Медицинский портал. Щитовидная железа, Рак, диагностика

Что такое полиплоидия в биологии определение. Научно-технический энциклопедический словарь что такое полиплоидия, что означает и как правильно пишется

Что такое полиплоидия? Наверное, каждый знает, что человек получает по 23 хромосомы от отца и матери при зачатии. Люди могут называться диплоидами («ди» означает «два» и «плоид» означает «средства», имеющие отношение к хромосомам, или к частям ДНК), так как они получают только два набора. Любой организм с более чем двумя наборами хромосом называется полиплоидным. Какие можно привести примеры полиплоидии у растений, животных и людей. Какие существуют типы?

Что такое полиплоидия?

Сам термин "полиплоидия" означает наличие множества полных наборов генетической информации. Большинство существ с половым способом размножения имеют четное количество хромосом: один набор от мамы и один набор от папы. Важно помнить, что эти комплекты похожи, но они не идентичны.

Клетки используют всю хранящуюся в них генетическую информацию. Из-за этого полиплоидные живые существа имеют более высокие уровни «дозировки» каждого произведенного гена, обычно приводящие к увеличению клеток, большим размерам и увеличению потомства.

Виды полиплоидии

Поскольку ученые любят определенный язык, они создали много терминов для описания плоидности, или количества наборов генетической информации. Вы можете использовать термин «полиплоидия» как существительное, и «полиплоидный» - как прилагательное формы. К слову говоря, это правило применяется ко всем терминам для разных типов плоидности.

Вот некоторые из наиболее распространенных типов:

  • Гаплоид означает, что есть только один набор хромосом, но организм все равно может воспроизводиться. Бактерии и другие одноклеточные организмы обычно гаплоидны. Иногда встречаются многоклеточные гаплоидные существа, которые обычно являются насекомыми или другими беспозвоночными.
  • Моноплоид означает критерий, который должен иметь два набора хромосом, но случайно получил только один. Моноплоиды обычно стерильны, то есть не способны к репродукции.
  • Диплоид означает, что существо имеет два набора хромосом. Это самый распространенный тип для существ, использующих половой способ размножения. Люди, животные, растения и грибы могут быть диплоидными. Диплоидия может происходить только часть времени. Например, дрожжевые клетки обычно гаплоидные, но могут сочетаться сексуально, чтобы стать диплоидными. Млекопитающие, как правило, диплоидны, но могут иметь определенные клетки или типы тканей, которые являются полиплоидными, такими как клетки печени или мышечные клетки.
  • Триплоид означает наличие трех наборов хромосом, а тетраплоидные средства – четыре набора хромосом. Теоретически это соглашение об именах продолжается до бесконечности.
  • Анеуплоидия, с другой стороны, описывает ошибочное количество хромосом. Это как книга с дополнительными главами или, что еще хуже, с пропавшими главами.

Полиплоидия в растениях

У каких организмов встречается полиплоидия? Чаще всего она наблюдается в царстве растений. Тысячи лет селективного культивирования и селекции растений привели к созданию плодородных пищевых растений, которые обычно являются тетраплоидными и гексаплоидными.


Если сравнить диплоидные и тетраплоидные разновидности одного и того же типа растений, очень часто тетраплоидные растения растут все более и более продуктивно. Полиплоидия в селекции играет очень важную роль в наше время.

Полиплоидия у животных

Среди животных она часто наблюдается у рыб и амфибий. В общем, существует генетическая предвзятость для плоидных чисел у животных. Тростники с неравным количеством хромосом, или хромосом, содержащих неправильные хромосомы, обычно не могут производить потомство.


Что такое полиплоидия? Какие конкретные примеры видообразования можно привести у растений и животных?

Триплоиды

Прежде чем разбираться с полиплоидией, нужно немного понять, как тела создают новые клетки. Все человеческие клетки диплоидные, поэтому, когда создаются гаметы, они должны быть гаплоидными, или иметь только один набор хромосом, чтобы новый организм снова мог быть диплоидным. Однако во время этого процесса иногда что-то идет не так. Наиболее распространенным явлением является то, что иногда одна новая гамета получает две копии хромосом. Это может произойти, когда самки производят яйцеклетки. Когда яйцо с двумя наборами хромосом сливается с нормальным гаплоидным сперматозоидом, результирующая клетка имеет три набора хромосом, то есть она триплоидная.


Теперь каждая клетка в этом новом организме будет триплоидной. Для большинства животных это крайне вредно, и организм не выживет. Растения, как правило, лучше переносят полиплоидию и даже процветают с такими интенсивными генетическими изменениями.

Еще примеры

Вот некоторые примеры полиплоидии у растений и животных. Ученые предположили, что две трети цветущих растений являются полиплоидами. Большинство папоротников и трав – это полиплоиды, а также картофель, яблоки, клубника. Бананы представляют собой интересный пример. Бананы являются триплоидами, и обычно триплоидные организмы не могут воспроизводить себя, то есть они стерильны. Это означает, что вы не можете получить семена бананов, чтобы посеять больше бананов. Фермеры отрезают побеги со стороны растения, прежде чем они производят фрукты и заканчивают свой цикл, и высаживают новое поколение.

Что такое полиплоидия? Это наследуемое состояние, обладающее более чем двумя полными наборами хромосом. Полиплоиды распространены среди растений, а также среди определенных групп рыб и амфибий. Например, некоторые саламандры, лягушки и пиявки являются полиплоидами. Многие из этих полиплоидных организмов хорошо адаптированы к окружающей среде.

Полиплоидные предки

Существует гораздо меньше видов полиплоидных животных, чем растений. Точная причина этого не совсем известна. Некоторые ученые считают, что это может быть связано с увеличением сложности строения организмов животных по сравнению с растениями. Другие предполагают, что полиплоидия может препятствовать образованию гамет, делению клеток или регуляции генома. Однако есть некоторые исключения. Примерами полиплоидии в животном мире являются рыбы, рептилии и насекомые.


Фактически недавние результаты исследований генома показывают, что многие виды, которые в настоящее время являются диплоидами, включая людей, были получены из полиплоидных предков. Эти виды, которые пережили древние генотипические дупликации, а затем редукцию генома, называются палеополиплоидами.

Преимущества полиплоидии

В большом числе полиплоидных клеток растений, рыб и лягушек, очевидно, должны быть некоторые преимущества. Общим примером в растениях является наблюдение гибридной энергии, или гетерозиса, в результате чего полиплоидное потомство двоих диплоидных предшественников, является более энергичным и здоровым, чем любой из двух диплоидных родителей. Существует несколько возможных объяснений этого наблюдения. Первый заключается в том, что принудительное спаривание гомологичных хромосом предотвращает рекомбинацию между геномами исходных предшественников, эффективно поддерживая гетерозиготность в течение поколений.


Эта гетерозиготность предотвращает накопление рецессивных мутаций в геномах последующих поколений, тем самым поддерживая гибридную энергию. Другим важным фактором является избыточность генов в клетках растений. Поскольку у полиплоидного потомства в два раза больше копий какого-либо конкретного гена, потомство защищено от пагубных последствий рецессивных мутаций. Это особенно важно во время стадии гаметофита.

Другим преимуществом, обеспечиваемым избыточным положением генов, является способность диверсифицировать функцию генов с течением времени. Другими словами, дополнительные копии генов, которые не требуются для нормальной функции организма, могут в конечном итоге использоваться по-новому и совершенно по-разному, что приводит к новым возможностям. В эволюционном выборе они играют чуть ли не решающую роль. Полиплоиды важны в происхождении новых видов растений.

Полиплоидия (от греческих слов polyploos - многократный и eidos - вид) - наследственное изменение, заключающееся в кратком увеличении числа наборов хромосом в клетках.

Полиплоидия у гиацинта

Дети всегда похожи на обоих родителей. Происходит это потому, что в каждой их клетке находятся два набора хромосом, два комплекта генов - один материнский и один отцовский. Такой двойной, или диплоидный (от греческих слов diploos - двойной и eidos - вид), набор хромосом типичен для живой природы. Он достаточен для преемственности поколений. Но в некоторых тканях диплоидных организмов в процессе их развития появляются клетки, в которых 4, 8 или гораздо больше наборов хромосом. Такие клетки называют полиплоидными, а сам процесс - соматической полиплоидией (от греческого слова soma - тело). Такая частичная полиплоидизация клеток некоторых тканей очень широко распространена, она свойственна всем изученным классам животных и растений. Например, у млекопитающих много полиплоидных клеток находят в печени, сердце, среди пигментных клеток и др. Другое явление - генеративная полиплоидия, исходно свойственная организмам или искусственно создаваемая при оплодотворении. В этом случае все клетки организма полиплоидные. Такой вариант полиплоидии наиболее свойствен растениям, особенно высшим.

Для полиплоидных растений обычно характерны крупные размеры. Избыток хромосом повышает их устойчивость к болезням и многим повреждающим воздействиям, например к радиации: при повреждении одной или даже двух сходных (гомологичных) хромосом остаются другие такие же совершенно целые. Полиплоидные особи жизнеспособнее диплоидных. Многие виды растений полиплоидные. Вероятно, так же эволюционировали и некоторые животные. Примером могут служить некоторые черви, насекомые, рыбы и др.

Человек давно использует полиплоидию для выведения высокопродуктивных сортов сельскохозяйственных растений. Не так давно, до начала нашего века это делалось бессознательно: просто размножали самые крупные экземпляры, дающие много зерна или же особенно крупные плоды. Отбором лучших растений закрепляли признак, нужный человеку. С появлением генетики выяснилось, что такие гиганты - природные полиплоиды и, следовательно, их отбор - это выделение полиплоидного сорта из предкового, диплоидного вида. Тогда полиплоиды стали создавать.

Есть вещество колхицин, задерживающее деление клеток: число хромосом перед делением удваивается, как обычно, но клетка не делится, и в ней получается 4 набора хромосом. Воздействуя раствором колхицина на семена, можно получить полиплоидное растение. Задержать деление клетки можно также рентгеновским облучением, нагревом и некоторыми другими воздействиями. Можно воздействовать на гаметы и получить зиготу с умноженнным числом хромосом, которое сохранится во всех её потомках - соматических клетках. У растений, которые размножаются и вегетативным путем (см. Размножение), можно получить полиплоидное потомство от природного или выведенного полиплоида.

Около 80% современных культурных растений - полиплоиды. Среди них хлебные злаки, овощные и плодовые культуры, многие ягодные, цитрусовые, некоторые технические и лекарственные растения. Среди сортов декоративных растений также немало полиплоидов. Советские ученые вывели триплоидную свеклу, отличающуюся от обычной не только крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Выведена полиплоидная гречиха, гораздо более урожайная, чем исходные, диплоидные сорта. Возможно получение межвидовых полиплоидных гибридов, например ржи и пшеницы, капусты и редьки.

Экспериментально полученные полиплоиды животных - большая редкость. Так, советскому ученому-генетику Б. Л. Астаурову методом межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда, продуцента шелка. Ученые вывели полиплоидных рыб, а в последнее время и птиц, например кур. Однако внедрение полиплоидных пород животных в практику сельского хозяйства - дело будущего.

Пло́идность - (от греч. -ploos - кратный и eidos - вид) - число наборов хромосом, находящихся в ядрах клеток организма.

Виды плоидности и терминология

  • Гаплоидные клетки - содержат одинарный набор непарных хромосом (половые клетки, прокариоты).
  • Диплоидные клетки - содержат парное количество хромосом. Большая часть организмов, размножающихся половым путём, диплоидны, т. е. содержат в соматических клетках тела по одному набору хромосом от каждой из гамет (гаплоидных половых клеток).
  • Полиплоидные клетки - содержат более чем две пары хромосом (до двенадцати пар). В зависимости от того, сколько раз в ядре клетки повторяется гаплоидный набор, их соответственно называют три-, тетра-, гексаплоидными и т. д. Полиплоидия возникает вследствие нарушения хода митоза или мейоза (значительно реже) под воздействием мутагенов : при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки (так возникают гаметы с двукратным числом хромосом - 2n). При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом и т.д. Полиплоидия имеет две разновидности:
    • Автополиплоидия - результат кратного увеличения гаплоидного набора хромосом одного вида.
    • Аллополиплоидия - результат объединения наборов хромосом разных видов после образования межвидовых гибридов.
  • Анеуплоидные клетки - непропорциональное (не кратное гаплоидному) удвоение или утрата отдельных хромосом. В зависимости от того, произошло уменьшение или увеличение хромосом, используют соответственно приставки гипо- и гипер-. Например, гипердиплоиды - трисомики (2n +1) и тетрасомики (2n + 2), гиподиплоиды - моносомики (2n - 1) и нуллисомики (2n - 2). Анеуплоидия как правило появляется из-за влияния мутагенов .

Иногда термин "плоидность" применяют не только к эукариотам , но и в отношении безядерных прокариотов , которые как правило гаплоидны, однако иногда встречаются диплоидные и полиплоидные бактерии.

Полиплоидию не следует путать с увеличением количества ядер в клетке и увеличением числа молекул ДНК (политенизацией) в хромососоме.

Гаплоидная и диплоидная фазы в жизненном цикле

У раздельнополых организмов в жизненном цикле происходит как правило нормальное чередование гаплоидной и диплоидной фаз. При мейозе образуются гаплоидные клетки в результате разделения диплоидной (у некоторых растений и грибов затем может происходить размножение путём митоза с образованием гаплоидного многоклеточного тела или нескольких поколений гаплоидных клеток-потомков). В результате полового процесса хромосомы двух гаплоидных клеток объединяются в одной диплоидной (зиготе), после чего могут размножаться при помощи митоза (у растений и животных) с образованием диплоидного многоклеточного тела или диплоидных клеток-потомков.

Полиплоидия у растений

Термин полиплоидия был предложен в 1916 году немецким ученым Винклером, изучавшим образцы аномальных (химерных) тканей у паслена.

Естественная полиплоидность в природе распространена достаточно широко. До 75% арктический флоры – полиплоиды, так же велик процент полиплоидов в пустынных и высокогорных регионах, где выживают растения, устойчивые к экстремальным условиям обитания.

Человеком полиплоидия используется издавна. Сначала просто размножали самые крупные экземпляры, дающие много зерна или же хорошие плоды. С развитием генетики выяснилось, что такие гиганты – отобранные природные полиплоиды. В настоящее время на основе искусственной автополиплоидии синтезированы высокоурожайные формы и сорта пшеницы, ржи, гречихи, кукурузы, картофеля, хлопчатника, сахарной свеклы, сахарного тростника и других культурных растений. Растения-полиплоиды как правило характеризуются более крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам внешней среды, отличными от исходных форм сроками цветения и плодоношения. Искусственная полиплоидия вызывается ядами, разрушающими веретено деления, такими как алкалоид колхицин .

Аллополиплоидия (межвидовое скрещивание) обычно возникает от удвоения хромосом гибрида двух видов, что приводит к его плодовитости (амфиплоидия). Пример природной аллополиплоидии – алыча, гибрид терна и дикой сливы, полученный тысячелетия назад в результате естественной гибридизации. Искусственный гибрид получен в 1928 году русским цитогенетиком Карпеченко, который скрестил редьку с капустой. Полученый "амфидиплоид" получил научное название Paphanobrassica. У этого растения листья были как у редьки, а корни напоминали капустные. Хотя экономической ценностью полученный гибрид не обладает, зато позиционируется эволюционистами в качестве доказательства реальности биологической эволюции. В этом случае стоит отметить, что Paphanobrassica имела признаки обеих видов-прародителей, но не обладало принципиально новыми признаками, которые бы указывали на возможность прогрессивных макроэволюционных изменений.

Полиплоидия у животных

В животном мире полиплоиды встречаются среди нематод, аскарид, пиявок, земноводных. У многих млекопитающих полиплоидные клетки встречаются в отдельных органах (печень, и др.), но пример полной полиплоидии известен лишь один – южноамериканский грызун Tympanoctomys barrerae (вид, родственный морским свинкам и шиншиллам).

Нарушения плоидности у человека

У человека большая часть клеток диплоидны. Гаплоидны только зрелые половые клетки (гаметы). Другие варианты плоидности - несут лишь отрицательное воздействие.

Примеры анеуплоидии у человека: синдром Дауна (21-я хромосома представлена тремя копиями), синдром Кляйнфельтера - избыточная X хромосома (XXY), синдром Тернера - отсутствие одной из половых хромосом (X0). Описаны также примеры утроения X хромосомы и некоторые другие аномалии.

Примерами полиплоидии являются абортивные триплоидные зародыши и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней), а также диплоидно-триплоидные мозаики.

Полиплодия в теории креационизма

Казалось бы, примеры с удачными гибридами неоспоримо доказывают, что увеличение числа хромосом - путь к эволюционному прогрессу. Однако наблюдение полиплоидии в природе приводит к интересным, а иногда - и к противоположным выводам. В частности Кент Ховант в своих лекциях (1999 г.) любил приводить факты о количестве хромосом в соматических клетках разных организмов. Если бы количество хромосом имело смысл в эволюции, тогда по правилу элементарной логики, чем больше хромосом, тем дальше живое существо взобралось по древу эволюции. Но это не так.

Таким образом полиплоидия ещё ждёт своего научного осмысления.

Источники информации

  • Большая советская энциклопедия, статьи «Автополиплоидия», «Полиплоидия».
  • Мортон Дженкинс «101 ключевая идея: Эволюция», -М, ФАИР-ПРЕСС, 2001, стр.11-12,15-16 ISBN 5-8183-0354-3
  • Фогель Ф., Мотульски А. "Генетика человека". В 3-х т., Москва, Мир, 1989.

Словарь медицинских терминов

полиплоидия (греч. polyploos многократный + eidos вид)

кратное увеличение числа наборов хромосом в клетках организма; у животных встречается редко.

Энциклопедический словарь, 1998 г.

полиплоидия

ПОЛИПЛОИДИЯ (от греч. polyploos - многократный и eidos - вид) наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма. Широко распространена у растений (большинство культурных растений - полиплоиды), среди раздельнополых животных встречается редко. Полиплоидия может быть вызвана искусственно (напр., алкалоидом колхицином). У многих полиплоидных форм растений более крупные размеры, повышенное содержание ряда веществ, отличные от исходных форм сроки цветения и плодоношения. На основе полиплоидии созданы высокоурожайные сорта сельскохозяйственных растений (напр., сахарной свеклы).

Полиплоидия

(от греч. polýploos ≈ многопутный, здесь ≈ многократный и éidos ≈ вид), кратное увеличение числа хромосом в клетках растений или животных. П. широко распространена в мире растений. Среди раздельнополых животных встречается редко, главным образом у аскарид и некоторых земноводных.

Соматические клетки растений и животных, как правило, содержат двойное (диплоидное) число хромосом (2 n); одна из каждой пары гомологичных хромосом происходит от материнского, а другая ≈ от отцовского организмов. В отличие от соматических, половые клетки имеют уменьшенное исходное (гаплоидное) число хромосом (n). В гаплоидных клетках каждая хромосома единична, не имеет парной себе гомологичной. Гаплоидное число хромосом в клетках организмов одного вида называется основным, или базовым, а совокупность генов , заключённую в таком гаплоидном наборе, ≈ геномом. Гаплоидное число хромосом в половых клетках возникает вследствие редукции (уменьшения) вдвое числа хромосом в мейозе, а диплоидное число восстанавливается при оплодотворении. (Довольно часто у растений в диплоидной клетке бывают т. н. В-хромосомы, добавочные к какой-либо из хромосом. Роль их мало изучена, хотя у кукурузы, например, всегда имеются такие хромосомы.) Число хромосом у различных видов растений весьма разнообразно. Так, один из видов папоротника (Ophioglosum reticulata) имеет в диплоидном наборе 1260 хромосом, а у самого филогенетически развитого семейства сложноцветных вид Haplopappus gracilis имеет всего 2 хромосомы в гаплоидном наборе.

При П. наблюдаются отклонения от диплоидного числа хромосом в соматических клетках и от гаплоидного ≈ в половых. При П. могут возникать клетки, в которых каждая хромосома представлена трижды (3 n) ≈ триплоидные, четырежды (4 n) ≈ тетраплоидные, пять раз (5 n) ≈ пентаплоидные и т.д. Организмы с соответственным кратным увеличением наборов хромосом ≈ плоидности ≈ в клетках называются триплоидами, тетраплоидами, пентаплоидами и т.д. или в целом ≈ полиплоидами.

Кратное увеличение числа хромосом в клетках может возникать под действием высокой или низкой температуры, ионизирующих излучений, химических веществ, а также в результате изменения физиологического состояния клетки. Механизм действия этих факторов сводится к нарушению расхождения хромосом в митозе или мейозе и образованию клеток с кратно увеличенным числом хромосом по сравнению с исходной клеткой. Из химических агентов, вызывающих нарушение правильного расхождения хромосом, наиболее эффективен алкалоид колхицин, препятствующий образованию нитей веретена деления клетки. (Воздействуя разбавленным раствором колхицина на семена и почки, легко получают экспериментальные полиплоиды у растений.) П. может возникать и вследствие эндомитоза ≈ удвоения хромосом без деления ядра клетки. В случае нерасхождения хромосом в митозе (митотическая П.) образуются полиплоидные соматические клетки, при нерасхождении хромосом в мейозе (мейотическая П.) ≈ половые клетки с измененным, чаще диплоидным, числом хромосом (т. н. нередуцированные гаметы). Слияние таких гамет даёт полиплоидную зиготу: тетраплоидную (4 n) ≈ при слиянии двух диплоидных гамет, триплоидную (3 n) ≈ при слиянии нередуцированной гаметы с нормальной гаплоидной и т.д.

Возникновение клеток с числом хромосом 3-, 4-, 5-кратным (и более) гаплоидному набору, называется геномными мутациями, а получаемые формы ≈ эуплоидными. Наряду с эуплоидией часто встречается анеуплоидия , когда появляются клетки с изменением числа отдельных хромосом в геноме (например, у сахарного тростника, пшенично-ржаных гибридов и др.). Различают автополиплоидию ≈ кратное увеличение числа хромосом одного и того же вида, и аллополиплоидию ≈ кратное увеличение числа хромосом у гибридов при скрещивании разных видов (межвидовая и межродовая гибридизация).

У полиплоидных форм растений нередко наблюдается гигантизм ≈ увеличение размеров клеток и органов (листьев, цветков, плодов), а также повышение содержания ряда химических веществ, изменение сроков цветения и плодоношения. Эти особенности чаще наблюдаются у перекрёстноопыляющихся форм, чем у самоопылителей. Хозяйственно-полезные качества полиплоидов издавна привлекали внимание селекционеров, что привело к развёртыванию работ по искусственному получению полиплоидов, которые представляют важный источник изменчивости и могут быть использованы как исходный материал для селекции (например,. триплоидная сахарная свёкла, тетраплоидный клевер, редис и др.). Обычный недостаток автополиплоидов ≈ низкая плодовитость. Однако после длительного отбора можно получить линии с достаточно высокой плодовитостью. Неплохие результаты даёт создание искусственных синтетических популяций, составленных из наиболее плодовитых линий автополиплоидов некоторых перекрёстноопыляющихся растений, например ржи.

Не меньшее значение в селекции имеют и аллополиплоиды. Хромосомные наборы, входящие в состав аллополиплоидов, не одинаковы; они различаются набором содержащихся в них генов, а иногда формой и числом хромосом. При скрещивании растений разных родов, например ржи и пшеницы, возникает гибрид с гаплоидным набором ржи и гаплоидным набором пшеницы. Такой гибрид стерилен и лишь удвоение числа хромосом каждого растения, т. е. получение амфидиплоидов, может нормализовать мейоз и восстановить плодовитость. Аллополиплоидия может быть методом синтеза новых форм на основе гибридизации. Классический пример такого синтеза ≈ получение Г. Д. Карпеченко рафанобрассики ≈ гибрида редьки и капусты с 36 хромосомами (18 от редьки и 18 от капусты). Селекционерами (в СССР ≈ В. Е. Писаревым, Н. В. Цициным, А. И. Державиным, А. Р. Жебраком и др.) аллополиплоиды получены у значительного числа видов растений. Большинство культурных растений, возделываемых человеком, ≈ полиплоиды.

П. имела огромное значение в эволюции дикорастущих и культурных растений (полагают, что около трети всех видов растений возникли за счёт П., хотя в некоторых группах, например у хвойных, грибов, это явление наблюдается редко), а также некоторых (преимущественно партеногенетических) групп животных. Доказательством роли П. в эволюции служат т. н. полиплоидные ряды, когда виды одного рода или семейства образуют эуплоидный ряд с увеличением числа хромосом, кратным основному гаплоидному (например, пшеница Triticum monococcum имеет 2n = 14 хромосом, Tr. turgidum и др. ≈ 4n = 28, Tr. aestivum и др. ≈6n = 42). Полиплоидный ряд видов рода паслён (Solanum) представлен рядом форм с 12, 24, 36, 48, 60, 72 хромосомами. Среди партеногенетически размножающихся животных полиплоидные виды не менее часты, чем среди апомиктических растений (см. Апомиксис, Партеногенез). Советскому учёному Б. Л. Астаурову впервые удалось искусственно получить плодовитую полиплоидную форму (тетраплоид) из гибридов двух видов шелкопряда: Bombyx mori и В. mandarina. На основании этих работ им предложена гипотеза непрямого (через партеногенез и гибридизацию) происхождения раздельнополых полиплоидных видов животных в природе. См. также Видообразование.

Лит.: Бреславец Л. П., Полиплоидия в природе и опыте, М., 1963; Экспериментальная полиплоидия в селекции растений. Сб. ст., Новосиб., 1966; Майр Э., Зоологический вид и эволюция, пер. с англ., М., 1968; Астауров Б. Л., Экспериментальная полиплоидия и гипотеза непрямого (опосредованного партеногенезом) происхождения естественной полиплоидии у бисексуальных животных, «Генетика», 1969, т. 5, ╧ 7; его же, Experimental polyploidy in animals, «Annual Review of Genetics», 1969, v. 3; его же, Партеногенез и полиплоидия в эволюции животных, «Природа», 1971, ╧ 6; Жуковский П. М., Эволюционные аспекты полиплоидии растений, там же; Карпеченко Г. Д., Избр. труды, М., 1971.

М. Е. Лобашев.

Примеры употребления слова полиплоидия в литературе.

Больше того, Министерство сельского хозяйства открыло для работы по вопросам полиплоидии специальное учреждение во главе с А.

Метод искусственной полиплоидии , который мы обывательски называем колхицинным методом и с помощью которого достигается удвоение единиц наследственности, нами тоже недостаточно использован.

Мы обязаны использовать метод полиплоидии и метод межсортовых скрещиваний кукурузы, который дал огромные богатства Соединенным Штатам Америки.

Я утверждаю по своему личному опыту советского биолога-большевика, что методы полиплоидии , которые применили Сахаров при создании новых сортов гречихи или М.

Никто не мог доказать на практике, что методы полиплоидии не оправдали себя.

Надо знать, что ни одного сорта ни по одной культуре, который был бы выведен методом полиплоидии , в производстве нет.

Их и не будет до тех пор, пока к создаваемым методом полиплоидии гибридам не будут применены методы воспитания, основанные на правильном понимании взаимоотношений организма с факторами внешней среды.

Товарищи, так как на настоящей сессии был проявлен некоторый интерес к фактическому материалу по экспериментальной полиплоидии и амфидиплоидии культурных растений, то я решил изложить ряд данных, которые получены коллективом моей кафедры.

Мы начали работу по экспериментальной полиплоидии культурных растений, исходя из тех фактических данных, которые имеются в современной науке.

Мы поставили своей целью получить 42-хромосомный тип пшеницы методом экспериментальной полиплоидии и отдаленной гибридизации.

Я считаю, что эти факты по экспериментальной полиплоидии у культурных и диких растений являются существенным доказательством правильности современной хромосомной теории наследственности.

Мы ведем работу с пшеницей не только методом отдаленной гибридизации и экспериментальной полиплоидии , но и методом чистых линий, методом индивидуального отбора.

Надо сказать, что практический успех в работе этим методом у нас выше, чем методом экспериментальной полиплоидии , потому что мы свой материал по отдаленной гибридизации и экспериментальной полиплоидии довели только до пятого поколения.

В работах по полиплоидии культурных растений важно то, что полиплоиды получены в результате воздействий на наследственную основу таким внешним фактором, как колхицин.

Работы по экспериментальной полиплоидии культурных растений показывают, что внешние факторы -- колхицин, аценафтен, температура и прочие факторы внешней среды специфически действуют на наследственную основу, на хромосомный комплекс клетки.

ПОЛИПЛОИДИЯ

Увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации. Половые клетки большинства организмов гаплоидны (содержат один набор хромосом - n), соматические - диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами: три набора - триплоид (3n), четыре - тетраплоид (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, - тетраплоиды, гексаплоиды (6 n) и т. д. Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом - не кратный гаплоидному. Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой - триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани. Полиплоидия широко распространена в природе, но среди разных групп организмов представлена неравномерно. Большое значение этот тип мутаций имел в эволюции диких и культурных цветковых растений, среди которых ок. 47 % видов - полиплоиды. Высокая степень плоидности свойственна простейшим - число наборов хромосом у них может возрастать в сотни раз. Среди многоклеточных животных полиплоидия редка и более характерна для видов, утративших нормальный половой процесс, - гермафродитов (см. гермафродитизм), напр. земляных червей, и видов, у которых яйцеклетки развиваются без оплодотворения (см. партеногенез), напр. некоторых насекомых, рыб, саламандр. Одна из причин, по которой полиплоидия у животных встречается значительно реже, чем у растений, заключается в том, что у растений возможно самоопыление, а большинство животных размножается путём перекрёстного оплодотворения, и, значит, возникшему мутанту-полиплоиду нужна пара - такой же мутант-полиплоид другого пола. Вероятность подобной встречи крайне низка. Довольно часто у животных бывают полиплоидными клетки отдельных тканей (напр., у млекопитающих - клетки печени). Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. О их большей устойчивости к холоду свидетельствует увеличение числа видов-полиплоидов в высоких широтах и в высокогорьях. Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала. С этой целью используют специальные мутагены (напр., алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе. Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и др. культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам. Применение отдалённой гибридизации в сочетании с искусственной полиплоидизацией позволило отечественным учёным ещё в 1-й пол. 20 в. впервые получить плодовитые полиплоидные гибриды растений (Г.Д. Карпеченко, гибрид-тетраплоид редьки и капусты) и животных (Б.Л. Астауров, гибрид-тетраплоид тутового шелкопряда). См. также гаплоид. геном. диплоид. кариотип.

Энциклопедия Биология. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ПОЛИПЛОИДИЯ в русском языке в словарях, энциклопедиях и справочниках:

  • ПОЛИПЛОИДИЯ в Медицинских терминах:
    (греч. polyploos многократный + eidos вид) кратное увеличение числа наборов хромосом в клетках организма; у животных встречается …
  • ПОЛИПЛОИДИЯ в Большом энциклопедическом словаре:
    (от греч. polyploos - многократный и eidos - вид) наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках …
  • ПОЛИПЛОИДИЯ в Большой советской энциклопедии, БСЭ:
    (от греч. polyploos - многопутный, здесь - многократный и eidos - вид), кратное увеличение числа хромосом в клетках растений или …
  • ПОЛИПЛОИДИЯ в Современном энциклопедическом словаре:
  • ПОЛИПЛОИДИЯ
    (от греческого polyploos - многократный и eidos - вид), наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках …
  • ПОЛИПЛОИДИЯ в Энциклопедическом словарике:
    и, мн. нет, ж., биол., бот. Увеличение числа хромосомных наборов в ядрах клеток. | Явление полиплоидии используется в рас-тениеводстве для …
  • ПОЛИПЛОИДИЯ в Большом российском энциклопедическом словаре:
    ПОЛИПЛОИД́ИЯ (от греч. роlyploos - многократный и eidos - вид), наследств. изменение, заключающееся в кратном увеличении числа наборов хромосом в …
  • ПОЛИПЛОИДИЯ в Полной акцентуированной парадигме по Зализняку:
    полиплои"дия, полиплои"дии, полиплои"дии, полиплои"дий, полиплои"дии, полиплои"диям, полиплои"дию, полиплои"дии, полиплои"дией, полиплои"диею, полиплои"диями, полиплои"дии, …
  • ПОЛИПЛОИДИЯ в Новом словаре иностранных слов:
    (гр. polyp loos многопутный, здесь многократный + eidos вид) увеличение числа хромосомных наборов в ядрах клеток. существуют полиплоидные организмы …
  • ПОЛИПЛОИДИЯ в Словаре иностранных выражений:
    [гр. polyp loos многопутный, здесь многократный + eidos вид] увеличение числа хромосомных наборов в ядрах клеток. существуют полиплоидные организмы с …
  • ПОЛИПЛОИДИЯ в словаре Синонимов русского языка.
  • ПОЛИПЛОИДИЯ в Словаре русского языка Лопатина:
    полиплоид`ия, …
  • ПОЛИПЛОИДИЯ в Полном орфографическом словаре русского языка:
    полиплоидия, …
  • ПОЛИПЛОИДИЯ в Орфографическом словаре:
    полиплоид`ия, …
  • ПОЛИПЛОИДИЯ в Современном толковом словаре, БСЭ:
    (от греч. polyploos - многократный и eidos - вид), наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках …
  • ПОЛИПЛОИДИЯ ВНУТРИЯДЕРНАЯ в Медицинских терминах:
    см. Эндоредупликация …
  • ЭВОЛЮЦИОННОЕ УЧЕНИЕ в Энциклопедии Биология:
    (теория эволюции), наука о принципах, движущих силах, механизмах и общих закономерностях эволюции; теоретическая основа биологии. Идеи об изменяемости окружающего мира …
  • СЕЛЕКЦИЯ в Энциклопедии Биология:
    , разработка научно обоснованных методов создания и совершенствования сортов культурных растений и пород домашних животных, а также применение этих методов …
  • МУТАЦИИ в Энциклопедии Биология:
    , внезапные наследуемые изменения генетического материала, вызывающие изменения каких-либо признаков и свойств организма. Мутации могут быть естественными, спонтанными, т. е. …
  • ВИДООБРАЗОВАНИЕ в Энциклопедии Биология:
    , процесс возникновения новых биологических видов и изменения их во времени. Основа видообразования - наследственная изменчивость организмов, движущий его фактор …
Загрузка...