Медицинский портал. Щитовидная железа, Рак, диагностика

Уравнение клапейрона-менделеева. Школьная энциклопедия

В этом разделе мы знакомимся с уравнением состояния идеального газа.

Эксперименты показали, что при условиях не слишком отличающихся от нормальных (температура порядка сотен кельвинов, давление порядка одной атмосферы) свойства реальных газов близки к свойствам идеального газа.

Пример. На примере водяного пара покажем, что при обычных условиях свойства реальных газов близки к свойствам идеального. По таблице Менделеева можно определить массу моля Н 2 0 :

Плотность воды в жидком состоянии

Отсюда можно найти объем одного моля воды:

Один моль любого вещества содержит одно и то же число молекул (число Авогадро):

Получаем отсюда объем V 1 , приходящийся на одну молекулу воды:

В конденсированном состоянии молекулы располагаются вплотную друг к другу, то есть в сущности V 1 есть объем молекулы воды, откуда следует оценка ее линейного размера (диаметра):

С другой стороны, известно, что объем V m одного моля любого газа при нормальных условиях равен

Поэтому на одну молекулу водяного пара приходится объем

Это значит, что газ можно нарезать мысленно на кубики с длиной ребра

и в каждом таком кубике окажется одна молекула. Иными словами, L - среднее расстояние между молекулами водяного пара. Мы видим, что L на порядок превосходит размер D молекулы. Аналогичные оценки получаются и для других газов, так что с хорошей точностью можно считать, что молекулы не взаимодействуют друг с другом, и при нормальных условиях газ идеален.

Как уже говорилось, уравнение состояния, имеющее вид, позволяет выразить один термодинамический параметр через два других. Конкретный вид этого уравнения зависит от того, какое вещество и в каком агрегатном состоянии рассматривается. Уравнение состояния идеального газа объединяет ряд экспериментально установленных частных газовых законов. Каждый из них описывает поведение газа при условии, что изменяются лишь два параметра.

1. Закон Бойля - Мариотта . Описывает процесс в идеальном газе при постоянной температуре.

Изотермический процесс - это термодинамический процесс, протекающий при постоянной температуре.

Закон Бойля - Мариотта гласит:

Для данной массы газа при постоянной температуре Т = const произведение давления газа на занимаемый им объем является постоянной величиной

Графически изотермический процесс в различных координатах изображен на рис. 1.7.

Рис.1.7. Изотермический процесс в идеальном газе: 1 - в координатах p V ; 2 - в координатах p - T ; 3 - в координатах T V

Показанные на рис. 1.7-1 кривые представляют собой гиперболы

располагающиеся тем выше, чем выше температура газа.

Экспериментальное исследование закона Бойля - Мариотта можно выполнить с помощью установки, показанной на рис. 1.8. В цилиндре, находящемся при постоянной температуре (что видно из показаний термометра), при перемещении поршня изменяется объем газа. Давление газа измеряется с помощью манометра. Результаты измерений давления и объема газа представляются на диаграмме p = p (V ) .

Рис. 1.8. Экспериментальное изучение изотермического процесса в газе

2. Закон Гей-Люссака. Описывает тепловое расширение идеального газа при постоянном давлении.

Закон Гей-Люссака гласит:

Объем данной массы определенного газа при постоянном давлении пропорционален его абсолютной температуре

Графически изобарный процесс в различных координатах показан на рис. 1.9.

Рис. 1.9. Изобарный процесс в газе: 1 - в координатах p – V; 2 - в координатах V – T; 3 - в координатах P – T

Экспериментальное изучение закона Гей-Люссака можно выполнить с помощью установки, показанной на рис. 1.10. В цилиндре газ нагревается с помощью горелки. Давление газа в процессе нагревания остается неизменным, что видно из показаний манометра. Температура газа измеряется с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме V = V(Т) .

Рис. 1.10. Экспериментальное изучение изобарного процесса в газе

3. Закон Шарля. Описывает изменение давления идеального газа с ростом температуры при постоянном объеме.

Изохорный процесс - это процесс, протекающий при постоянном объеме.

Закон Шарля гласит:

Давление данной массы определенного газа при постоянном объеме пропорционально термодинамической температуре

Графически изохорный процесс в различных координатах показан на рис. 1.11.


Рис.1.11. Изохорный процесс в газе: 1 - в координатах p – V; 2 - в координатах p – T; 3 - в координатах V – T

Экспериментальное исследование закона Шарля можно выполнить с помощью установки, показанной на рис. 1.12. В цилиндре газ занимает постоянный объем (поршень неподвижен). При нагревании давление газа увеличивается, а при охлаждении уменьшается. Величина давления измеряется с помощью манометра, а температура газа - с помощью термометра. Результаты измерений давления и температуры газа представляются на диаграмме p=p(Т) .

Рис. 1.12. Экспериментальное изучение изохорного процесса в газе

Если объединить рассмотренные частные газовые законы, то получим уравнение состояния идеального газа (для одного моля)

(1.5)

в которое входит универсальная газовая постоянная R = 8,31 Дж/(моль· К). При одних и тех же значениях объема и температуры системы давление газа пропорционально числу молей вещества

Поэтому для произвольной массы газа m уравнение состояния идеального газа (1.6) примет вид

(1.6)

Это уравнение называют уравнением Клапейрона - Менделеева.

Дополнительная информация:

http://www.plib.ru/library/book/14222.html - Яворский Б.М., Детлаф А.А. Справочник по физике, Наука, 1977 г. – стр. 162–166, - сводная таблица свойств всевозможных изопроцессов с идеальным газом;

http://kvant.mirror1.mccme.ru/1990/08/gazovye_zakony_i_mehanicheskoe.htm - журнал Квант, 1990 г. № 8, стр. 73–76, Д. Александров, Газовые законы и механическое равновесие;

http://www.alleng.ru/d/phys/phys62.htm - Тульчинский М.Е. Качественные задачи по физике, Изд. Просвещение, 1972 г.; задачи № 489, 522, 551 на законы идеального газа;

http://marklv.narod.ru/mkt/str4.htm - школьный урок с картинками по модели идеального газа;

http://marklv.narod.ru/mkt/str7.htm - школьный урок с картинками по изопроцессам с идеальным газом.

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 13238

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.

Аннотация: традиционное изложение темы, дополненное демонстрацией на компьютерной модели.

Из трех агрегатных состояний вещества наиболее простым является газообразное состояние. В газах силы, действующие между молекулами, малы и при определенных условиях ими можно пренебречь.

Газ называется идеальным , если:

Можно пренебречь размерами молекул, т.е. можно считать молекулы материальными точками;

Можно пренебречь силами взаимодействия между молекулами (потенциальная энергия взаимодействия молекул много меньше их кинетической энергии);

Удары молекул друг с другом и со стенками сосуда можно считать абсолютно упругими.

Реальные газы близки по свойствам к идеальному при:

Условиях, близких к нормальным условиям (t = 0 0 C, p = 1.03·10 5 Па);

При высоких температурах.

Законы, которым подчиняется поведение идеальных газов, были открыты опытным путем достаточно давно. Так, закон Бойля - Мариотта установлен еще в 17 веке. Дадим формулировки этих законов.

Закон Бойля - Мариотта. Пусть газ находится в условиях, когда его температура поддерживается постоянной (такие условия называются изотермическими ).Тогда для данной массы газа произведение давления на объем есть величина постоянная:

Эту формулу называют уравнением изотермы . Графически зависимость p от V для различных температур изображена на рисунке.

Свойство тела изменять давление при изменении объема называется сжимаемостью . Если изменение объема происходит при T=const, то сжимаемость характеризуется изотермическим коэффициентом сжимаемости который определяется как относительное изменение объема, вызывающее изменение давления на единицу.

Для идеального газа легко вычислить его значение. Из уравнения изотермы получаем:

Знак минус указывает на то, что при увеличении объема давление уменьшается. Т.о., изотермический коэффициент сжимаемости идеального газа равен обратной величине его давления. С ростом давления он уменьшается, т.к. чем больше давление, тем меньше у газа возможностей для дальнейшего сжатия.

Закон Гей - Люссака. Пусть газ находится в условиях, когда постоянным поддерживается его давление (такие условия называются изобарическими ). Их можно осуществить, если поместить газ в цилиндр, закрытый подвижным поршнем. Тогда изменение температуры газа приведет к перемещению поршня и изменению объема. Давление же газа останется постоянным. При этом для данной массы газа его объем будет пропорционален температуре:

где V 0 - объем при температуре t = 0 0 C, - коэффициент объемного расширения газов. Его можно представить в виде, аналогичном коэффициенту сжимаемости:

Графически зависимость V от T для различных давлений изображена на рисунке.

Перейдя от температуры в шкале Цельсия к абсолютной температуре , закон Гей - Люссака можно записать в виде:

Закон Шарля. Если газ находится в условиях, когда постоянным остается его объем (изохорические условия), то для данной массы газа давление будет пропорционально температуре:

где р 0 - давление при температуре t = 0 0 C, - коэффициент давления . Он показывает относительное увеличение давления газа при нагревании его на 1 0:

Закон Шарля также можно записать в виде:

Закон Авогадро: один моль любого идеального газа при одинаковых температуре и давлении занимает одинаковый объем. При нормальных условиях (t = 0 0 C, p = 1.03·10 5 Па) этот объем равен м -3 /моль.

Число частиц, содержащихся в 1 моле различных веществ, наз. постоянная Авогадро :

Легко вычислить и число n 0 частиц в 1 м 3 при нормальных условиях:

Это число называется числом Лошмидта .

Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов, т.е.

где - парциальные давления - давления, которые бы оказывали компоненты смеси, если бы каждый из них занимал объем, равный объему смеси при той же температуре.

Уравнение Клапейрона - Менделеева. Из законов идеального газа можно получить уравнение состояния , связывающее Т, р и V идеального газа в состоянии равновесия. Это уравнение впервые было получено французским физиком и инженером Б. Клапейроном и российским учеными Д.И. Менделеевым, поэтому носит их имя.

Пусть некоторая масса газа занимает объем V 1 , имеет давление p 1 и находится при температуре Т 1 . Эта же масса газа в другом состоянии характеризуется параметрами V 2 , p 2 , Т 2 (см. рисунок). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: изотермического (1 - 1") и изохорического (1" - 2).

Для данных процессов можно записать законы Бойля - Мариотта и Гей - Люссака:

Исключив из уравнений p 1 " , получим

Так как состояния 1 и 2 были выбраны произвольно, то последнее уравнение можно записать в виде:

Это уравнение называется уравнением Клапейрона , в котором В - постоянная, различная для различных масс газов.

Менделеев объединил уравнение Клапейрона с законом Авогадро. Согласно закону Авогадро, 1 моль любого идеального газа при одинаковых p и T занимает один и тот же объем V m , поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется универсальной газовой постоянной . Тогда

Это уравнение и является уравнением состояния идеального газа , которое также носит название уравнение Клапейрона - Менделеева .

Числовое значение универсальной газовой постоянной можно определить, подставив в уравнение Клапейрона - Менделеева значения p, T и V m при нормальных условиях:

Уравнение Клапейрона - Менделеева можно записать для любой массы газа. Для этого вспомним, что объем газа массы m связан с объемом одного моля формулой V=(m/M)V m , где М - молярная масса газа . Тогда уравнение Клапейрона - Менделеева для газа массой m будет иметь вид:

где - число молей.

Часто уравнение состояния идеального газа записывают через постоянную Больцмана:

Исходя из этого, уравнение состояния можно представить как

где - концентрация молекул. Из последнего уравнения видно, что давление идеального газа прямо пропорционально его температуре и концентрации молекул.

Небольшая демонстрация законов идеального газа. После нажатие кнопки "Начнем" Вы увидите комментарии ведущего к происходящему на экране (черный цвет) и описание действий компьютера после нажатия Вами кнопки "Далее" (коричневый цвет). Когда компьютер "занят" (т.е. идет опыт) эта кнопка не активна. Переходите к следующему кадру, лишь осмыслив результат, полученный в текущем опыте. (Если Ваше восприятие не совпадает с комментариями ведущего, напишите!)

Вы можете убедиться в справедливости законов идеального газа на имеющейся

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.

Известно, что разреженные газы подчинены законам Бойля и Ге-Люссака. Закон Бойля гласит, что при изотермическом сжатии газа давление изменяется обратно пропорционально объему. Следовательно, при

Согласно закону Ге-Люссака нагревание газа на при постоянном давлении влечет за собой его расширение на того объема, который он занимает при и при том же неизменном давлении.

Следовательно, если есть объем, занимаемый газом при 0° С и при давлении есть объем, занимаемый этим газом при

и при том же давлении то

Будем изображать состояние газа точкой на диаграмме (координаты какой-либо точки в этой диаграмме указывают численные значения давления и объема или 1 моля газа; на рис. 184 нанесены линии, для каждой из которых это изотермы газа).

Представим себе, что газ был взят в некотором выбранном произвольно состоянии С, при котором его температура есть давление р и занятый им объем

Рис. 184 Изотермы газа по закону Бойля.

Рис. 185 Диаграмма поясняющая вывод уравнения Клапейрона из законов Бойля и Ге-Люссака.

Охладим его до не изменяя давления (рис. 185). На основании закона Ге-Люссака можно написать, что

Теперь, поддерживая температуру будем сжимать газ или, если требуется, предоставим ему возможность расширяться до тех пор, пока его давление не сделается равным одной физической атмосфере. Это давление обозначим через а объем, который в результате окажется занятым газом (при через (точка на рис. 185). На основании закона Бойля

Умножая почленно первое равенство на второе и сокращая на получим:

Это уравнение впервые было выведено Б. П. Клапейроном, выдающимся французским инженером, работавшим в России профессором Института путей сообщения с 1820 по 1830 г. Постоянную величину 27516 нбывают газовой постоянной.

По закону, открытому в 1811 г. итальянским ученым Авогадро, все газы независимо от их химической природы при одинаковом давлении занимают одинаковый объем, если они взяты в количествах, пропорциональных их молекулярному весу. Пользуясь в качестве единицы массы молем (или, что то же, грамм-молекулой, грамм-молем), закон Авогадро можно сформулировать так: при определенной температуре и определенном давлении моль любого газа будет занимать один и тот же объем. Так, например, при и при давлении -моль любого газа занимает

Законы Бойля, Ге-Люссака и Авогадро, найденные экспериментально, позже были выведены теоретически из молекулярно-кинетических представлений (Крёнигом в 1856 г., Клаузиусом в 1857 г. и Максвеллом в 1860 г.). С молекулярно-кинетической точки зрения закон Авогадро (который, подобно другим газовым законам, является точным для идеальных газов и приближенным для реальных) означает, что в равных объемах двух газов содержится одинаковое число молекул, если эти газы находятся при одинаковой температуре и одинаковом давлении.

Пусть есть масса (в граммах) атома кислорода, масса молекулы какого-либо вещества, молекулярный вес этого вещества: Очевидно, что число молекул, содержащихся в моле какого-либо вещества, равно:

т. е. моль любого вещества содержит одно и то же число молекул. Это число равно оно называется числом Авогадро.

Д. И. Менделеев в 1874 г. указал, что благодаря закону Авогадро уравнение Клапейрона, синтезирующее законы Бойля и Ге-Люссака, приобретает наибольшую общность, когда оно отнесено не к обычной весовой единице (грамм или килограмм), а к молю газов. Действительно, поскольку моль любого газа при занимает объем, равный численное значение газовой постоянной для всех газов, взятых в количестве 1 грамм-молекулы, должно быть одинаково независимо от их химической природы.

Газовую постоянную для 1 моля газа обычно обозначают буквой и называют универсальной газовой постоянной:

Если в объеме у (а значит, и содержится не 1 моль газа, а молей, то, очевидно,

Численное значение универсальной газовой постоянной зависит от того, в каких единицах измерены стоящие в левой части уравнения Клапейрона величины Например, если давление измерять в и объем в то отсюда

В табл. 3 (стр. 316) даны значения газовой постоянной, выраженной в различных часто применяемых единицах.

Когда газовая постоянная входит в формулу, все члены которой выражены в калорических единицах энергии, то и газовая постоянная должна быть выражена в калориях; приближенно, точнее

Вычисление универсальной газовой постоянной основано, как мы видели, на законе Авогадро, согласно которому все газы независимо от их химической природы занимают при объем

В действительности объем занимаемый 1 молем газа при нормальных условиях, для большинства газов не вполне точно равен (например, для кислорода и азота он немного меньше, для водорода - немного больше). Если это учесть при вычислении то обнаружится некоторое расхождение в численном значении для различных по химической природе газов. Так, для кислорода вместо получается для азота . Это несовпадение находится в связи с тем, что все вообще газы при обычной плотности не вполне точно следуют законам Бойля и Ге-Люссака.

В технических расчетах вместо измерения массы газа в молях обычно измеряют массу газа в килограммах. Пусть объем содержит газа. Коэффициент в уравнении Клапейрона означает число молей, содержащихся в объеме т. е. в данном случае

Загрузка...