Медицинский портал. Щитовидная железа, Рак, диагностика

Уравнение менделеева-клапейрона. Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона)

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.

Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/N А).

Решение задач

Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

Берём формулу и подставляем в неё . Получаем:

p = nkT.

Вспомним теперь, что A , где ν - число молей газа:

pV = νRT. (3)

Соотношение (3) называется уравнением Менделеева - Клапейрона . Оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа - давления, объёма и температуры. Поэтому уравнение Менделеева - Клапейрона называется ещё уравнением состояния идеального газа .

Учитывая, что , где m - масса газа, получим другую форму уравнения Менделеева - Клапейрона:

Есть ещё один полезный вариант этого уравнения. Поделим обе части на V :

Но - плотность газа. Отсюда

В задачах по физике активно используются все три формы записи (3)-(5).

Изопроцессы

На протяжении этого раздела мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

µ = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением , объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.

2. Изобарный процесс идёт при постоянном давлении газа: p = const.

3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

При изотермическом процессе температура газа постоянна. В ходе процесса меняются только давление газа и его объём.



Установим связь между давлением p и объёмом V газа в изотермическом процессе. Пусть температура газа равна T . Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p 1 ,V 1 ,T , а во втором - p 2 ,V 2 ,T . Эти значения связаны уравнением Менделеева - Клапейрона:

Как мы сказали с самого начала, масса газа m и его молярная масса µ предполагаются неизменными. Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части: p 1V 1 = p 2V 2.

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

pV = const.

Данное утверждение называется законом Бойля - Мариотта . Записав закон Бойля - Мариотта в виде

p = ,

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа.

Идеальным газом называют газ, для которого можно пренебречь размерами молекул и силами молекулярного взаимодействия; соударения молекул в таком газе происходят по закону соударения упругих шаров.

Реальные газы ведут себя подобно идеальному, когда среднее рас­стояние между молекулами во много раз больше их размеров, т. е. при достаточно больших разрежениях.

Состояние газа описывается тремя параметрами V, Р, Т, между которыми существует однозначное соотношение, называемое уравнением Менделеева -Клапейрона.

R - молярная газовая постоянная, определяет рабо­ту, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Такое название этого уравнения обусловлено, тем, что впервые оно было получено Д.И. Менделеевым (1874г) на основе обобщения результатов, полученных до этого французским учёным Б.П. Клапейроном.

Из уравнения состояния идеального газа вытекает ряд важных следствий:

    При одинаковых температурах и давлениях в равных объёмах любых идеальных газов, содержится одинаковое количество молекул (закон Авагадро).

    Давление смеси химически невзаимодействующих идеальных газов равно сумме парциальных давлений этих газов (закон Дальтона ).

    Отношение произведения давления и объёма идеального газа к его абсолютной температуре есть величина постоянная для данной массы данного газа (объединенный газовый закон)

Всякое изме­нение состояния газа называют термодинамическим процессом.

При переходе данной массы газа из одного состояния в другое в общем случае могут меняться все параметры газа: объём, давление и температура. Однако, иногда меняются какие-либо два из этих параметров, а третий остаётся неизменным. Процессы, при котором один из параметров состояния газа остаётся постоянным, а два других изменяются, называют изопроцессами .

§ 9.2.1 Изотермический процесс (Т= const ). Закон Бойля-Мариотта .

Процесс, протекающий в газе, при котором температура остается постоянной, называютизотермическим («изос»- «одинаковый»; «терме» - «тепло»).

Практически этот процесс можно реализовать, медленно уменьшая или увеличивая объём газа. При медленном сжатии и расширении создаются условия поддержания постоянной температуры газа вследствие теплообмена с окружающей средой.

Если при постоянной температуре увеличивать объём V, давление Р уменьшается, когда объём V уменьшается - давление Р растёт, а произведение Р на V сохраняется.

рV = соnst (9.11)

Этот закон называется законом Бойля – Мариотта , так как почти одновременно был открыт в XVII в. французским ученым Э. Мариоттом и английским ученым Р. Бойлем.

Закон Бойля-Мариотта формулируется так: произведение давления газа на объем для данной массы газа есть величина постоянная:

Графическая зависимость давления газа Р от объёма V изображается в виде кривой (гиперболы), которая носит название изотермы (рис.9.8). Разным температурам соответствуют разные изотермы. Изотерма, соответствующая более высокой температуре, лежит выше изотермы, соответствующей более низкой температуре. А в координатах VT (объём – температура) и PT (давление – температура) изотермы являются прямыми линиями, перпендикулярными оси температур (рис.).

§ 9.2.2 Изобарный процесс (P = const ). Закон Гей-Люссака

Процесс, протекающий в га­зе, при котором давление остается постоянным, называют изобарным («барос» - «тяжесть»). Простейшим примером изобарного процесса является расширение нагреваемого газа в цилиндре со свободным поршнем. Наблюдаемое при этом расширение газа называют тепловым расширением .

Опыты, проведенные в 1802 году французским физи­ком и химиком Гей-Люссаком показали, Объем газа данной массы при постоянном давлении л инейно возрастает с увеличением температуры (закон Гей-Люссака) :

V = V 0 (1 + αt) (9.12)

Вели­чина α называется температурным коэффициентом объемного расши­рения (для всех газов )

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Гей-Люссака в следующей формулировки: при неизменном давлении отношение объёма дано массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Vt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изобарой (рис. 9.9). Разным давлениям соответствуют разные изобары. Поскольку при постоянной температуре с увеличением давления объём газа уменьшается, то изобара, соответствующая более высокому давлению, лежит ниже изобары, соответствующеё более низкому давлению. В координатах PV и PT изобары это прямые линии, перпендикулярные оси давления. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Гей-Люссака не выполняется, поэтому красная линия на графике заменена белой.

§ 9. 2. 3 Изохорный процесс (V = const ). Закон Шарля

Процесс, протекающий в газе, при котором объем остается постоянным, называют изохорным («хорема» - вместимость). Для осуществления изохорного процесса газ помещают в герметический сосуд, не меняющий свой объём

Французский физик Ж. Шарль установил:давление газа данной массы при постоянном объеме возрастает линейно с увеличе­нием температуры (закон Шарля):

Р = Р 0 (1 + γt) (9.14)

(р - давление газа при температуре t,°С; р 0 - его давление при 0°С].

Величина γ называется температурным коэффициентом давления . Ее значение не зависит от природы газа: для всех газов .

Если заменить температуру, отсчитанную по шкале Цельсия, термодинамической температурой получим закон Шарля в следующей формулировки: при неизменном объёме отношение давления данной массы идеального газа к его абсолютной температуре является величиной постоянной, т.е.

Графически эта зависимость в координатах Рt изображается в виде прямой, выходящей из точки t=-273°С. Эту прямую называют изохорой (рис. 9.10). Разным объёмам соответствуют разные изохоры. Поскольку с увеличением объёма газа при постоянной температуре давление его уменьшается, то изохора, соответствующая большему объёму, лежит ниже изохоры, соответствующей меньшему объёму. В координатах PV и VT изохоры – это прямые линии, которые перпендикулярны оси объёма. В области низких температур близ­кой к температуре сжижения (конденсации) газов закон Шарля, также как и закон Гей-Люссака не выполняется.

За единицу температуры по термодинамической шкале принят кельвин (К); соответствует 1°С.

Температура, отсчитанная по термодинамической шкале температур называется термодинамической температурой . Так как точка плавления льда при нормальном атмосферном давлении, при­нятая за 0°С, равна 273,16 К -1 , то

Оно выведено на основе объединенного закона Бойля-Мариотта и Гей-Люссака с применением закона Авогадро. Для одной грамм-молекулы любого вещества, находящегося в идеальном газовом состоянии, уравнение Менделеева-Клапейрона имеет выражение:

Или PV = RT (11) .

В том случае, если имеется не один, а n молей газа выражение принимает вид:

где R- универсальная газовая постоянная, не зависящая от природы газа.

Так как число грамм-молей газа , где m- масса газа, а М- его молекулярная масса, то выражение (12) принимает вид:

Числовое значение R зависит от единицы измерения дав­ления и объема. Величина ее выражается в единицах энергия/моль´град. Для нахождения числовых значений R используем уравнение (11), применив его для 1 моля идеального газа, находящегося в нормальных условиях,

Подставив в уравнение (11) числовые значения Р=1 атм, T= 273° и V = 22,4 л, получаем

В международной системе единиц СИ давление выра­жается в ньютонах на м 2 (н/м 2), а объем в м 3 . Тогда .

Пользуясь уравнением Менделеева-Клапейрона можно производить следующие расчеты: а) нахождение физи­ческих параметров состояния газа по его молекулярной массе и другим данным, б) нахождение молекулярной мас­сы газа по данным о его физическом состоянии (см. при­мер 22).

Пример 11. Сколько весит азот, находящийся в газгольдере диаметром 3,6 м и высотой 25 м при темпе­ратуре 25ºС и давлении 747 мм рт. ст.?

IIример 12. В колбе емкостью 500 мл при 25ºС находится 0,615 г оксида азота (II). Каково давление газа в атмосферах, в н/м 2 ?

Пример 13. Масса колбы емкостью 750 см 3 , на­полненной кислородом при 27°С, равна 83,35 г. Масса пустой колбы 82,11 г. Определить давление кислорода и мм рт.ст. на стенки колбы.

Закон Дальтона

Сформулирован этот закон так: общее давление смесей газов, не реагирующих друг с другом, равно сумме пар­циальных давлении составных частей (компонентов).

P = p 1 + p 2 + p 3 + ….. + p n (14)

где Р - общее давление смеси газов; p 1 , p 2 , p 3 , …., p n – парциальные давления компонентов смеси.

Парциальным давлением называется давление, оказы­ваемое каждым компонентом газовой смеси, если предста­вить этот компонент занимающим объем, равный объему смеси при той же температуре. Иными словами, парциаль­ным давлением называется та часть общего давления га­зовой смеси, которая обусловлена данным газом.

Из закона Дальтона следует, что при наличии смеси газов п в уравнении (12) представляет собой сумму числа молей всех компонентов, образующих данную смесь, а Р- общее давление смеси, занимающей при температу­ре Т объем V.

Зависимость между парциальными давлениями и общим выражается уравнениями:

где n 1 , n 2 , n 3 - число молей компонента 1, 2, 3, соответ­ственно, в смеси газов.

Отношения называются мольными долями данного компонента.

Если мольную долю обозначить через N, то парциальное давление любого i-го компонента смеси (где i = 1,2,3,...) будет равно:

Таким образом, парциальное давление каждого компо­нента смеси равно произведению его мольной доли па общее давление газовой смеси.

Помимо парциального давления у газовых смесей раз­личают парциальный объем каждого из газов v 1 , v 2 , v 3 и т. д.

Парциальным называют объем, который занимал бы отдельный идеальный газ, входящий в состав идеальной смеси газов, если бы при том же количестве, он имел давление и температуру смеси.

Сумма парциальных объемов всех компонентов газовой смеси равна общему объему смеси

V = v 1 , + v 2 + v 3 + ... + v n (16) .

Отношение и т. д. называется объемной долей первого, второго и т.д. компонентов газовой смеси. Для идеальных газов мольная доля равна объемной доле. Следовательно, парциальное давление каждого ком­понента смеси равно также произведению его объемной доли на общее давление смеси.

; ; p i = r i ´P (17).

Парциальное давление обычно находят из величины общего давления с учетом состава газовой смеси. Состав газовой смеси выражают в весовых процентах, объемных процентах и в мольных процентах.

Объемным процентом называется объемная доля, уве­личенная в 100 раз (число единиц объема данного газа, содержащегося в 100 единицах объема смеси)

Мольным процентом q называется мольная доля, уве­личенная в 100 раз.

Весовой процент данного газа - число единиц массы его, содержащихся в 100 единицах массы газовой смеси.

где m 1 , m 2 – массы отдельных компонентой газовой смеси; m – общая масса смеси.

Для перехода от объемных процентов к весовым, что бывает необходимым в практических расчетах, пользуют­ся формулой:

где r i (%) - объемное процентное содержание i-гo компонен­та газовой смеси; M i -молекулярная масса этого газа; М ср - средняя молекулярная масса смеси газов, которую вычисляют по формуле

М ср = М 1 ´r 1 + M 2 ´r 2 + M 3 ´r 3 + ….. + M i ´r i (19)

где М 1 , M 2 , M 3 , M i - молекулярные мaccы отдельных газов.

Если состав газовой смеси выражен количеством масс отдельных компонентов, то среднюю молекулярную массу смеси можно выразить по формуле

где G 1 , G 2 , G 3 , G i – доли масс газов в смеси: ; ; и т.д.

Пример 14. 5 л азота под давлением 2 атм, 2 л кислорода под давлением 2,5 атм и 3 л углекислою газа под давлением 5 атм перемешаны, причем объем, пре­доставленный смеси, равен 15 л. Вычислить, под каким давлением находятся смесь и парциальные давления каж­дого газа.

Азот, занимавший объем 5 л при давлении Р 1 = 2 атм, после смешения с другими газами распространился в объе­ме V 2 = 15 л. Парциальное давление азота р N 2 = Р 2 нахо­дим из закона Бойля-Мариотта (P 1 V 1 = P 2 V 2). Откуда

Парциальное давления кислорода и углекислого газа на­ходим аналогичным способом:

Общее давление смеси равно .

Пример 15. Смесь, состоящая из 2 молей водоро­да, некоторого количества молей кислорода и 1 моля азота при 20°С и давлении 4 атм, занимает объем 40 литров. Вычислить число молей кислорода в смеси и парциальные давления каждого из газов.

Из уравнения (12) Менделеева-Клапейрона находим общее число молей всех газов, составляющих смесь

Число молей кислорода в смеси равно

Парциальные давления каждого из газов вычисляем по уравнениям (15а):

Пример 17. Состав паров бензольных углеводоро­дов над поглотительным маслом в бензольных скрубберах, выраженный в единицах массы, характеризуется такими величинами: бензола C 6 H 6 - 73%, толуола С 6 Н 5 СН 3 - 21%, ксилола С 6 Н 4 (СН 3) 2 - 4%, триметилбензола С 6 Н 3 (СН 3) 3 - 2%. Вычислить содержание каждой составной части по объе­му и парциальные давления паров каждого вещества, если общее давление смеси равно 200 мм рт. ст.

Для вычисления содержания каждой составной части смеси паров по объему используем формулу (18)

Следовательно, необходимо знать М ср, которую можно вычислить из формулы (20):

Парциальные давления каждого компонента в смеси вычисляем, используя уравнение (17)

p бензола = 0,7678´200 = 153,56 мм рт.ст. ; p толуола = 0,1875´200 = 37,50 мм рт.ст. ;

p ксилола = 0,0310´200 = 6,20 мм рт.ст. ; p триметилбензола = 0,0137´200 = 2,74 мм рт.ст.


Похожая информация.


Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон (1799-1864) вывел уравнение состояния идеального газа, объединив законы Бойля - Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V 1 , имеет давление p 1 и находится при температуре T 1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами р 2 , V 2 , Т 2 (рис. 63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1 - 1¢, 2) изохорного (изохора 1¢ - 2).

В соответствии с законами Бойля - Мариотта (41.1) и Гей-Люссака (41.5) запишем:

Исключив из уравнений (42.1) и (42.2) p¢ 1 , получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина pV/T остается постоянной, т. е.

Выражение (42.3) является уравнением Клапейрона, в котором В - газовая постоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834-1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем V m . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V m , поэтому постоянная B будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона - Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях (р 0 = 1,013×10 5 Па, T 0 = 273,15 К, V m = 22,41×10 -3 м э /моль): R = 8,31 Дж/(моль×К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона - Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем V m , то при тех же условиях масса m газа займет объем V= (т/М)× V m , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона - Менделеева для массы т газа

где v=m/M - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:

Исходя из этого уравнение состояния (42.4) запишем в виде

где N A /V m = n- концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м 3 газа при нормальных условиях, называется числом Лошмндта*:

Основное уравнение

Молекулярно-кинетической теории

Идеальных газов

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим одно атомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS (рис. 64) и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс m 0 v - (- т 0 ) = 2т 0 v, где m 0 - масса молекулы, v - ее скорость. За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой vDt (рис. 64). Число этих молекул равно nDSvDt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке DS под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул - 1/6 - движется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет

l / 6 nDSvDt. При столкновении с площадкой эти молекулы передадут ей импульс

Тогда давление газа, оказываемое им на стенку сосуда,

Если газ в объеме V содержит N молекул, движущихся со скоростями v 1 ,v 2 , ..., v n , то целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность молекул таза. Уравнение (43.1) с учетом (43.2) примет вид

Выражение (43.3) называется основным уравнением молекулярно-кинетнческой теории идеальных газов. Точный расчет с учетом движения молекул по всевозможным направлениям дает ту же формулу.

Учитывая, что n=N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m=Nm 0 , то уравнение (43.4) можно переписать в виде

Для одного моля газа т = М (М - молярная масса), поэтому

где F m - молярный объем. С другой стороны, по уравнению Клапейрона - Менделеева, pV m = RT. Таким образом,

Так как M = m 0 N A - масса одной молекулы, а N А - постоянная Авогадро, то из уравнения (43.6) следует, что

где k=R/N A - постоянная Больцмана. Отсюда найдем, что при комнатной температуре молекулы кислорода имеют среднюю квадратичную скорость 480 м/с, водорода - 1900 м/с. При температуре жидкого гелия те же скорости будут соответственно 40 и 160 м/с.

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа

(использовали формулы (43.5) и (43.7)) пропорциональна термодинамической температуре и зависит только от нее. Из этого уравнения следует, что при Т=0 = 0, т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии поступательного движения молекул идеального газа, и формула (43.8) раскрывает молекулярно-кинетическое толкование температуры.

Загрузка...