Медицинский портал. Щитовидная железа, Рак, диагностика

Источник внутренней энергии для организма человека. Белки, жиры, углеводы — источники энергии для организма человека

11 329

Каждый из нас, наверное, чувствовал прилив энергии при общении с приятными людьми, с природой и искусством, от занятий спортом и от положительных эмоций. Энергию также дают нам солнечный свет, воздух и тепло.

Но эта энергия не может быть использована организмом ни на сокращения сердца, ни на функционирование нервной системы, циркуляцию крови, дыхание, ни на физическую работу. Вышеуказанные виды энергии лишь обеспечивают мотивацию к действию, а при осуществлении этих действий используется ранее запасенная энергия.

Энергия может быть использована организмом только в том случае, если из неё может образовываться АТФ (Аденозинтрифосфат). А это значит, что реальная энергия поступает в организм только с питательными веществами — белками, углеводами и жирами.

Безусловно, организм использует и другие формы энергии. Но что при этом происходит? Возьмем, к примеру, тепловую энергию. Выпитая чашка горячего чая в холодную погоду повышает теплопродукцию организма, позволяя временно согреться. Но энергия при этом не запасается. Приём горячего лишь снижает расходование ранее запасенной АТФ.

Таким образом, вышеуказанные виды энергии не могут преобразовываться в АТФ и запасаться, а потому их действие краткосрочно и реальной энергии, которая может быть использована в последующем организмом, они не приносят.
И вот мы приходим к тому, что единственным источником энергии для человека является энергия, которую нам дают питательные вещества – белки, жиры и углеводы. Причем в основном – углеводы и жиры, т.к. белки организм использует для более важных нужд – построения собственных клеток и тканей.
В пище присутствуют и другие носители энергии (янтарная и уксусная кислота, этиловый спирт и др.), но существенного значения в энергообеспечении организма они не имеют.

Энергетическая ценность пищи .

Т.к. пища является единственным источником энергии для человека, возникает необходимость знать, а сколько же энергии она нам даёт.
Для этого используется показатель «Энергетическая ценность пищи ».

Энергетическая ценность пищи — это количество энер¬гии, которое образуется в организме при биологическом окис¬лении белков, жиров и углеводов, содержащихся в продуктах питания. Организм перерабатывает и сжигает эти вещества до воды, углекислого газа и других веществ с выделением при этом энергии. Выражается она количеством калорий.

Нужно отметить, что простое попадание пищи в ЖКТ ещё не означает, что энергия поступила. Ведь часть пищевых веществ может не усвоиться, транзитом пройти через ЖКТ, вывестись с калом и не участвовать в энергетическом обмене.
Только после усвоения питательных веществ и их поступления в кровь энергия считается полученной.

Как определяют, сколько энергии приносят нам белки, жиры и углеводы?

Как известно из физики, конечным результатом превращения энергии является тепло. Тепло также является мерой энергии в организме. Эта энергия освобождается в результате окисления (горения) веществ в процессе катаболизма. Затем освободившаяся энергия переходит в доступную для организма форму — энергию химических связей молекулы АТФ.

Таким образом, при горении веществ выделяется тепло. Разные вещества горят по — разному, выделяя различное количество тепла. А по количеству выделившегося тепла можно узнать — сколько было энергии в горящем веществе.

Вот и энергетическую ценность пищи принято определять по количеству теплоты, полученной при её сгорании в калориметре. Для этого в калориметрической камере сжигают по 1 грамму белков, жиров и углеводов и определяют количество выделенного ими тепла (в калориях). То же самое происходит в организме человека — белки, жиры и углеводы окисляются до углекислоты и воды с образованием такого же количества энергии, что и при сгорании их вне организма.

Итак, в калориметре при сгорании 1 г белка выделяется 5,65 ккал, при сгорании 1 г углеводов — 4,1 ккал, 1 г жиров – 9,45 ккал.

Но мы — то знаем, что калорийность углеводов и белков составляет по 4 ккал/г, а жиров — 9,0 ккал/г. Почему же в калориметре показатели калорийности этих веществ отличаются от тех, к которым мы привыкли? Особенно того, что касается белка.

А связано это с тем, что внутри камеры всё сгорает полностью без остатка. А в организме белок сгорает не полностью — часть его без сгорания выводится из организма в виде мочевины. Эта часть содержит в себе 1,3 ккал из 5,65. Т.о. калорийность белка для организма составляет 4,35 ккал (5,65-1,3).
Опять это не совсем те цифры, которые мы привыкли видеть. И вот почему.

В норме жиры, белки и углеводы усваиваются не полностью.
Так белки усваиваются на 92%, жиры - на 95%, углеводы - на 98%. Вот и получается:
калорийность усвоившихся белков составляет 4,35 х 92% = 4 ккал/г;
углеводов – 4,1 х 98% = 4 ккал/г;
жиров – 9,3 х 95% = 9 ккал/г.

Первоначальным источником энергии для живых организмов служит энергия солнечного света. Фототрофы - растения и фотосинтезирующие микроорганизмы - непосредственно используют световую энергию для синтеза сложных органических веществ (жиров, белков, углеводов и др.), являющихся вторичными источниками энергии. Гетеротрофы, к которым относятся животные, используют химическую энергию, выделяющуюся при окислении органических веществ, синтезированных растениями.

Биоэнергетические процессы можно разделить на процессы производства и аккумуляции энергии и процессы, в которых за счет запасенной энергии выполняется полезная работа (Рис.1.1). Фотосинтез - основной биоэнергетический процесс на Земле. Это сложная многоступенчатая система фотофизических, фотохимических и темновых биохимических процессов, в которых энергия солнечного света трансформируется в химическую или электрохимическую формы энергии. В первом случае это энергия, заключенная в сложных органических молекулах, а во втором - энергия градиента протонов на мембранах, которая также преобразуется в химическую форму. В фотосинтезирующих организмах кванты солнечного света поглощаются молекулами хлорофилла и переводят их электроны в возбужденное состояние с повышенной энергией. Именно за счет энергии возбужденных электронов в молекулах хлорофилла фотосинтетическая система фототрофов из простых молекул углекислого газа и воды синтезирует глюкозу и другие органические молекулы (аминокислоты, жирные кислоты, нуклеотиды и т.д.), из которых впоследствии в организме строятся углеводы, белки, жиры и нуклеиновые кислоты. Продуктом этих реакций также является молекулярный кислород.

Суммарное уравнение основных реакций фотосинтеза:

6 CO 2 + 6 H 2 O C 6 H 12 O 6 (глюкоза) + 6 O 2 ,

где hн - энергия фотонов.

Глобальная роль фотосинтеза исключительно велика. Мощность солнечного излучения порядка 10 26 Вт. Из нее до поверхности Земли доходит около 2 10 17 Вт, а из этой величины примерно 4 10 13 Вт используется фотосинтезирующими организмами для синтеза органических веществ (Самойлов, 2004). Эта энергия поддерживает жизнь на Земле. За счет нее синтезируется около 7,510 10 тонн биомассы в год (в расчете на углерод). При этом порядка 4 10 10 тонн углерода фиксируется фитопланктоном в океане и 3,510 10 тонн - растениями и фотосинтезирующими микроорганизмами на суше.

Человечество потребляет продукты фотосинтеза в виде пищи, съедая органические вещества, первично произведенные растениями или вторично произведенные животными, поедающими растения, и в виде топлива, в качестве которого на 90 % используются ранее запасенные продукты фотосинтеза - нефть и уголь (остальную энергию дают атомные и гидроэлектростанции).

Извлечение энергии, накопленной фототрофными организмами, и ее последующее использование осуществляется в процессах питания и дыхания. При прохождении по пищеварительному тракту пища размельчается, клетки разрушаются и биополимеры (белки, нуклеиновые кислоты, жиры и углеводы) расщепляются на низкомолекулярные мономеры (аминокислоты, нуклеотиды, жирные кислоты и сахара), которые в кишечнике всасываются в кровь и транспортируются по всему организму. Из них клетки извлекают атомы водорода, несущие высокоэнергетические электроны, энергию которых удается частично запасать в виде молекул аденозинтрифосфата (adenosine triphosphate, ATP). ATP - универсальный источник энергии, используемый как батарейка, там и тогда, где и когда необходимо выполнить полезную работу.

Энергия не может возникнуть ниоткуда или исчезнуть в никуда, она может только превращаться из одного вида в другой. А от чего зависит энергия человека?

Вся энергия на Земле берется от Солнца. Растения способны превращать солнечную энергию в химическую (фотосинтез).

Люди не могут напрямую использовать энергию Солнца, однако мы можем получать энергию из растений. Мы едим либо сами растения, либо мясо животных, которые ели растения. Человек получает всю энергию из еды и питья.

Пищевые источники энергии

Энергия человека для его жизнедеятельности зависит от употребляемой им пищи. Единицей измерения энергии является калория. Одна калория – это количество тепла, необходимое для нагрева 1 кг воды на 1°С. Большую часть энергии мы получаем из следующих питательных веществ:

– Углеводы – 4ккал (17кДж) на 1г
– Белки (протеин) – 4ккал (17кДж) на 1г
– Жиры – 9ккал (37кДж) на 1г

Углеводы (сахара и крахмал) являются важнейшим источником энергии, больше всего их содержится в хлебе, рисе и макаронах. Хорошими источниками протеина служат мясо, рыба и яйца. Сливочное и растительное масло, а также маргарин почти полностью состоят из жирных кислот. Волокнистая пища, а также алкоголь также дают организму энергию, но уровень их потребления сильно отличается у разных людей.

Витамины и минералы сами по себе не дают организму энергию, однако, они принимают участие в важнейших процессах энергообмена в организме.

Энергетическая ценность различных пищевых продуктов сильно отличается. Здоровые люди достигают сбалансированности своей потреблением самой разнообразной пищи. Очевидно, что, чем более активный образ жизни ведет человек, тем больше он нуждается в пище, или тем более энергоемкой она должна быть.

Самым важным источником энергии для человека являются углеводы.

Сбалансированная обеспечивает организм разными видами углеводов, но большая часть энергии должна поступать из крахмала. В последние годы немало внимания уделялось изучению связи между компонентами питания людей и различными болезнями. Исследователи сходятся во мнении, что людям необходимо уменьшать потребление жирной пищи в пользу углеводов.

Каким образом мы получаем энергию из пищи?

После того, как пища проглатывается, она некоторое время находится в желудке. Там под воздействием пищеварительных соков начинается ее переваривание. Этот процесс продолжается в тонком кишечнике, в результате компоненты пищи распадаются на более мелкие единицы, и становится возможной их абсорбция через стенки кишечника в кровь. После этого организм может использовать питательные вещества на производство энергии, которая вырабатывается и хранится в виде аденозин трифосфат (АТФ).

Молекула АТФ из аденозина и трех фосфатных групп, соединенных в ряд. Запасы энергии «сосредоточены» в химических связях между фосфатными группами. Чтобы высвободить эту потенциальную энергию одна фосфатная группа должна отсоединиться, т.е. АТФ распадается до АДФ (аденозин дифосфат) с выделением энергии.

Аденозинтрифосфат (сокр. АТФ, англ. АТР) - нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ является основным переносчиком энергии в клетке.

В каждой клетке содержится очень ограниченное количество АТФ, которое обычно расходуется за считанные секунды. Для восстановления АДФ до АТФ требуется энергия, которая и получается в процессе окисления углеводов, протеина и жирных кислот в клетках.

Запасы энергии в организме.

После того, как питательные вещества абсорбируются в организме, некоторая их часть откладывается в запас как резервное топливо в виде гликогена или жира.

Гликоген также относится к классу углеводов. Запасы его в организме ограничены и хранятся в печени и мышечной ткани. Во время физических нагрузок гликоген распадается до глюкозы, и вместе с жиром и глюкозой, циркулирующей в крови, обеспечивает энергией работающие мышцы. Пропорции расходуемых питательных веществ зависят от типа и продолжительности физических упражнений.

Гликоген состоит из молекул глюкозы, соединенных в длинные цепочки. Если запасы гликогена в организме в норме, то избыточные углеводы, поступающие в организм, будут превращаться с жир.

Обычно протеин и аминокислоты не используются в организме как источники энергии. Однако при дефиците питательных веществ на фоне повышенных энергозатрат аминокислоты, содержащиеся в мышечной ткани, могут также расходоваться на энергию. Протеин, поступающий с пищей, может служить источником энергии и превращаться в жир в том случае, если потребности в нем, как в строительном материале, полностью удовлетворены.

Как расходуется энергия человека во время тренировки?

Начало тренировки

В самом начале тренировки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов. Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата). В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани. При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е. креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

Начальный период тренировки

В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Основной период тренировки

Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой, которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью. Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли.

С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.

Какие источники энергии используются в процессе тренировки?

Углеводы являются самым важным и самым дефицитным источником энергии для работающих мышц. Они необходимы при любом виде физической активности. В организме человека углеводы хранятся в небольших количествах в виде гликогена в печени и в мышцах. Во время тренировки гликоген расходуется, и вместе с жирными кислотами и глюкозой, циркулирующей в крови, используется как источник мышечной энергии. Соотношение различных используемых источников энергии зависит от типа и продолжительности упражнений.

Несмотря на то, что в жире больше энергии, его утилизация происходит медленнее, и синтез АТФ через окисление жирных кислот поддерживается использованием углеводов и креатин фосфата.

Когда запасы углеводов истощаются, организм становится не в состоянии переносить высокие нагрузки. Таким образом, углеводы являются источником энергии, лимитирующим уровень нагрузки во время тренировки.

Факторы, ограничивающие энергозапасы организма во время тренировки

1. Источники энергии, используемые при различных типах физической активности

– слабая интенсивность (бег трусцой)

Требуемый уровень восстановления АТФ из АДФ относительно низок, и достигается окислением жиров, глюкозы и гликогена. Когда запасы гликогена исчерпаны, возрастает роль жиров как источника энергии. Поскольку жирные кислоты окисляются довольно медленно, чтобы восполнять расходуемую энергию, возможность долго продолжать подобную тренировку зависит от количества гликогена в организме.

– средняя интенсивность (быстрый бег)

Когда физическая активность достигает максимального для продолжения процессов аэробного окисления уровня, возникает потребность быстрого восстановления запасов АТФ. Углеводы становятся основным топливом для организма. Однако только окислением углеводов требуемый уровень АТФ поддерживаться не может, поэтому параллельно происходит окисление жиров и образование лактата.

– максимальная интенсивность (спринт)

Синтез АТФ поддерживается, в основном, использованием креатин фосфата и образование лактата, поскольку метаболизм окисления углеводов и жиров не может поддерживаться с такой большой скоростью.

2. Продолжительность тренировки

Тип источника энергии зависит от продолжительности тренировки. Сначала происходит выброс энергии за счет использования креатин фосфата. Затем организм переходит на преимущественное использование гликогена, что обеспечивает энергией приблизительно на 50-60% синтез АТФ.

Остальную часть энергии на синтез АТФ организм получает за счет окисления свободных жирных кислот и глюкозы. Когда запасы гликогена истощаются, основным источником энергии становятся жиры, в то же время из углеводов начинает больше использоваться глюкоза.

3. Тип тренировки

В тех видах спорта, где периоды относительно низких нагрузок сменяются резкими повышениями активности (футбол, хоккей, баскетбол), происходит чередование использования креатин фосфата (во время пиков нагрузки) и гликогена как основных источников энергии для синтеза АТФ. В течение «спокойной» фазы в организме восстанавливаются запасы креатин фосфата.

4. Тренированность организма

Чем тренированнее человек, тем выше способность организма к окислительному метаболизму (меньше гликогена превращается в лактозу) и тем экономичнее расходуются запасы энергии. То есть, тренированный человек выполняет какое-либо упражнение с меньшим расходом энергии, чем нетренированный.

5. Диета

Чем выше уровень гликогена в организме перед началом тренировки, тем позднее настанет утомление. Чтобы повысить запасы гликогена, необходимо увеличить потребление пищи, богатой углеводами. Специалисты в области спортивного питания рекомендуют придерживаться таких диет, в которых до 70% энергетической ценности составляли бы углеводы.

– рис
– паста (макаронные изделия)
– хлеб
– зерновые злаки
– корнеплоды

– введите в свой план питания больше углеводов, чтобы поддерживать энергетические запасы организма;
– за 1-4 часа до тренировки съедайте 75-100 г углеводов;
– непосредственно перед тренировкой выпейте 200-500 мл специализированного спортивного напитка (изотоника) для увеличения запасов жидкости и углеводов;
– если возможно, пейте по 100-150 мл изотоника каждые 15-20 минут во время тренировки, чтобы компенсировать расход жидкости и углеводов;
– в течение первого получаса тренировки, когда способность мышц к восстановлению максимальна, съешьте 50-100 углеводов;
– после тренировки необходимо продолжать потребление углеводов для скорейшего восстановления запасов гликогена.

Существует несколько причин, по которым мы должны обратить на питание особое внимание. Во-первых, все клетки и ткани нашего организма формируются из той пищи, которую мы едим. Во-вторых, пища является источником энергии, необходимой для функционирования организма. В-третьих, пища - это главная часть окружающей среды, с которой мы взаимодействуем. И последнее, пища была создана для того, чтобы наслаждаться ею, для того, чтобы быть неотъемлемой частью радости жизни, и наши чувства позволяют нам по достоинству оценить качество, вкус и саму ткань поедаемого продукта.

Сегодня мы предлагаем вам поговорить о энергетических питательных веществах, содержащихся в нашей пище. К ним относятся углеводы, жиры и белки. Говоря в общем, мы считаем углеводы непосредственным источником энергии, белки - теми кирпичиками, из которых строится весь наш организм, и жиры - энергетическими складами.

В овощах и плодах основные питательные вещества представлены углеводами. Продукты сада и огорода содержат простые (глюкоза, фруктоза, сахароза) и сложные (крахмал, пектины, клетчатка) углеводы. В овощах углеводы представлены крахмалом, за исключением свеклы и моркови, где преобладают сахара. Во фруктах преимущественно содержатся сахара.

Крахмал является важнейшим углеводом растений. Состоит он из большого количества молекул глюкозы. Крахмалом богат картофель. Несколько меньше его в бобовых и поздних сортах яблок. В яблоках, например, в процессе их созревания количество крахмала увеличивается, а при хранении снижается. Это вызвано тем, что при дозревании во время хранения крахмал в продукте переходит в сахар. Много его в зеленых бананах, а в зрелых в 10 раз меньше, так как он превращается в сахара. Крахмал нужен организму в основном для удовлетворения его потребности в сахаре. В пищеварительном тракте под влиянием ферментов и кислот крахмал расщепляется на молекулы глюкозы, которые затем используются для нужд организма.

Фруктоза содержится во многих плодах и овощах. Чем богаче ею плоды, тем они слаще. Доказана прямая зависимость выносливости и работоспособности человека от содержания этого вещества в мышцах и печени. При малой подвижности человека, нервных стрессах, гнилостных процессах в кишечнике, тучности фруктоза наиболее благоприятна из прочих углеводов.

Глюкоза находится в плодах в свободном виде. Она входит в состав крахмала, клетчатки, сахарозы и других углеводов. Глюкоза, которую наш организм использует для производства энергии, - это высококачественное горючее. Циркулируя с потоком крови, глюкоза восполняет постоянную нужду клеток организма. Она наиболее быстро и легко используется организмом для образования гликогена, питания тканей мозга, работы мышц, в том числе сердечной.

Сахароза в больших количествах содержится в сахарной свекле и сахарном тростнике. Независимо от источников сырья, сахар представляет собой почти чистую сахарозу. Ее содержание в сахарном песке составляет 99,75%, а в сахаре-рафинаде – 99,9%.

Для усвоения простых углеводов (глюкозы, фруктозы и галактозы) пищеварения не требуется. Столовый сахар и мальтоза перевариваются в простые сахара в считанные минуты. Для того чтобы снабдить кровь этой быстро усваиваемой энергией, нашему рациону требуется совсем немного сахара. В случае перенасыщения поджелудочная железа вынуждена работать сверхурочно, производя избыточный инсулин для превращения излишков сахара в жир. В любой определенный промежуток времени наш организм способен справляться должным образом только с ограниченным количеством простых сахаров.

Излишки сахара стопорят человеческую машину подобно тому, как переполненный карбюратор застопоривает двигатель автомобиля, это всего лишь одна из опасностей злоупотребления сахаром. Есть и другие вредные воздействия. Они таковы:

  • истощение запасов витамина В1;
  • заболевание зубов, поскольку сахар создает идеальную среду для разрушающих зубы микроорганизмов;
  • угнетение иммунной системы вследствие того, что сахар угнетает способность белых кровяных клеток убивать микробы;
  • повышенное количество жира в крови (от превращения глюкозы в триглицерид);
  • стимулирование гипогликемии и возможное начало диабета;
  • желудочное раздражение, возникающее, когда в желудке содержится более 10% сахара (раствор концентрированного сахара – это сильный раздражитель слизистой оболочки);
  • запор (в богатых сахаром продуктах обычно недостаточное содержание волокон);
  • повышение уровня холестерина в крови.

Мы сможем избежать этих осложнений, если заменим в нашем рационе рафинированный сахар на фрукты (один зрелый банан содержит шесть чайных ложек сахара), а основой диеты сделаем сложные углеводы, содержащиеся в пшенице, рисе, картофеле, бобовых и других продуктах, в составе которых есть крахмал.

Большинство сложных углеводов усваиваются на протяжении нескольких часов и высвобождают простые сахара постепенно. Это позволяет поджелудочной железе, печени, надпочечной железе, почкам и другим органам использовать эту энергию должным образом. Более того, из-за повышенного волокнистого содержания углеводсодержащих продуктов мы обычно на такой диете не переедаем.

Другое преимущество сложных углеводов состоит в том, что они содержат минералы, необходимые для соответствующего усвоения других питательных веществ. Рафинированный сахар не имеет ни минералов, ни витаминов, ни волокнистого содержания.

Идеальная диета должна включать, если вообще должна его содержать, минимальное количество сахара (меда, сахарозы, мальтозы, сладких сиропов), а вместо него - обилие сложных углеводов, которыми богаты картофель, злаковые, хлеб и иные продукты из муки грубого помола. Сложные углеводы должны составлять главную часть ежедневного потребления калорий.

«И сказал Бог: вот, Я дал вам всякую траву, сеющую семя, какая есть на всей земле, и всякое дерево, у которого плод древесный, сеющий семя, - вам сие будет в пищу» (Бытие 1: 29).

Подготовила А. Конакова

Основными источниками энергии для организма являются углеводы, белки, минеральные соли, жиры, витамины. Они обеспечивают его нормальную деятельность, позволяют организму функционировать без особых проблем. Питательные вещества - это источники энергии в организме человека. Кроме того, они выступают в качестве строительного материала, способствуют росту и воспроизводству новых клеток, появляющихся на месте отмирающих. В том виде, в котором они употребляются в пищу, их невозможно всосать и использовать организмом. Только вода, а также витамины и минеральные соли усваиваются и всасываются в том виде, в котором они поступают.

Основными источниками энергии для организма являются белки, углеводы, жиры. В пищеварительном тракте они подвергаются не только физическим воздействиям (перетираются и измельчаются), но и химическим превращениям, происходящим под воздействием ферментов, которые находятся в соке специальных пищеварительных желез.

Строение белков

В растениях и животных есть определенное вещество, являющееся основой жизни. Этим соединением является протеин. Обнаружены белковые тела были биохимиком Жераром Мюльдером в 1838 году. Именно им была сформулирована теория протеина. Слово «протеин» с греческого языка означает «занимающий первое место». Примерно половину сухого веса любого организма составляют именно белки. У вирусов такое содержание колеблется в диапазоне 45-95 процентов.

Рассуждая о том, что является главным источником энергии в организме, нельзя оставить без внимания белковые молекулы. Они занимают особое место по биологическим функциям и значению.

Функции и расположение в организме

Около 30 % белковых соединений располагается в мышцах, порядка 20 % обнаружено в сухожилиях и в костях, а 10 % содержится в коже. Максимально значимыми для организмов являются ферменты, управляющие обменными химическими процессами: перевариванием пищи, активностью желез внутренней секреции, работой мозга, мышечной деятельностью. Даже в небольших бактериях содержатся сотни ферментов.

Протеины - это обязательная часть живых клеток. В них содержится водород, углерод, азот, сера, кислород, а в некоторых есть и фосфор. Обязательным химическим элементом, содержащимся в белковых молекулах, является азот. Именно поэтому эти органические вещества называют азотсодержащими соединениями.

Свойства и превращение белков в организме

Попадая в пищеварительный тракт, они расщепляются на аминокислоты, которые всасываются в кровь и используются для синтеза специфичного для организма пептида, затем окисляются до воды и углекислого газа. При повышении температуры происходит свертывание белковой молекулы. Известны такие молекулы, которые способны растворяться в воде только при нагревании. К примеру, такими свойствами обладает желатин.

После поглощения пища сначала оказывается в ротовой полости, потом она движется по пищеводу, попадает в желудок. В нем находится кислая реакция среды, которая обеспечивается соляной кислотой. В желудочном соке есть который расщепляет белковые молекулы на альбумозы и пептоны. Это вещество активно только в кислой среде. Пища, которая поступила в желудок, способна задерживаться в нем 3-10 часов, в зависимости от ее агрегатного состояния и характера. Поджелудочный сок обладает щелочной реакцией, в нем есть ферменты, способные расщеплять жиры, углеводы, белки.

Среди его основных ферментов выделяют трипсин, который в соке поджелудочной железы располагается в виде трипсиногена. Он не способен расщеплять белки, но при соприкосновении с кишечным соком превращается в активное вещество - энтерокиназу. Трипсин расщепляет белковые соединения до аминокислот. Заканчивается переработка пищи в тонкой кишке. Если в двенадцатиперстное кишке и в желудке жиры, углеводы, белки почти полностью распадаются, то в тонкой кишке происходит полное расщепление питательных веществ, всасывание в кровь продуктов реакции. Осуществляется процесс через капилляры, каждый из которых подходит к ворсинкам, располагающимся на стенке тонкой кишки.

Обмен белков

После того как белок полностью распадется на аминокислоты в пищеварительном тракте, они всасываются в кровь. Также в нее попадает и незначительное количество полипептидов. Из аминокислотных остатков в организме живого существа синтезируется специфичный белок, в котором нуждается человек или животное. Процесс образования новых белковых молекул протекает в живом организме непрерывно, поскольку отмирающие клетки кожи, крови, кишечника, слизистой оболочки удаляются, а на их месте образуются молодые клетки.

Для того чтобы осуществлялся синтез белков, необходимо, чтобы они вместе с пищей поступали в пищеварительный тракт. Если полипептид вводится в кровь, минуя пищеварительный тракт, человеческий организм не имеет возможности его использовать. Подобный процесс может негативно отражаться на состоянии человеческого организма, вызывать многочисленные осложнения: повышение температуры, паралич дыхания, сбой сердечной деятельности, общие судороги.

Белки нельзя заменить иными пищевыми веществами, поскольку для их синтеза внутри организма необходимы аминокислоты. Недостаточное количество этих веществ приводит к задержке либо приостановлению роста.

Сахариды

Начнем с того, что углеводы - главный источник энергии организма. Они представляют собой одну из главных групп органических соединений, в которых нуждается наш организм. Этот источник энергии живых организмов является первичным продуктом фотосинтеза. Содержание в живой растительной клетке углеводов может колебаться в диапазоне 1-2 процентов, а в некоторых ситуациях этот показатель достигает 85-90 процентов.

Основными источниками энергии живых организмов являются моносахариды: глюкоза, фруктоза, рибоза.

В составе углеводов есть атомы кислорода, водорода, углерода. К примеру, глюкоза - источник энергии в организме, имеет формулу С6Н12О6. Существует подразделение всех углеводов (по строению) на простые и сложные соединения: моно- и полисахариды. По количеству углеродных атомов моносахариды делят на несколько групп:

  • триозы;
  • тетрозы;
  • пентозы;
  • гексозы;
  • гептозы.

Моносахариды, которые имеют в составе пять и более углеродных атомов, при растворении в воде могут образовывать кольцевую структуру.

Основным источником энергии в организме является глюкоза. Дезоксирибоза и рибоза являются углеводами, имеющими особое значение для нуклеиновых кислот и АТФ.

Глюкоза - это главный источник энергии в организме. С процессами превращения моносахаридов напрямую связан биосинтез многих органических соединений, а также процесс выведения из него ядовитых соединений, которые попадают извне либо образуются в результате распада белковых молекул.

Отличительные особенности дисахаридов

Моносахарид и дисахарид - это основной источник энергии для организма. При объединении моносахаридов происходит отщепление, а продуктом взаимодействия выступает дисахарид.

Среди типичных представителей данной группы можно отметить сахарозу (тростниковый сахар), мальтозу (солодовый сахар), лактозу (молочный сахар).

Такой источник энергии для организма, как дисахариды, заслуживает детального изучения. Они отлично растворяются в воде, обладают сладким вкусом. Чрезмерное употребление сахарозы приводит к появлению серьезных сбоев в организме, поэтому так важно соблюдать нормы.

Полисахариды

Отличным источником энергии для организма служат такие вещества, как целлюлоза, гликоген, крахмал.

В первую очередь любой из них можно рассматривать как источник энергии для человеческого организма. В случае их ферментативного расщепления и распада происходит выделение большого количества энергии, используемой живой клеткой.

Этот источник энергии для организма выполняет и иные важные функции. Например, хитин, целлюлоза применяются в качестве строительного материала. Полисахариды отлично подходят организму в качестве запасных соединений, поскольку они не растворяются в воде, не оказывают химического и осмотического действия на клетку. Подобные свойства позволяют им сохраняться длительное время в живой клетке. В обезвоженном виде полисахариды способны увеличивать массу запасаемых продуктов благодаря экономии объема.

Такой источник энергии для организма способен противостоять болезнетворным бактериям, попадающим в организм вместе с пищей. В случае необходимости при гидролизе происходит превращение запасных полисахаридов в простые сахара.

Обмен углеводов

Как ведет себя главный источник энергии в организме? Углеводы поступают в большей степени в виде полисахаридов, к примеру, в виде крахмала. В результате гидролиза из него образуется глюкоза. Моносахарид всасывается в кровь, благодаря нескольким промежуточным реакциям он расщепляется на углекислый газ и воду. После окончательного окисления происходит высвобождение энергии, которую использует организм.

Процесс расщепления и крахмала протекает непосредственно в полости рта, в качестве катализатора реакции выступает фермент птиалин. В тонких кишках углеводы распадаются до моносахаридов. В кровь они всасываются в основном в виде глюкозы. Процесс протекает в верхних отделах кишечника, а вот в нижних углеводов почти нет. Вместе с кровью сахариды попадают в воротную вену, доходят до печени. В том случае, когда концентрация сахара в человеческой крови составляет 0,1 %, углеводы проходят через печень, оказываются в общем кровотоке.

Необходимо поддерживать постоянное количество сахара в крови около 0,1 %. При избыточном попадании в кровь сахаридов, излишки накапливаются в печени. Подобный процесс сопровождается резким падением сахара в крови.

Изменение уровня сахара в организме

Если в пище присутствует крахмал, это не приводит к масштабным изменениям сахара в крови, поскольку процесс гидролиза полисахарида протекает достаточно долго. Если доза сахара оставляет порядка 15-200 граммов, наблюдается резкое повышение его содержания в крови. Этот процесс называют алиментарной или пищевой гипергликемией. Избыточное количество сахара выводится почками, поэтому в моче содержится глюкоза.

Из организма почки начинают выводить сахар в том случае, если его уровень в крови достигает диапазона 0,15-0,18 %. Подобное явление возникает при единовременном употреблении существенного количества сахара, достаточно быстро проходит, не приводя к серьезным нарушениям обменных процессов в организме.

Если нарушается внутрисекреторная работа поджелудочной железы, возникает такое заболевание, как сахарный диабет. Оно сопровождается существенным увеличением количества сахара в крови, что приводит к потере печенью способности удерживать глюкозу, в итоге сахар выводится с мочой из организма.

Существенное количество гликогена может откладываться в мышцах, здесь он востребован при осуществлении химических реакций, происходящих в ходе сокращений мышц.

О важности глюкозы

Значение глюкозы для живого организма не ограничивается только энергетической функцией. Потребность в глюкозе возрастает при выполнении тяжелой физической работы. Удовлетворяется такая потребность путем расщепления в печени гликогена на глюкозу, которая поступает в кровь.

Данный моносахарид есть и в составе протоплазмы клеток, поэтому требуется для формирования новых клеток, особенно актуальна глюкоза в процессе роста. Особое значение имеет данный моносахарид для полноценной деятельности центральной нервной системы. Как только концентрация сахара в крови понижается до показателя 0,04 %, возникают судороги, человек теряет сознание. Это является прямым подтверждением того, что понижение сахара в крови вызывает мгновенное нарушение деятельности центральной нервной системы. Если пациенту вводят глюкозу в кровь либо предлагают сладкую пищу, все нарушения пропадают. При длительном понижении сахара в крови развивается гипогликемия. Она приводит к серьезным нарушениям деятельности организма, которые могу вызвать его смерть.

Коротко о жирах

В качестве еще одного источника энергии для живого организма можно рассматривать жиры. В их составе присутствуют углерод, кислород, водород. Жиры имеют сложное химическое строение, представляют собой соединения многоатомного спирта глицерина и жирных карбоновых кислот.

В ходе пищеварительных процессов происходит расщепление жира на составные части, из которых он был получен. Именно жиры являются составной частью протоплазмы, содержатся в тканях, органах, клетках живого организма. Они по праву считаются отличным источником энергии. Расщепление этих органических соединений начинается в желудке. В желудочном соке содержится липаза, которая превращает молекулы жира в глицерин и карбоновую кислоту.

Глицерин отлично всасывается, так как имеет хорошую растворимость в воде. Для растворения кислот используется желчь. Под ее влиянием эффективность воздействия на жир липазы возрастает до 15-20 раз. Из желудка пища движется в двенадцатиперстную кишку, где под действием сока происходит ее дальнейшее расщепление до продуктов, которые способны всасываться в лимфу и кровь.

Далее пищевая кашица движется по пищеварительному тракту, попадает в тонкий кишечник. Здесь происходит ее полное расщепление под влиянием кишечного сока, а также всасывание. В отличие от продуктов расщепления белков и углеводов, вещества, получаемые при гидролизе жиров, всасываются в лимфу. Глицерин и мыла после прохождения через клетки слизистой оболочки кишечника опять соединяются, формируют жир.

Подводя общий итог, отметим, что основными источниками энергии для организма человека и животных выступают белки, жиры, углеводы. Именно благодаря углеводному, белковому обмену, сопровождающемуся образованием дополнительной энергии, функционирует живой организм. Поэтому не стоит долго сидеть на диетах, ограничивая себя в каком-то конкретном микроэлементе или веществе, иначе это может отрицательно сказаться на здоровье и самочувствии.

Загрузка...