Медицинский портал. Щитовидная железа, Рак, диагностика

На какое расстояние способен видеть человек. Видимый горизонт и его дальность

Географическая дальность видимости предметов в море Д п определяется наибольшим расстоянием, на котором наблюдатель увидит его вершину над линией горизонта, т.е. зависит только от геометрических факторов, связывающих высоту глаза наблюдателя е и высоту ориентира h при коэффициенте рефракции c (рис.1.42):

где Д е и Д h - соответственно дальности видимого горизонта с высоты глаза наблюдателя и высоты предмета. Т.о. дальность видимости предмета, рассчитанная по высоте глаза наблюдателя и высоте предмета называется географической или геометрической дальностью видимости.

Расчёт географической дальности видимости предмета может производиться по табл. 2.3 МТ – 2000 по аргументам e и h или по табл. 2.1 МТ – 2000 суммированием результатов, полученных двукратным входом в таблицу по аргументам е и h. Можно также получить Д п по номограмме Струйского, которая приведена в МТ – 2000 под номером 2.4, а также в каждой книге “Огни” и “Огни и знаки” (рис.1.43).

На морских навигационных картах и в навигационных пособиях географическая дальность видимости ориентиров даётся для постоянной высоты глаза наблюдателя е = 5 м и обозначается как Д к - дальность видимости указанная на карте.

Подставив значение е = 5 м в формулу (1.126), получим:

Для определения Д п надо к Д к ввести поправку DД, величина которой и знак определяются формулой:

Если фактическая высота глаза больше 5 м, то DД имеет знак “+”, если меньше - знак “-“. Таким образом:

. (1.129)

Величина Д п зависит также и от остроты зрения, которая выражается в разрешающей способности глаза по углу, т.е. определяется и наименьшим углом, на котором предмет и линия горизонта различаются раздельно (рис.1.44).

В соответствии с формулой (1.126)

Но из-за разрешающей способности глаза g наблюдатель увидит предмет только тогда, когда его угловые размеры будут не меньше g, т.е. когда он будет виден над линией горизонта не менее чем на Dh, которая из элементарного DА¢СС¢ при углах С и С¢ близких к 90° будет Dh = Д п × g¢.

Чтобы получить Д п g в милях при Dh в метрах:

где Д п g - географическая дальность видимости предмета с учётом разрешающей способности глаза.

Практическими наблюдениями определено, что при открытии маяка g =2¢, а при скрытии g =1,5¢.

Пример . Найти географическую дальность видимости маяка высотой h=39 м, если высота глаза наблюдателя е=9 м, без учёта и с учётом разрешающей способности глаза g =1,5¢.



Влияние гидрометеорологических факторов на дальность видимости огней

На дальность видимости ориентиров кроме геометрических факторов (е и h) влияет также контрастность, позволяющая выделить ориентир на окружающем фоне.

Дальность видимости ориентиров днём, учитывающая также контрастность, называется дневной оптической дальностью видимости.

Для обеспечения безопасного судовождения в ночных условиях используются специальные средства навигационного оборудования, имеющие светооптические приборы: маяки, светящиеся навигационные знаки и навигационные огни.

Морской маяк - это специальное капитальное сооружение с дальностью видимости белого или приведённых к нему цветных огней не менее 10 миль.

Светящийся морской навигационный знак - капитальное сооружение, имеющее светооптический аппарат с дальностью видимости белого или приведённых к нему цветных огней менее 10 миль.

Морской навигационный огонь - световой прибор, установленный на естественных объектах или сооружениях неспециальной постройки. Такие СНО часто действуют автоматически.

В тёмное время суток дальность видимости огней маяков и светящихся навигационных знаков зависит не только от высоты глаза наблюдателя и высоты светящегося СНО, но и от силы источника света, цвета огня, конструкции светооптического аппарата, а также и от прозрачности атмосферы.

Дальность видимости, учитывающая все эти факторы, называется ночной оптической дальностью видимости, т.е. это максимальная дальность видимости огня в данное время при данной метеорологической дальности видимости.

Метеорологическая дальность видимости зависит от прозрачности атмосферы. Часть светового потока огней светящих СНО поглощается частицами, содержащимися в воздухе, поэтому происходит ослабление силы света, характеризующееся коэффициентом прозрачности атмосферы t :

где I 0 - сила света источника; I 1 - сила света на некотором расстоянии от источника, принимаемого за единицу (1 км, 1 миля).

Коэффициент прозрачности атмосферы всегда меньше единицы, поэтому географическая дальность видимости обычно больше реальной, за исключением аномальных случаев.

Прозрачность атмосферы в баллах оценивается по шкале видимости таблицы 5.20 МТ – 2000 в зависимости от состояния атмосферы: дождь, туман, снег, дымка и т.д.

Так как оптическая дальность видимости огней изменяется в значительных пределах в зависимости от прозрачности атмосферы, Международная ассоциация маячных служб (МАМС) рекомендовала использовать термин “номинальная дальность видимости”.

Номинальной дальностью видимости огня называется оптическая дальность видимости при, метеорологической дальности видимости 10 миль, что соответствует коэффициенту прозрачности атмосферы t = 0,74. Номинальная дальность видимости указывается в навигационных пособиях многих зарубежных стран. На отечественных картах и в руководствах для плавания указывается стандартная дальность видимости (если она меньше географической дальности видимости).

Стандартной дальностью видимости огня называется оптическая дальность видимости при метеорологической дальности видимости 13,5 миль, что соответствует коэффициенту прозрачности атмосферы t = 0,8.

В навигационных пособиях “Огни”, “Огни и знаки” кроме таблицы дальности видимого горизонта и номограммы дальности видимости предметов есть и номограмма оптической дальности видимости огней (рис.1.45). Эта же номограмма приведена в МТ – 2000 под номером 2.5.

Аргументами для входа в номограмму являются сила света, или номинальная, или стандартная дальности видимости, (полученные из навигационных пособий), и метеорологическая дальность видимости, (полученная из метеорологического прогноза). По этим аргументам из номограммы получают оптическую дальность видимости.

При проектировании маяков и огней стремятся, чтобы оптическая дальность видимости была бы равна географической дальности видимости при ясной погоде. Однако, для многих огней оптическая дальность видимости меньше географической. Если эти дальности не равны, то на картах и в руководствах для плавания указывается меньшая из них.

Для практических расчётов ожидаемой дальности видимости огня днём надо по высотам глаза наблюдателя и ориентира рассчитать Д п по формуле (1.126). Ночью : а) если оптическая дальность видимости больше географической, надо взять поправку за высоту глаза наблюдателя и рассчитать географическую дальность видимости по формулам (1.128) и (1.129). Принять меньшую из оптической и географической, рассчитанной по этим формулам; б) если оптическая дальность видимости меньше географической - принять оптическую дальность.

Если на карте у огня или маяка Д к < 2,1 h + 4,7 , то поправку DД вводить не нужно, т.к. эта дальность видимости оптическая меньшая географической дальности видимости.

Пример . Высота глаза наблюдателя e = 11 м, дальность видимости огня, указанная на карте Д к =16 миль. Номинальная дальность видимости маяка из навигационного пособия “Огни” 14 миль. Метеорологическая дальность видимости 17 миль. На каком расстоянии можно ожидать открытия огня маяка?

По номограмме Допт » 19,5 мили.

По е = 11м ® Д е = 6,9 мили

Д 5 = 4,7 мили

DД =+2,2 мили

Д к = 16,0 мили

Д п = 18,2 мили

Ответ: можно ожидать открытия огня с расстояния 18,2 мили.



Морские карты. Картографические проекции. Поперечная равноугольная цилиндрическая проекция Гаусса и её использование в судовождении. Перспективные проекции: стереографическая, гномоническая.

Карта – уменьшенное искажённое изображение сферической поверхности Земли на плоскости, при условии, что искажения закономерны.

План – не искажённое за счёт малости изображаемого участка изображение земной поверхности на плоскости.

Картографическая сетка – совокупность линий, изображающих на карте меридианы и параллели.

Картографическая проекция – математически обоснованный способ изображения меридианов и параллелей.

Географическая карта - построенное в данной проекции условное изображение всей земной поверхности или её части.

Карты бывают различными по назначению и масштабу, например: планисферы – изображающие всю Землю или полушарие, генеральные или общие – изображающие отдельные страны, океаны и моря, частные – изображающие меньшие пространства, топографические – изображающие подробности поверхности суши, орографические – карты рельефа, геологичекие – залегание пластов и т.д.

Морские карты – специальные географические карты, предназначенные в основном для обеспечения судовождения. В общей классификации географических карт они отнесены к техническим. Особое место среди морских карт занимают МНК, служащие для прокладки курса судна и определения его места в море. В судовой коллекции также могут быть вспомогательные и справочные карты.

Классификация картографических проекций.

По характеру искажений все картографические проекции делят на:

  • Равноугольные или конформные – проекции, в которых фигуры на картах подобны соответствующим фигурам на поверхности Земли, но их площади не пропорциональны. Углы между объектами на местности соответствуют таковым на карте.
  • Равновеликие или эквивалентные – у которых сохранена пропорциональность площадей фигур, но при этом искажаются углы между объектами.
  • Равнопромежуточные – сохраняющие длину по одному из главных направлений эллипса искажений, т.е., например, круг на местности на карте изображается в виде эллипса, у которого одна из полуосей равна радиусу такого круга.
  • Произвольные – все остальные, не обладающие вышеуказанными свойствами, но подчиняющиеся иным условиям.

По способу построения проекции делят на:

F
Перспективные – изображение получается в пересечении картинной плоскости с прямой, соединяющей проецируемую точку с точкой зрения. Картинная плоскость и точка зрения могут занимать различные положения по отношению к поверхности Земли: рисунки если картинная плоскость касается поверхности Земли в какой-либо точке, то проекция называется азимутальной. Азимутальные проекции делятся на: стереографические – когда точка зрения находится на противоположном полюсе сферы , ортографические – когда точка зрения удалена в бесконечность, внешние – точка зрения находится на конечном расстоянии далее противоположного полюса сферы, центральные или гномонические – когда точка зрения находится в центре сферы. Перспективные проекции – не конформны и не эквивалентны. Измерение расстояний на картах, построенных в таких проекциях затруднено, зато дуга большого круга изображается прямой линией, что удобно при прокладке радиопеленгов, а также - курсов при плавании по ДБК. Примеры. В этой проекции могут строиться также карты приполярных областей.

В зависимости от точки касания картинной плоскости гномонические проекции делятся на: нормальные или полярные – касание на одном из полюсов поперечные или экваториальные – касание – на экваторе
горизонтальные или косые – касание в любой точке между полюсом и экватором (меридианы на карте в такой проекции представляют собой расходящиеся от полюса лучи, а параллели – эллипсы, гиперболы или параболы.

Рассказывает об удивительных свойствах нашего зрения - от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам - световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. "У любых видимых нами объектов есть определенный "порог", ниже которого мы перестаем их различать", - говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета - пожалуй, самой первой способности, которая приходит на ум применительно к зрению.

Правообладатель иллюстрации SPL Image caption Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении

Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток - палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении - например, ночью (ночное зрение).

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа - за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. "Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины", - говорит Лэнди.

Правообладатель иллюстрации Thinkstock Image caption Не весь спектр полезен для наших глаз...

Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем - спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией - отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) - способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек - они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.

Правообладатель иллюстрации SPL Image caption После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение

Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. "Человек способен увидеть один-единственный фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла".

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

"Единственное, что нужно глазу, чтобы что-то увидеть, - это определенное количество света, излученного или отраженного на него объектом, - говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов".

Правообладатель иллюстрации Thinkstock Image caption Глазу достаточно небольшого количества фотонов, чтобы увидеть свет

В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.

Правообладатель иллюстрации Thinkstock Image caption Острота зрения снижается по мере увеличения расстояния до объекта

Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора - в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.

Правообладатель иллюстрации SPL Image caption Достаточно яркие объекты можно разглядеть на расстоянии в несколько световых лет

Ограничения остроты зрения зависят от нескольких факторов - таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. "По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз", - говорит Лэнди.

На этом принципе основаны таблицы, используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.

Правообладатель иллюстрации Thinkstock Image caption В таблицах для проверки остроты зрения используются черные буквы на белом фоне

Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.

КУРС ЛЕКЦИЙ

ПО ДИСЦИПЛИНЕ

«НАВИГАЦИЯ И ЛОЦИЯ МОРЯ»

Составил преподаватель Милованов В.Г.

НАВИГАЦИЯ И ЛОЦИЯ

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Форма и размеры Земли

Формой Земли является геоид - геометрическое тело, поверхность которого во всех точках перпендикулярна направлению силы тяжести, близкое по форме к эллипсоиду вращения. В СССР принят (с 1946 г.) референц-эллипсоид Ф. Н. Красовского с размерами: большая полуось 6 378 245 м; малая полуось 6 356 863 м. В разных странах приняты различные размеры земного эллипсоида, поэтому переход на иностранные карты, особенно при плавании вблизи берегов и навигационных опасностей, следует осуществлять не по координатам, а по пеленгу и расстоянию до берегового ориентира, нанесенного на обе карты.

Морские единицы длины и скорости

Морская миля* - средняя длина дуги одной минуты земного меридиана (* Ниже везде миля). Длина дуги одной минуты земного меридиана

L`=1852,23 - 9,34 cos 2f,

где f - широта места судна, град.

Длина морской мили, принятая в различных государствах, м

Кабельтов - одна десятая часть морской мили, округленно равен 185 м.

Узел -одна морская миля в час, или 0,514 м/с.

На английских картах употребляются также футы . (0,3048 м) и сажени (1,83 м).

Дальность видимого горизонта и видимости объекта

Дальность видимого горизонта: Дe=2,08√e

Дальность видимости объекта (предмета): Дп=2,08√e + 2,08√h

Приведение дальности видимости объекта, показанной на карте, к высоте глаза наблюдателя, отличающейся от 5 м, следует производить по формуле:

Дп =Дк+Де - 4,7.

В этих формулах:

Де - дальность видимого горизонта, мили для данной высоты глаза наблюдателя е, м;

2,08 - коэффициент, рассчитанный из условия, что коэффициент земной рефракции равен 0,16 и радиус Земли R = 6371,1 км;

Дп -дальность видимости предмета, мили;

h - высота наблюдаемого предмета, м;

Дк - дальность видимости предмета, указанная на карте.

Примечание. Следует учитывать, что указанные формулы применимы при условии среднего состояния атмосферы и дневного времени суток.

Исправление и перевод румбов (рис. 2.1)

Истинный курс (ИК) - угол между северной частью истинного меридиана и диаметральной плоскостью судна.

Истинный пеленг (ИП) - угол между северной частью истинного меридиана и направлением на объект.

Обратный истинный пеленг (ОИП) - отличается от ИП на 180°

Курсовой угол (КУ) - угол между носовой частью диаметральной плоскости судна и направлением на объект; измеряется от 0 до 180° в сторону правого и левого борта или по часовой стрелке от 0 до 360°. КУ правого борта имеет знак “плюс”, КУ левого борта - знак “минус”.

Зависимости между ИК, ИП и КУ:

ИК=ИП-КУ; ИП =ИК+КУ; КУ=ИП-ИК.

Компасный, гирокомпас ный курс (КК,ГКК) -угол между северной частью компасного (гироскопического) меридиана и носовой частью диаметральной плоскости судна.

Компасный, гирокомпасный пеленг (КП,ГКП )-угол между северной частью компасного (гироскопического) меридиана и направлением на объект.

Поправка компаса (гирокомпаса) АК (АГК) - угол между истинным и компасным (гироскопическим) меридианами. Восточная (остовая) ЛК (ЛГК) имеет знак “плюс”, западная (вестовая) - “минус”.

Рис. 2.1. Исправление и перевод румбов

ИК =КК + ΔК;

ИП =КП + ΔК;

КК = ИК - ΔК;

КП = ИП - ΔК;

ИК = ГКК - ΔГК;

ИП = ГКП + ΔГК;

ГКК = ИК - ΔГК

ГКП= ИП - ΔГК

Географические координаты

Пусть судно и находящийся на нем наблюдатель расположены в точке М на поверхности Земли (см. рис. 2) . Проведем параллель и меридиан этой точки, отметив пересечение последнего с экватором в точке К. Положение точки на поверхности шара определяется двумя сферическими координатами - широтой f и долготой Л.

Широта - угол между плоскостью экватора и линией, соединяющей место наблюдателя на поверхности Земли с центром земного шара. Так, широта точки М выражается центральным углом МОК, измеряемым дугой меридиана КМ. Широта ср измеряется в пределах от 0 до 90° от экватора в сторону географических полюсов и имеет наименование N - северная или S - южная в зависимости от того, в каком полушарии находится наблюдатель. Таким образом, географическая параллель ММ"М" является геометрическим местом точек, имеющих одну и ту же широту.

Широта точек, расположенных на экваторе, равна 0°, широта северного полюса - 90°N, а широта южного полюса - 90°S.

Долгота - двугранный угол между плоскостями нулевого (гринвичского) меридиана и меридиана наблюдателя (точки М). Этот угол измеряют меньшей дугой экватора (но не параллели), заключенной между указанными меридианами, от 0 до 180° в обе стороны от начального (гринвичского) меридиана. Так, долгота точки М (см. рис. 2 и 3) измеряется дугой экватора GK.

Рис.3.

Долгота имеет наименование Ost - восточная или W - западная, в зависимости от того, в каком полушарии (западном или восточном) находится наблюдатель.

Таким образом, географический меридиан PnMPs является геометрическим местом точек, имеющих одну и ту же долготу.

Долгота точек, расположенных на гринвичском меридиане (Рn GPs - рис. 2 или PnG - рис. 3), равна 0°; долгота точек, расположенных на меридиане P n G"P s (см. рис. 2), равна 180° Ost или 180° W.

Морские карты крупных масштабов, предназначенные для плавания вблизи берегов, позволяют снимать с них географические координаты точки с точностью до десятых долей минуты дуги. Так, например на картах прибрежных участков моря: маяк Архона имеет координаты ϕ = 54°40", 8N и λ = 13°26, 10st; маяк Балье ϕ = 53°31", 7N и λ = 9°04", 90st; маяк Гельголанд ϕ = 54°11,0N и λ =7°53", Ost;

Разность широт и разность долгот

Совершая плавание из одной точки на земной поверхности А (ϕ1 λ1-пункт отхода) в точку В (ϕ2, λ2 - пункт прихода) судно меняет свою широту и долготу; при этом образуется разность широт и разность долгот (рис. 4).

Разность широт (РШ) - меньшая из дуг любого меридиана, заключенная между параллелями пунктов отхода и прихода (дуга СВ на рис. 4) измеряется в пределах от 0 до 180° и имеет наименование к N, если северная широта увеличивается или южная широта уменьшается, и к S, если северная широта уменьшается или южная увеличивается.

Если северной широте условно приписать знак «плюс», а южной- знак «минус», то РШ и ее наименование определятся по формуле

В примерах 1, 2 и 3 для простоты рассуждений пункты отхода и прихода расположены на одном географическом меридиане, т. е. имеют одну и ту же долготу. На рис. 5 стрелкой показаны направления движения судна и сделанные им разности широт.

Пункт отхода А - φ1 = 16°44" ON по формуле (4) φ2 = + 58°17", 5

Пункт отхода С - φ1 = 47°10", 4 S по формуле (4) φ2 = - 21°23", 0

Пункт отхода F - φ1 = 24°17", 5 N по формуле (4) φ2 = - 5°49",2

Разность долгот (РД) - меньшая из дуг экватора, заключенная между меридианами пунктов отхода и прихода (дуга KD, рис. 4), измеряется в пределах от 0 до 180° и имеет наименование к Ost, если восточная долгота увеличивается или западная долгота уменьшается, и к W, если восточная долгота уменьшается или западная долгота увеличивается.

Если восточной долготе условно приписать знак «плюс», а западной «минус», то PD и ее наименование определятся по формуле:

РД = λ2 – λ1 (5)

В примерах 4, 5, 6 и 7 для простоты рассуждений пункты отхода и прихода выбраны расположенными на одной географической параллели, т. е. имеющими одну и ту же широту. На рис. 6, а, б стрелками показаны направления движения судна и сделанные им разности долгот.

Разность долгот не может быть больше 180°. Однако при решении задач на разность долгот по формуле (5) величина РД может получиться более 180°. В этом случае полученный результат вычитают из 360° и изменяют наименование РД на обратное (пример 7).

Пункт отхода А - λ1 = 12°44", 0 Ost по формуле (5) λ2 =+48°13" , 5

Пункт отхода С - λ1 = 110°15",0 W по формуле (5) λ2 = - 87°10",0

Пункт отхода М - λ1 = 21°37",8 W по формуле (5) λ2 = + 11°42",4

Пункт отхода F - λ1 =164°06",3 W по формуле (5) λ2 = + 170°35",1

Непосредственно из рис. 6, а видно, что (АВ)°=(А"В")°, но длины этих дуг не равны, т. е. АВ=А"В". Таким образом, длина окружности географической параллели в широте ср короче длины экватора, так как радиус r такой параллели короче радиуса R экватора, связанных отношением

R = r sec ϕ.

Поэтому А"В" = АВ sec ϕ или

РД = ОТШ sec ϕср (6)

где ОТШ - от шествие длина дуги параллели (но не экватора) в широте ср, заключенная между меридианами пунктов отхода и прихода.

Магнитное склонение

(d) - угол между истинным и магнитным меридианами, изменяется от 0 до 180°. Восточное имеет знак “плюс”, западное - “минус”; d снимается с карты в районе плавания и приводится к году плавания. Годовое увеличение (уменьшение) d относится к абсолютной величине склонения, т. е. к углу, а не к его знаку (см. рис. 2.1.). При уменьшении склонения, если значение его небольшое, а изменение за несколько лет превосходит указанное на карте, при переходе через ноль склонение начинает возрастать с противоположным знаком.

Магнитное склонение - наиболее важный элемент для судовождения, поэтому его, помимо специальных магнитных карт, указывают на навигационных морских картах, на которых записывают, например, так: «Скл. к. 16°,5 W». Все элементы земного магнетизма в любой точке земной поверхности подвержены изменениям, носящим название вариаций. Изменения элементов земного магнетизма делятся на периодические и непериодические (или возмущения).

К периодическим относятся вековые, годовые (сезонные) и суточные изменения. Из них суточные и годовые вариации невелики и для судовождения во внимание не принимаются. Вековые же вариации представляют собой сложное явление с периодом, равным нескольким столетиям. Величина векового изменения магнитного склонения колеблется в различных точках земной поверхности в пределах от 0 до 0,2-0°,3 в год. Поэтому на морских картах магнитное склонение компаса приводится к определенному году с указанием величины годового увеличения или уменьшения.

Чтобы привести склонение к году плавания, надо рассчитать его изменение за истекшее время и на полученную поправку увеличить или уменьшить склонение, указанное на карте в районе плавания.

Пример : Плавание происходит в 2012 г. Склонение компаса, снято с карты, d = 11°, 5 Оst приведено к 2004 г. Годовое увеличение склонения 5" .Привести склонение к 2012 г.

Решение. Промежуток времени с 2004 по 2012 г. равен восьми годам; изменение Аd = 8 х 5 = 40" ~0°,7. Склонение компаса в 2012 г. d = 11°.5 + 0°,7 = - 12°, 2 Ost

Внезапные кратковременные изменения элементов земного магнетизма (возмущения) называются магнитными бурями, возникновение которых обусловлено северными сияниями и количеством пятен на Солнце. При этом наблюдаются изменения склонения в умеренных широтах до 7°, а в полярных областях - до 50°.

В некоторых районах земной поверхности склонение резко отличается по величине и знаку от его значений в прилегающих точках. Это явление носит название магнитной аномалии. На морских картах указывают границы районов магнитной аномалии. При плавании в этих районах необходимо внимательно следить за работой магнитного компаса, так как точность работы нарушается.

Магнитный курс (МК) - угол между северной частью магнитного меридиана и носовой частью диаметральной плоскости судна.

Магнитный пеленг (МП) - угол между северной частью магнитного меридиана и направлением на,объект.

Обратный магнитный пеленг (ОМП) -отличается от МП на 180°.

Девиация магнитного компаса (δ) - угол между магнитным и компасным меридианами, изменяется от 0 до 180°. Восточной (остовой) - приписывается знак “плюс”, западной (вестовой) - “минус”.

МК =КК + δ; МП =КП + δ; ΔМК(ΔК) =d + δ; d=ИК - МК=ИП - МП; КК=МК- δ; КП=МП- δ; δ =ΔМК-d; δ =МК-КК=МП-КП

Судовые специалисты могут выполнить в процессе эксплуатации уничтожение полукруговой и креновой девиации. Простейший способ совместного уничтожения полукруговой и креновой девиаций сводится к следующему:

с помощью судового инклинатора измеряют на берегу значение магнитного наклонения. При выполнении этого способа в открытом море магнитное наклонение снимают с карты;

приводят судно на магнитный курс 0 (или 180°) и поперечными магнитами доводят девиацию до нуля;

разворачивают судно на магнитный курс 180° (или 0°), определяют девиацию и теми же магнитами уменьшают ее в 2 раза;

ложатся на магнитный курс 90° (или 270°). Вместо компасного котелка устанавливают инклинатор и креновым магнитом доводят показания по инклинатору до значения магнитного наклонения, измеренного на берегу или снятого с карты;

на том же курсе устанавливают на место котелок компаса и продольными магнитами доводят девиацию до нуля;

разворачиваются на магнитный курс 270° (или 90°), определяют девиацию и теми же продольными магнитами уменьшают ее в 2 раза.

Каждый предмет имеет определенную высоту Н (рис. 11), поэтому дальность видимости предмета Дп-MR слагается из дальности видимого горизонта наблюдателя Де=Мc и дальности видимого горизонта предмета Дн=RС:


Рис. 11.


По формулам (9) и (10) H. Н. Струйским составлена номограмма (рис. 12), а.в МТ-63 приведена табл. 22-в «Дальность видимости предметов», рассчитанная по формуле (9).

Пример 11. Найти дальность видимости предмета высотой над уровнем моря H=26,5 м (86фут) при высоте глаза наблюдателя над уровнем моря е = 4,5 м (1 5 фут).

Решение.

1. По номограмме Струйского (рис. 12) па левой вертикальной шкале «Высота наблюдаемого предмета» отмечаем точку, соответствующую 26,5 м (86 фут), на правой вертикальной шкале «Высота глаза наблюдателя» отмечаем точку, соответствующую 4,5 м (15 фут); соединив отмеченные точки прямой линией, в месте пересечения последней со средней вертикальной шкалой «Дальность видимости» получаем ответ: Дn = 15,1 м.

2. По МТ-63 (табл. 22-в). Для е=4, 5 м и H=26, 5 м величина Дn = 15,1 м. Приводимая в навигационных пособиях и на морских картах дальность видимости маячных огней Дк-KR рассчитана для высоты глаза наблюдателя, равной 5 м. Если действительная высота глаза наблюдателя не равна 5 м, то к данной в пособиях дальности Дк необходимо прибавить поправку А = МС-КС- =Де-Д5 . Поправка является разностью между дальностями видимого горизонта с высоты еми 5 м и называется поправкой на высоту глаза наблюдателя:


Как видно из формулы (11), поправка на высоту глаза наблюдателя А может быть положительной (когда е> 5 м) или отрицательной (когда е
Итак, дальность видимости маячного огня определяется по формуле


Рис. 12.


Пример 12. Дальность видимости маяка, указанная на карте, Дк = 20,0 мили.

С какого расстояния увидит огонь наблюдатель, глаз которого находится на высоте е = 16 м.

Решение. 1) по формуле (11)


2) по табл. 22-а МЕ-63 А=Де - Д5 = 8,3-4,7 = 3,6 мили;

3) по формуле (12) Дп = (20,0+3,6) = 23,6 мили.

Пример 13. Дальность видимости маяка, указанная на карте, Дк = 26 миль.

С какого расстояния увидит огонь наблюдатель, находящийся на шлюпке (е=2, 0 м)

Решение. 1) по формуле (11)


2) по табл. 22-а МТ-63 А=Д - Д = 2,9 - 4,7 = -1,6 мили;

3) по формуле (12) Дп = 26,0-1,6 = 24,4 мили.

Дальность видимости предмета, рассчитанную по формулам (9) и (10), называют географической.


Рис. 13.


Дальность видимости маячного огня, или оптическая дальность видимости, зависит от силы источника света, системы маячного аппарата и цвета огня. В правильно построенном маяке она обычно совпадает с его географической дальностью.

В пасмурную погоду действительная дальность видимости может значительно отличаться от географической или оптической дальности.

В последнее время исследованиями установлено, что в условиях дневного плавания дальность видимости предметов точнее определяется по следующей формуле :


На рис. 13 приведена номограмма, рассчитанная по формуле (13). Пользование номограммой поясним на решении задачи с условиями примера 11.

Пример 14. Найти дальность видимости предмета высотой над уровнем моря Н = 26,5 м, при высоте глаза наблюдателя над уровнем моря е = 4,5 м.

Решение. 1 по формуле (13)

Поверхность Земли в поле вашего зрения начинает искривляться примерно на расстоянии 5 км. Но острота человеческого зрения позволяет видеть гораздо дальше горизонта. Если бы не было искривления, вы смогли бы разглядеть пламя свечи в 50 км от вас.

Дальность видения зависит от количества фотонов, испускаемых удалённым объектом. 1 000 000 000 000 звёзд этой галактики коллективно излучают достаточно света для того, чтобы несколько тысяч фотонов достигало каждого кв. см Земли. Этого хватает чтобы возбудить сетчатку человеческого глаза.

Так как, находясь на Земле, проверить остроту человеческого зрения невозможно, учёные прибегли к математическим расчётам. Они выяснили, что для того, чтобы увидеть мерцающий свет, нужно, чтобы на сетчатку попало от 5 до 14 фотонов. Пламя свечи на расстоянии 50 км, учитывая рассеивание света, даёт это количество, и мозг распознаёт слабое свечение.

Как узнать кое-что личное о собеседнике по его внешнему виду

Секреты «сов», о которых не знают «жаворонки»

Как работает «мозгопочта» - передача сообщений от мозга к мозгу через интернет

Зачем нужна скука?

«Человек-магнит»: Как стать харизматичнее и притягивать к себе людей

25 цитат, которые разбудят вашего внутреннего борца

Как развить уверенность в себе

Можно ли «очистить организм от токсинов»?

5 причин, по которым люди всегда будут винить в преступлении жертву, а не преступника

Эксперимент: мужчина пьёт по 10 банок колы в день, чтобы доказать её вред

Загрузка...