потребление) кислорода измеряется миллионами тонн. Не считая кислорода, которым мы дышим.

Производство кислорода

Попытки создать более или менее мощную кислородную промышленность предпринимались еще в прошлом веке во многих странах. Но от идеи до технического воплощения часто лежит «дистанция огромного размера»...

Особенно быстрое развитие кислородной промышленности началось после изобретения академиком П.Л.Капицей турбодетандера и создания мощных воздухоразделительных установок.

Проще всего получить кислород из воздуха, поскольку воздух — не соединение, и разделить воздух не так уж трудно. Температуры кипения азота и кислорода отличаются (при атмосферном давлении) на 12,8°С. Следовательно, жидкий воздух можно разделить на компоненты в ректификационных колоннах так же, как делят, например, нефть. Но чтобы превратить воздух в жидкость, его нужно охладить до минус 196°С. Можно сказать, что проблема получения кислорода — это проблема получения холода.

Чтобы получать холод с помощью обыкновенного воздуха, последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух обязан охлаждаться. Машины, в которых это происходит, называют детандерами .

Чтобы получить жидкий воздух с помощью поршневых детандеров, нужны были давления порядка 200 атмосфер. КПД установки был немногим выше, чем у паровой машины. Установка получалась сложной, громоздкой, дорогой. В конце тридцатых годов советский физик академик П.Л.Капица предложил использовать в качестве детандера турбину. Главная особенность турбодетандера Капицы в том, что воздух в ней расширяется не только в сопловом аппарате, но и на лопатках рабочего колеса. При этом газ движется от периферии колеса к центру, работая против центробежных сил.

Турбодетандер «делает» холод с помощью воздуха, сжатого всего лишь до нескольких атмосфер. Энергия, которую отдает расширяющийся воздух, не пропадает напрасно, она используется для вращения ротора генератора электрического тока.

Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода.

Кислород вступает в соединения почти со всеми элементами периодической системы Менделеева.

Реакция соединения любого вещества с кислородом называется окислением .

Большинство таких реакций идет с выделением тепла. Если при реакции окисления одновременно с теплом выделяется свет, ее называют горением. Однако не всегда удается заметить выделяющиеся тепло и свет, так как в некоторых случаях окисление идет чрезвычайно медленно. Заметить тепловыделение удается тогда, когда реакция окисления происходит быстро.

В результате любого окисления - быстрого или медленного - в большинстве случаев образуются окислы: соединения металлов, углерода, серы, фосфора и других элементов с кислородом.

Вам, вероятно, не раз приходилось видеть, как перекрывают железные крыши. Перед тем как покрыть их новым железом, старое сбрасывают вниз. На землю вместе с железом падает бурая чешуя - ржавчина. Это гидрат окиси железа, который медленно, в течение нескольких лет, образовывался на железе под действием кислорода, влаги и углекислого газа.

Ржавчину можно рассматривать как соединение окиси железа с молекулой воды. Она имеет рыхлую структуру и не предохраняет железо от разрушения.

Для предохранения железа от разрушения - коррозии - его обычно покрывают краской или другими коррозионно устойчивыми материалами: цинком, хромом, никелем и другими металлами. Предохранительные свойства этих металлов, как и алюминия, основаны на том, что они покрываются тонкой устойчивой пленкой своих окислов, предохраняющих покрытие от дальнейшего разрушения.

Предохранительные покрытия значительно замедляют процесс окисления металла.

В природе постоянно происходят процессы медленного окисления, сходные с горением.

При гниении дерева, соломы, листьев и других органических веществ происходят процессы окисления углерода, входящего в состав этих веществ. Тепло при этом выделяется чрезвычайно медленно, и поэтому обычно оно остается незамеченным.

Но иногда такого рода окислительные процессы сами по себе ускоряются и переходят в горение.

Самовозгорание можно наблюдать в стоге мокрого сена.

Быстрое окисление с выделением большого количества тепла и света можно наблюдать не только при горении дерева, керосина, свечи, масла и других горючих материалов, содержащих углерод, но и при горении железа.

Налейте в банку немного воды и наполните ее кислородом. Затем внесите в банку железную спираль, на конце которой укреплена тлеющая лучинка. Лучинка, а за ней и спираль загорятся ярким пламенем, разбрасывая во все стороны звездообразные искры.

Это идет процесс быстрого окисления железа кислородом. Он начался при высокой температуре, которую дала горящая лучинка, и продолжается до полного сгорания спирали за счет тепла, выделяющегося при горении железа.

Тепла этого так много, что образующиеся при горении частицы окисленного железа накаляются добела, ярко освещая банку.

Состав окалины, образовавшейся при горении железа, несколько иной, чем состав окисла, образовавшегося в виде ржавчины при медленном окислении железа на воздухе в присутствии влаги.

В первом случае окисление идет до закиси-окиси железа (Fe 3 O 4), входящей в состав магнитного железняка; во втором - образуется окисел, близко напоминающий бурый железняк, который имеет формулу 2Fe 2 O 3 ∙ Н 2 O.

Таким образом, в зависимости от условий, в которых протекает окисление, образуются различные окислы, отличающиеся друг от друга содержанием кислорода.

Так, например, углерод в соединении с кислородом дает два окисла - окись и двуокись углерода. При недостатке кислорода происходит неполное сгорание углерода с образованием окиси углерода (СО), которую в общежитии называют угарным газом. При полном сгорании образуется двуокись углерода, или углекислый газ (СO 2).

Фосфор, сгорая в условиях недостатка кислорода, образует фосфористый ангидрид (Р 2 O 3), а при избытке - фосфорный ангидрид (Р 2 O 5). Сера в различных условиях горения также может дать сернистый (SO 2) или серный (SO 3) ангидрид.

В чистом кислороде горение и другие реакции окисления идут быстрее и доходят до конца.

Почему же в кислороде горение идет энергичнее, чем в воздухе?

Обладает ли чистый кислород какими-то особыми свойствами, которых нет у кислорода воздуха? Конечно, нет. И в том и в другом случае мы имеем один и тот же кислород, с одинаковыми свойствами. Только в воздухе кислорода содержится в 5 раз меньше, чем в таком же объеме чистого кислорода, и, кроме того, в воздухе кислород перемешан с большими количествами азота, который не только сам не горит, но и не поддерживает горение. Поэтому, если непосредственно около пламени кислород воздуха уже израсходован, то другой его порции необходимо пробиваться через азот и продукты горения. Следовательно, более энергичное горение в атмосфере кислорода можно объяснить более быстрой подачей его к месту горения. При этом процесс соединения кислорода с горящим веществом идет энергичнее и тепла выделяется больше. Чем больше в единицу времени подается к горящему веществу кислорода, тем пламя ярче, тем температура выше и тем сильнее идет горение.

А горит ли сам кислород?

Возьмите цилиндр и опрокиньте его вверх дном. Подведите под цилиндр трубку с водородом. Так как водород легче воздуха, он полностью заполнит цилиндр.

Зажгите водород около открытой части цилиндра и введите в него сквозь пламя стеклянную трубку, через которую вытекает газообразный кислород. Около конца трубки вспыхнет огонь, который будет спокойно гореть внутри цилиндра, наполненного водородом. Это горит не кислород, а водород в присутствии небольшого количества кислорода, выходящего из трубки.

Что же образуется в результате горения водорода? Какой при этом получается окисел?

Водород окисляется до воды. Действительно, на стенках цилиндра постепенно начинают осаждаться капельки конденсированных паров воды. На окисление 2 молекул водорода идет 1 молекула кислорода, и образуются 2 молекулы воды (2Н 2 + O 2 → 2Н 2 O).

Если кислород вытекает из трубки медленно, он весь сгорает в атмосфере водорода, и опыт проходит спокойно.

Стоит только увеличить подачу кислорода настолько, что он не успеет сгореть полностью, часть его уйдет за пределы пламени, где образуются очаги смеси водорода с кислородом, появятся отдельные мелкие вспышки, похожие на взрывы.

Смесь кислорода с водородом - это гремучий газ . Если поджечь гремучий газ, произойдет сильный взрыв: при соединении кислорода с водородом получается вода и развивается высокая температура. Пары воды и окружающие газы сильно расширяются, создается большое давление, при котором может легко разорваться не только стеклянный цилиндр, но и более прочный сосуд. Поэтому работа с гремучей смесью требует особой осторожности.

Кислород обладает еще одним интересным свойством. Он вступает в соединение с некоторыми элементами, образуя перекисные соединения.

Приведем характерный пример. Водород, как известно, одновалентен, кислород двухвалентен: 2 атома водорода могут соединиться с 1 атомом кислорода. При этом получается вода. Строение молекулы воды обычно изображают Н - О - Н. Если к молекуле воды присоединить еще 1 атом кислорода, то образуется перекись водорода, формула которой Н 2 O 2 .

Куда же входит второй атом кислорода в этом соединении и какими связями он удерживается? Второй атом кислорода как бы разрывает связь первого с одним из атомов водорода и становится между ними, образуя при этом соединение Н-О-О-Н. Такое же строение имеет перекись натрия (Na-О-О-Na), перекись бария.

Характерным для перекисных соединений является наличие 2 атомов кислорода, связанных между собой одной валентностью. Поэтому 2 атома водорода, 2 атома натрия или 1 атом бария могут присоединить к себе не 1 атом кислорода с двумя валентностями (-О-), а 2 атома, у которых в результате связи между собой также остается только две свободные валентности (-О-О-).

Перекись водорода можно получить действием разбавленной серной кислоты на перекись натрия (Na 2 O 2) или перекись бария (ВаO 2). Удобнее пользоваться перекисью бария, так как при действии на нее серной кислотой образуется нерастворимый осадок сернокислого бария, от которого перекись водорода легко отделить путем фильтрования (ВаO 2 + H 2 SO 4 → BaSO 4 + Н 2 O 2).

Перекись водорода, как и озон, - соединение неустойчивое и разлагается на воду и атом кислорода который в момент выделения обладает большой окислительной способностью. При низких температурах и в темноте разложение перекиси водорода идет медленно. А при нагревании и на свету оно происходит значительно быстрее. Песок, порошок двуокиси марганца, серебра или платины также ускоряют разложение перекиси водорода, а сами при этом остаются без изменения. Вещества, которые только влияют на скорость химической реакции, а сами остаются неизмененными, называются катализаторами .

Если налить немного перекиси водорода в склянку, на дне которой находится катализатор - порошок двуокиси марганца, разложение перекиси водорода пойдет с такой быстротой, что можно будет заметить выделение пузырьков кислорода.

Способностью окислять различные соединения обладает не только газообразный кислород, но и некоторые соединения, в состав которых он входит.

Хорошим окислителем является перекись водорода. Она обесцвечивает различные красители и поэтому применяется в технике для отбеливания шелка, меха и других изделий.

Способность перекиси водорода убивать различные микробы позволяет применять ее как дезинфицирующее средство. Перекись водорода употребляется для промывания ран, полоскания горла и в зубоврачебной практике.

Сильными окислительными свойствами обладает азотная кислота (HNO 3). Если в азотную кислоту добавить каплю скипидара, образуется яркая вспышка: углерод и водород, входящие в состав скипидара, бурно окислятся с выделением большого количества тепла.

Бумага и ткани, смоченные азотной кислотой, быстро разрушаются. Органические вещества, из которых сделаны эти материалы, окисляются азотной кислотой и теряют свои свойства. Если смоченную азотной кислотой бумагу или ткань нагреть, процесс окисления ускорится настолько, что может произойти вспышка.

Азотная кислота окисляет не только органические соединения, но и некоторые металлы. Медь при действии на нее концентрированной азотной кислотой окисляется сначала до окиси меди, выделяя из азотной кислоты двуокись азота, а затем окись меди переходит в азотнокислую соль меди.

Не только азотная кислота, но и некоторые ее соли обладают сильными окислительными свойствами.

Азотнокислые соли калия, натрия, кальция и аммония, которые в технике получили название селитры, при нагревании разлагаются, выделяя кислород. При высокой температуре в расплавленной селитре тлеющий уголек сгорает так энергично, что появляется яркобелый свет. Если же в пробирку с расплавленной селитрой вместе с тлеющим угольком бросить кусочек серы, горение пойдет с такой интенсивностью и температура повысится настолько, что стекло начнет плавиться. Эти свойства селитры давно были известны человеку; он воспользовался этими свойствами для приготовления пороха.

Черный, или дымный, порох приготовляется из селитры, угля и серы. В этой смеси уголь и сера являются горючими материалами. Сгорая, они переходят в газообразный углекислый газ (СO 2) и твердый сернистый калий (K 2 S). Селитра, разлагаясь, выделяет большое количество кислорода и газообразный азот. Выделившийся кислород усиливает горение угля и серы.

В результате горения развивается такая высокая температура, что образовавшиеся газы могли бы расшириться до объема, который в 2000 раз больше объема взятого пороха. Но стенки замкнутого сосуда, где обычно производят сжигание пороха, не позволяют газам легко и свободно расширяться. Создается огромное давление, которое разрывает сосуд в его наиболее слабом месте. Раздается оглушительный взрыв, газы с шумом вырываются наружу, унося с собой в виде дыма размельченные частицы твердого вещества.

Так из калийной селитры, угля и серы образуется смесь, обладающая огромной разрушительной силой.

К соединениям с сильными окислительными свойствами относятся и соли кислородосодержащих кислот хлора. Бертолетова соль при нагревании распадается на хлористый калий и атомарный кислород.

Еще легче, чем бертолетова соль, отдает свой кислород хлорная, или белильная, известь. Белильной известью отбеливают хлопок, лен, бумагу и другие материалы. Хлорная известь употребляется и как средство против отравляющих веществ: отравляющие вещества, как и многие другие сложные соединения, разрушаются под действием сильных окислителей.

Окислительные свойства кислорода, его способность легко вступать в соединение с различными элементами и энергично поддерживать горение, развивая при этом высокую температуру, уже давно обратили на себя внимание ученых различных областей науки. Особенно этим заинтересовались химики и металлурги. Но использование кислорода было ограничено, так как не было простого и дешевого способа получения его из воздуха и воды.

На помощь химикам и металлургам пришли физики. Они нашли очень удобный способ выделения кислорода из воздуха, а физико-химики научились получать его в огромных количествах из воды.

>>

Химические свойства кислорода. Оксиды

В этом параграфе речь идет:

> о реакциях кислорода с простыми и сложными веществами;
> о реакциях соединения;
> о соединениях, которые называют оксидами.

Химические свойства каждого вещества проявляются в химических реакциях при его участии.

Кислород - один из наиболее активных неметаллов. Ho в обычных условиях он реагирует с немногими веществами. Его реакционная способность существенно возрастает с повышением температуры.

Реакции кислорода с простыми веществами.

Кислород реагирует, как правило, при нагревании, с большинством неметаллов и почти со всеми металлами.

Реакция с углем (углеродом). Известно, что уголь, нагретый на воздухе до высокой температуры, загорается. Это свидетельствует о протекании химической реакции вещества с кислородом. Теплоту, которая выделяется при этом, используют, например, для обогрева домов в сельской местности.

Основным продуктом сгорания угля является углекислый газ. Его химическая формула - CO 2 . Уголь - смесь многих веществ. Массовая доля Карбона в нем превышает 80 % . Считая, что уголь состоит только из атомов Карбона, напишем соответствующее химическое уравнение:

t
С + O 2 = CO 2 .

Карбон образует простые вещества - графит и алмаз. Они имеют общее название - углерод - и взаимодействуют с кислородом при нагревании согласно приведенному химическому уравнению 1 .

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

Реакция с серой.

Это химическое превращение осуществляет каждый, когда зажигает спичку; сера входит в состав ее головки. В лаборатории реакцию серы с кислородом проводят в вытяжном шкафу. Небольшое количество серы (светло-желтый порошок или кристаллы) нагревают в железной ложке. Вещество сначала плавится, потом загорается в результате взаимодействия с кислородом воздуха и горит едва заметным синим пламенем (рис. 56, б). Появляется резкий запах продукта реакции - сернистого газа (этот запах мы ощущаем в момент загорания спички). Химическая формула сернистого газа - SO 2 , а уравнение реакции -
t
S + O 2 = SO 2 .

Рис. 56. Сера (а) и ее горение на воздухе (б) и в кислороде (в)

1 В случае недостаточного количества кислорода образуется другое соединение Карбона с Оксигеном - угарный газ
t
CO: 2С + O 2 = 2СО.



Рис. 57. Красный фосфор (а) и его горение на воздухе (б) и в кислороде (в)

Если ложку с горящей серой поместить в сосуд с кислородом, то сера будет гореть более ярким пламенем, чем на воздухе (рис. 56, в). Это можно объяснить тем, что молекул O 2 в чистом кислороде больше, чем в воздухе.

Реакция с фосфором. Фосфор, как и сера, горит в кислороде интенсивнее, чем на воздухе (рис. 57). Продуктом реакции является белое твердое вещество - фосфор(\/) оксид (его мелкие частицы образуют дым):
t
P + O 2 -> P 2 0 5 .

Превратите схему реакции в химическое уравнение.

Реакция с магнием.

Раньше эту реакцию использовали фотографы для создания яркого освещения («магниевая вспышка») при фотосъемке. В химической лаборатории соответствующий опыт проводят так. Металлическим пинцетом берут магниевую ленту и поджигают на воздухе. Магний сгорает ослепительно-белым пламенем (рис. 58, б); смотреть на него нельзя! В результате реакции образуется белое твердое вещество. Это соединение Магния с Оксигеном; его название - магний оксид.

Рис. 58. Магний (а) и его горение на воздухе (б)

Составьте уравнение реакции магния с кислородом.

Реакции кислорода со сложными веществами. Кислород может взаимодействовать с некоторыми оксигенсодержащими соединениями. Например, угарный газ CO горит на воздухе с образованием углекислого газа:

t
2СО + O 2 = 2С0 2 .

Немало реакций кислорода со сложными веществами мы осуществляем в повседневной жизни, сжигая природный газ (метан), спирт, древесину, бумагу, керосин и др. При их горении образуются углекислый газ и водяной пар:
t
CH 4 + 20 2 = CO 2 + 2Н 2 О;
метан
t
C 2 H 5 OH + 30 2 = 2С0 2 + 3H 2 О.
спирт


Оксиды.

Продуктами всех реакций, рассмотренных в параграфе, являются бинарные соединения элементов с Оксигеном.

Соединение, образованное двумя элементами, одним из которых является Оксиген, называют оксидом.

Общая формула оксидов - EnOm.

Каждый оксид имеет химическое название, а некоторые - еще и традиционные, или тривиальные 1 , названия (табл. 4). Химическое название оксида состоит из двух слов. Первым словом является название соответствующего элемента, а вторым - слово «оксид». Если элемент имеет переменную валентность, то он может образовывать несколько оксидов. Их названия должны отличаться. Для этого после названия элемента указывают (без отступа) римской цифрой в скобках значение его валентности в оксиде. Пример такого названия соединения: купрум(II) оксид (читается « купрум-два-оксид »).

Таблица 4

1 Термин происходит от латинского слова trivialis - обыкновенный.

Выводы

Кислород - химически активное вещество. Он взаимодействует с большинством простых веществ, а также со сложными веществами. Продуктами таких реакций являются соединения элементов с Оксигеном - оксиды.

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

?
135. Чем различаются реакции соединения и разложения?

136. Превратите схемы реакций в химические уравнения:

а) Li + O 2 -> Li 2 O;
N2 + O 2 -> NO;

б) SO 2 + O 2 -> SO 3 ;
CrO + O 2 -> Cr 2 O 3 .

137. Выберите среди приведенных формул те, которые отвечают оксидам:

O 2 , NaOH, H 2 O, HCI, I 2 O 5 , FeO.

138. Дайте химические названия оксидам с такими формулами:

NO, Ti 2 O 3 , Cu 2 O, MnO 2 , CI 2 O 7 , V 2 O 5 , CrO 3 .

Примите во внимание, что элементы, которые образуют эти оксиды, имеют переменную валентность.

139. Запишите формулы: а) плюмбум(I\/) оксида; б) хром(III) оксида;
в) хлор(I) оксида; г) нитроген(I\/) оксида; д) осмий(\/III) оксида.

140. Допишите формулы простых веществ в схемах реакций и составьте химические уравнения:

а) ... + ... -> CaO;

б) NO + ... -> NO 2 ; ... + ... -> As 2 O 3 ; Mn 2 O 3 + ... -> MnO 2 .

141. Напишите уравнения реакций, с помощью которых можно осущест­вить такие «цепочки» превращений, т. е. из первого вещества полу­чить второе, из второго - третье:

а) С -> CO -> CO 2 ;
б) P -> P 2 0 3 -> P 2 0 5 ;
в) Cu -> Cu 2 O -> CuO.

142.. Составьте уравнения реакций, которые происходят при горении на воздухе ацетона (CH 3) 2 CO и эфира (C 2 H 5) 2 O. Продуктами каждой ре­акции являются углекислый газ и вода.

143. Массовая доля Оксигена в оксиде EO 2 равна 26 %. Определите элемент Е.

144. Две колбы заполнены кислородом. После их герметизации в одной колбе сожгли избыток магния, а в другой - избыток серы. В какой колбе образовался вакуум? Ответ объясните.

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Среди всех веществ на Земле особое место занимает то, что обеспечивает жизнь, - газ кислород. Именно его наличие делает нашу планету уникальной среди всех других, особенной. Благодаря этому веществу в мире живет столько прекрасных созданий: растения, животные, люди. Кислород - это совершенно незаменимое, уникальное и чрезвычайно важное соединение. Поэтому постараемся узнать, что он собой представляет, какими характеристиками обладает.

Особенно часто применяется первый метод. Ведь из воздуха можно выделить очень много этого газа. Однако он будет не совсем чистым. Если же необходим продукт более высокого качества, тогда в ход пускают электролизные процессы. Сырьем для этого является либо вода, либо щелочь. Гидроксид натрия или калия используют для того, чтобы увеличить силу электропроводности раствора. В целом же суть процесса сводится к разложению воды.

Получение в лаборатории

Среди лабораторных методов широкое распространение получил метод термической обработки:

  • пероксидов;
  • солей кислородсодержащих кислот.

При высоких температурах они разлагаются с выделением газообразного кислорода. Катализируют процесс чаще всего оксидом марганца (IV). Собирают кислород вытеснением воды, а обнаруживают - тлеющей лучинкой. Как известно, в атмосфере кислорода пламя разгорается очень ярко.

Еще одно вещество, используемое для получения кислорода на школьных уроках химии, - перекись водорода. Даже 3 % раствор под действием катализатора мгновенно разлагается с высвобождением чистого газа. Его нужно лишь успеть собрать. Катализатор тот же - оксид марганца MnO 2 .

Среди солей чаще всего используются:

  • бертолетова соль, или хлорат калия;
  • перманганат калия, или марганцовка.

Чтобы описать процесс, можно привести уравнение. Кислорода выделяется достаточно для лабораторных и исследовательских нужд:

2KClO 3 = 2KCl + 3O 2 .

Аллотропные модификации кислорода

Существует одна аллотропная модификация, которую имеет кислород. Формула этого соединения О 3 , называется оно озоном. Это газ, который образуется в природных условиях при воздействии ультрафиолета и грозовых разрядов на кислород воздуха. В отличие от самого О 2 , озон имеет приятный запах свежести, который ощущается в воздухе после дождя с молнией и громом.

Отличие кислорода и озона заключается не только в количестве атомов в молекуле, но и в строении кристаллической решетки. В химическом отношении озон - еще более сильный окислитель.

Кислород - это компонент воздуха

Распространение оксигена в природе очень широко. Кислород встречается в:

  • горных породах и минералах;
  • воде соленой и пресной;
  • почве;
  • растительных и животных организмах;
  • воздухе, включая верхние слои атмосферы.

Очевидно, что им заняты все оболочки Земли - литосфера, гидросфера, атмосфера и биосфера. Особенно важным является содержание его в составе воздуха. Ведь именно этот фактор позволяет существовать на нашей планете жизненным формам, в том числе и человеку.

Состав воздуха, которым мы дышим, чрезвычайно неоднороден. Он включает в себя как постоянные компоненты, так и переменные. К неизменным и всегда присутствующим относятся:

  • углекислый газ;
  • кислород;
  • азот;
  • благородные газы.

К переменным можно отнести пары воды, частицы пыли, посторонние газы (выхлопные, продукты горения, гниения и прочие), растительная пыльца, бактерии, грибки и прочие.

Значение кислорода в природе

Очень важно, сколько кислорода содержится в природе. Ведь известно, что на некоторых спутниках больших планет (Юпитер, Сатурн) были обнаружены следовые количества этого газа, однако очевидной жизни там нет. Наша Земля имеет достаточное его количество, которое в сочетании с водой дает возможность существовать всем живым организмам.

Помимо того, что он является активным участником дыхания, кислород еще проводит бесчисленное количество реакций окисления, в результате которых высвобождается энергия для жизни.

Основными поставщиками этого уникального газа в природе являются зеленые растения и некоторые виды бактерий. Благодаря им поддерживается постоянный баланс кислорода и углекислого газа. Кроме того, озон выстраивает защитный экран над всей Землей, который не позволяет проникать большому количеству уничтожающего ультрафиолетового излучения.

Лишь некоторые виды анаэробных организмов (бактерии, грибки) способны жить вне атмосферы кислорода. Однако их гораздо меньше, чем тех, кто очень в нем нуждается.

Использование кислорода и озона в промышленности

Основные области использования аллотропных модификаций кислорода в промышленности следующие.

  1. Металлургия (для сварки и вырезки металлов).
  2. Медицина.
  3. Сельское хозяйство.
  4. В качестве ракетного топлива.
  5. Синтез многих химических соединений, в том числе взрывчатых веществ.
  6. Очищение и обеззараживание воды.

Сложно назвать хотя бы один процесс, в котором не принимает участие этот великий газ, уникальное вещество - кислород.

Кислород (О) стоит в 1 периоде, VI группе, в главной подгруппе. р-элемент. Электронная конфигурация 1s2 2s22p4 . Число электронов на внешнем уровне – 6. Кислород может принять 2 электрона и в редких случаях отдать. Валентность кислорода 2, степень окисления -2.

Физические свойства: кислород ( О2) – бесцветный газ, без запаха и вкуса; в воде малорастворим, немного тяжелее воздуха. При -183 °C и 101,325 Па кислород сжижается, приобретая голубоватый цвет. Строение молекулы: молекула кислорода двухатомна, в обычных условиях прочная, обладает магнитными свойствами. Связь в молекуле ковалентная неполярная. Кислород имеет аллотропную модификацию – озон (О3) – более сильный окислитель, чем кислород.

Химические свойства: до завершения энергетического уровня кислороду нужно 2 электрона, которые он принимает проявляя степень окисления -2, но в соединении со фтором кислород ОF2 -2 и О2F2 -1. Благодаря химической активности кислород взаимодействует почти со всеми простыми веществами. С металлами образует оксиды и пероксиды:

Кислород не реагирует только с платиной. При повышенных и высоких температурах реагирует со многими неметаллами:

Непосредственно кислород не взаимодействует с галогенами. Кислород реагирует со многими сложными веществами:

Кислороду характерны реакции горения:

В кислороде горят многие органические вещества:

При окислении кислородом уксусного альдегида получают уксусную кислоту:

Получение: в лаборатории: 1) электролизом водного раствора щелочи: при этом на катоде выделяется водород, а на аноде – кислород; 2) разложением бертолетовой соли при нагревании: 2КСlО3?2КСl + 3О2?; 3) очень чистый кислород получают: 2КМnO4?К2МnO4 + МnО2 + О2?.

Нахождение в природе: кислород составляет 47,2 % массы земной коры. В свободном состоянии он содержится в атмосферном воздухе – 21 %. Входит в состав многих природных минералов, огромное его количество содержится в организмах растений и животных. Природный кислород состоит из 3 изотопов: О(16), О(17), О(18).

Применение: используется в химической, металлургической промышленности, в медицине.

24. Озон и его свойства

В твердом состоянии у кислорода зафиксировано три модификации: ?-, ?– и?– модификации. Озон ( О3) – одна из аллотропных модификаций кислорода. Строение молекулы: озон имеет нелинейное строение молекулы с углом между атомами 117°. Молекула озона обладает некоторой полярностью (несмотря на атомы одного рода, образующих молекулу озона), диамагнитна, так как не имеет неспаренных электронов.

Физические свойства: озон – синий газ, имеющий характерный запах; молекулярная масса = 48, температура плавления (твердого) = 192,7 °C, температура кипения = 111,9 °C. Жидкий и твердый озон взрывчат, токсичен, хорошо растворим в воде: при 0 °C в 100 объемах воды растворяется до 49 объемов озона.

Химические свойства: озон – сильный окислитель, он окисляет все металлы, в том числе золото – Au и платину – Pt (и металлы платиновой группы). Озон воздействует на блестящую серебряную пластинку, которая мгновенно покрывается черным пероксидом серебра – Аg2О2; бумага, смоченная скипидаром, воспламеняется, сернистые соединения металлов окисляются до солей серной кислоты; многие красящие вещества обесцвечиваются; разрушает органические вещества – при этом молекула озона отщепляет один атом кислорода, и озон превращается в обыкновенный кислород. Атакже большинство неметаллов, переводит низшие оксиды в высшие, а сульфиды их металлов – в их сульфаты:

Йодид калия озон окисляет до молекулярного йода:

Но с пероксидом водорода Н2О2 озон выступает в качестве восстановителя:

В химическом отношении молекулы озона неустойчивы – озон способен самопроизвольно распадаться на молекулярный кислород:

Получение: получают озон в озонаторах путем пропускания через кислород или воздух электрические искры. Образование озона из кислорода:

Озон может образовываться при окислении влажного фосфора, смолистых веществ. Определитель озона: чтобы опознать в воздухе наличие озона, необходимо в воздух погрузить бумажку, пропитанную раствором йодида калия и крахмальным клейстером – если бумажка приобрела синюю окраску, значит, в воздухе присутствует озон. Нахождение в природе: в атмосфере озон образуется во время электрических разрядов. Применение: будучи сильным окислителем озон уничтожает различного рода бактерии, поэтому широко применяется в целях очищения воды и дезинфекции воздуха, используется как белящее средство.

Загрузка...