Медицинский портал. Щитовидная железа, Рак, диагностика

Что такое проводящая система. Функции проводящей системы сердца

Проводящая система сердца отвечает за правильное взаимодействие между предсердиями и желудочками, что необходимо для нормальной сердечной деятельности. Сбои в её работе способны спровоцировать аритмию, что может стать причиной развития опасных для жизни недугов: по статистике, около 15% сердечных болезней связано с нарушениями ритма сердца.

Человеческое сердце являет собой мышечный орган с очень сложным строением. К его основным задачам относится обеспечивать беспрерывное движение крови по артериям и венам, а также очищать кровь от углекислоты после того, как она из вен уходит в правое предсердие при расслаблении сердечной мышцы.

Из правого предсердия жидкая ткань перемещается в правый желудочек, оттуда – в легочный ствол и по одному из его разветвлений направляется к левому или правому легкому. Достигнув по капиллярам легочных пузырьков, кровь очищается от углекислоты и насыщается кислородом. После этого жидкая ткань по легочной вене попадает в левое предсердие, переходит в левый желудочек, затем – в аорту и расходится по организму.

Насколько слажено будут взаимодействовать между собой камеры сердца (а именно так называют оба и предсердия), во многом зависит от функции проводящей системы сердца (ПСС). Она представлена в виде сложного образования, состоящего из специальных клеток, что являются своеобразными узлами, по которым передаются сигналы возбуждения, позволяющие сохранить ритмичность и частоту сокращений. Стоит заметить, что хотя проводящая система сердца по физиологии строения отличается от мышечной ткани и нервной системы сердца, она находится в тесной связи с ними.

Устройство ПСС

Состоит проводящая система сердца из нескольких узлов. Её начало идет от синусно-предсердного узла (СУ), что являет собой пучок в виде волокон, длина которых составляет от десяти до двадцати, ширина – от трех до пяти миллиметров. Размещается он вверху правого предсердия, возле места впадения двух вен. Физиология строения синусового образования предусматривает два типа клеток: Р-клетки передают возбуждающие сигналы, Т-клетки обеспечивают проводимость волны возбуждения к предсердиям.

Проводниковые нити, что находятся в СУ, по физиологии строения напоминают мышечные клетки сердца, но они более тонкие, волнистые, немного светлее. Синусовый узел плотно окружен нервными волокнами, от которых зависит ускорение или замедление частоты сокращений сердца.


Затем идет предсердно-желудочковый (атриовентрикулярный, сокр. АВУ) узел, что являет собой волокна длиной пять, толщиной два миллиметра. Он размещается внизу правого предсердия, возле устья коронарного синуса, с правой стороны от межпредсердной перегородки. Физиология строения тоже состоит из клеток Т и Р типа.

Следующее образование – пучок Гиса в виде не менее сложного строения, чем предыдущие образования. Состоит он из нескольких частей. Начало образования не контактирует с мышцей миокарда и почти нечувствительно к повреждению сердечных артерий, но быстро втягивается в патологические процессы, которые происходят в окружающей его фиброзной ткани, что состоит из коллагеновых упругих нитей. Затем волокна Гиса расходятся на правую и левую ножки, после чего левая снова делится.

Поэтому на схеме ножки Гиса представлены в следующем виде:

  • Нити левой ножки идут вниз по двум сторонам межжелудочковой перегородки. Согласно схеме, с её передней ветви проводниковые нити тянутся к левой и боковой частям левого желудочка. С её задней ножки проводниковые нити тянутся в сторону задней стенки левого желудочка и к низу боковой стенки.
  • Нити правой ножки тянутся к мускулатуре правого желудочка.

Физиология строения ПСС также предусматривает ветви внутри желудочка, что постепенно разветвляются и соединяются с нитями Пуркинье. Дальше они тянутся к миокарду желудочков и пронзают мускулатуру.

Движение сигнала

Сердечная мышца сокращается благодаря распространению по ПСС возбуждающих импульсов, что образуются в СУ и уходят по проводящей системе, все узлы которой характеризуются автоматизмом. Задает ритм синусовое образование, в нормальном состоянии генерирующее от шестидесяти до девяноста ударов в течение минуты. Поданные им сигналы распространяются к другим узлам, и подавляют аналогичные импульсы в других образованиях.

Возникнув, сигнал возбуждения моментально доходит до миокарда предсердий. Затем идет распространение сигнала по трем путям, что соединяют СУ с предсердно-желудочковым:

  • передний путь сигнала лежит по передневерхней стенке правого предсердия, разветвляется на два проводниковых ответвления у межпредсердной перегородки: одна уходит к АВУ, другая – в сторону левого предсердия.
  • средний путь импульса тянется по межпредсердной перегородке к АВУ.
  • задний путь сигнала лежит к АВУ понизу межпредсердной перегородки, от которой уходят проводниковые нити к стенке правого предсердия.

После достижения предсердно-желудочкового образования, путь сигнала возбуждения расходится: наблюдается распространение проводниковых нитей в разные стороны, по нижним проводниковым волокнам импульс уходит к пучку Гиса. Стоит заметить, что АВУ слегка притормаживает ход волны возбуждения, что позволяет дождаться конца всплеска возбуждения и сокращения предсердий до того, как желудочки среагируют на сигнал.


Импульс возбуждения, оказавшись в пучке Гиса, быстро распространяется по его разветвлениям. Затем переходит в проводниковые нити Пуркинье, откуда сигнал идет к миокарду желудочков, где сперва затрагивается межжелудочковая перегородка, после чего возбуждение переходит на оба желудочка.

В желудочках ход волны возбуждения идет от внутреннего слоя оболочки стенки сердца (эндокарда) к его наружной оболочке (эпикарду). При этом образуется электродвижущая сила, которая уходит на поверхность тела человека и её способен зафиксировать электрокардиограф (так называют устройство, позволяющее исследовать электрическую активность миокарда).

Как возникает аритмия?

Значение ПСС для сердца чрезвычайно важно: у здорового человека проводящая система сердца обеспечивает частоту ударов от шестидесяти до восьмидесяти раз в минуту. При сбоях в её работе влияние синусового узла уменьшается, что приводит к нарушению хода волны возбуждения, поскольку ритм начинают задавать автоматические центры второго и третьего порядка (АВУ и пучок Гиса). Сперва эту функцию берет на себя предсердно-желудочковый узел, который способен производить от сорока до шестидесяти сигналов в минуту.

Если и с центром вторичного порядка сбои, и его значение в ходе ритма снижается, частоту ударов начинает регулировать пучок Гиса, который может генерировать от пятнадцати до сорока ударов в минуту. Стоит заметить, что волокна Перье тоже имеют функцию автоматизма и вырабатывают от пятнадцати до тридцати толчков за секунду.


При нарушении хода сигнала по проводящей системе сердца наблюдаются нарушения сердечного ритма, известные под названием аритмия. Этот недуг характеризуется тем, что сердце может биться слишком быстро или медленно, между ударами возможны разные интервалы, иногда сердце на некоторое время останавливается и вновь начинает биться.

Ход возбуждающего сигнала может быть нарушен из-за «блокады», когда нарушается проведение сигнала от предсердия к желудочку или внутри желудочка. Такие недуги обычно протекают бессимптомно и часто являются признаками других сердечных патологий.

Функциональные изменения в здоровом сердце, когда происходит нарушение хода возбуждающего сигнала по проводящей системе, вызывают стрессы, алкоголь, переедание, запоры, прием лекарств, продуктов, что содержат кофеин. У женщин ход импульса может быть нарушен перед месячными.

Повлиять на нарушение хода сигнала могут и болезни, среди которых:

  • патологии сердца — ишемия, сердечная недостаточность, миокардит, пролапс митрального клапана, порок сердца;
  • проблемы со щитовидной железой;
  • сахарный диабет, особенно в сочетании с гипертензией и ожирением;
  • наследственность;
  • сколиоз.

Если сбои в работе сердца повторяются, обязательно надо обратиться к врачу для диагностики. Лечение будет зависеть от спровоцировавшей нарушения хода сигнала причины: после излечения основного заболевания сердечный ритм нормализуется.

Если аритмия не является симптомом, а носит самостоятельный характер, в качестве её лечения назначают противоаритмические лекарства. При блокаде отдельных проводниковых ветвей обычно лечения не требуется, иногда врач может назначить специальные препараты.

В некоторых ситуациях при аритмии или блокаде врач может принять решение о хирургической операции, цель которой – вживление кардиостимулятора, регулирующий ритм сердца. После этого больному необходимо будет пройти реабилитацию и строго выполнять все указания врача: постоянно следить за пульсом, давлением, питанием, избегать контактов с сильными электромагнитными источниками, держать от устройства подальше различные электрические приборы.

После операции пациент обязательно должен находиться под наблюдением врача. Сначала надо будет прийти на обследование через один месяц после установки устройства, затем – через три. После этого при отсутствии жалоб больной может проходить наблюдение один или два раза в год.

Сердце — мышечный орган, состоящий из четырех камер:

  • правого предсердия, собирающего венозную кровь из организма;
  • правого желудочка, нагнетающего венозную кровь в малый круг кровообращения — в легкие, где и происходит газообмен с атмосферным воздухом;
  • левого предсердия, собирающего обогащенную кислородом кровь из легочных вен;
  • левого желудочка, обеспечивающего продвижение крови ко всем органам организма.

Кардиомиоциты

Стенки предсердий и желудочков состоят из поперечно-полосатой мышечной ткани, представленной кардиомиоцитами и имеющей ряд отличий от ткани скелетных мышц. Кардиомиоциты составляют около 25% от общего числа клеток сердца и около 70% массы миокарда. В составе стенок сердца имеются фибробласты, гладкомышечные клетки сосудов, эндотелиальные и нервные клетки.

В мембране кардиомиоцитов содержатся белки, выполняющие транспортные, ферментативные и рецепторные функции. Среди последних — рецепторы гормонов, катехоламинов и других сигнальных молекул. Кардиомиоциты имеют одно или несколько ядер, множество рибосом и аппарат Гольджи. Они способны синтезировать сократительные и белковые молекулы. В этих клетках синтезируются некоторые белки, специфические для определенных стадий клеточного цикла. Однако кардиомиоциты рано теряют способность делиться и их созревание, равно как и приспособление к возрастающим нагрузкам, сопровождается увеличением массы клеток и их размеров. Причины потери клетками способности делиться остаются неясными.

Кардиомиоциты отличаются по своему строению, свойствам и функциям. Различают типичные, или сократительные, кардиомиоциты и атипичные, формирующие в сердце проводящую систему.

Типичные кардиомиоциты - сократительные клетки, образующие предсердия и желудочки.

Атипичные кардиомиоциты - клетки проводящей системы сердца, обеспечивающие возникновение возбуждения в сердце и проведение его от места возникновения к сократительным элементам предсердий и желудочков.

Абсолютное большинство кардиомиоцитов (волокон) сердечной мышцы принадлежит к рабочему миокарду, который обеспечивает . Сокращение миокарда называют, расслабление - . Имеются также атипичные кардиомиоциты и волокна сердца, функцией которых является генерация возбуждения и проведение его к сократительному миокарду предсердий и желудочков. Эти клетки и волокна формируют проводящую систему сердца.

Сердце окружено перикардом — околосердечной сумкой, отграничивающей сердце от соседних органов. Перикард состоит из фиброзного слоя и двух листков серозного перикарда. Висцеральный листок, называемый эпикардом , сращен с поверхностью сердца, а париетальный — с фиброзным слоем перикарда. Щель между этими листками заполнена серозной жидкостью, наличие которой уменьшает трение сердца с окружающими структурами. Относительно плотный наружный слой перикарда защищает сердце от перерастяжения и чрезмерного переполнения кровью. Внутренняя поверхность сердца представлена эндотелиальной выстилкой, называемой эндокардом. Между эндокардом и перикардом располагается миокард - сократительные волокна сердца.

Совокупность атипичных кардиомиоцитов, образующих узлы: синоатриальный и атриовентрикулярный, межузловые тракты Бахмана, Венкебаха и Тореля, пучки Гиса и волокона Пуркинье.

Функциями проводящей системы сердца являются генерация потенциала действия, проведение его к сократительному миокарду, инициирование сокращения и обеспечение определенной предсердий и желудочков. Возникновение возбуждения в водителе ритма осуществляется с определенным ритмом произвольно, без воздействия внешних стимулов. Это свойство клеток водителя ритма получило название .

Проводящая система сердца состоит из узлов, пучков и волокон, сформированных атипичными мышечными клетками. В ее структуру входит синоатриальный (СА) узел, расположенный в стенке правого предсердия спереди устья верхней полой вены (рис. 1).

Рис. 1. Схематическое строение проводящей системы сердца

От СА-узла отходят пучки (Бахмана, Венкебаха, Тореля) атипичных волокон. Поперечный пучок (Бахмана) проводит возбуждение к миокарду правого и левого предсердий, а продольные — к атриовентрикулярному (АВ) узлу, расположенному под эндокардом правого предсердия в его нижнем углу в области, прилегающей к межпредсердной и атриовентрикулярной перегородкам. От АВ-узла отходит пучок Гпса. Он проводит возбуждение к миокарду желудочков и поскольку на границе миокарда предсердий и желудочков располагается соединительнотканная перегородка, образованная плотными фиброзными волоконами, то у здорового человека пучок Гиса является единственным путем, по которому потенциал действия может распространиться к желудочкам.

Начальная часть (ствол пучка Гиса) расположена в перепончатой части межжелудочковой перегородки и делится на правую и левую ножки пучка Гиса, которые также находятся в межжелудочковой перегородке. Левая ножка делится на переднюю и заднюю ветви, которые, как и правая ножка пучка Гиса, ветвятся и заканчиваются волокнами Пуркинье. Волокна Пуркинье расположены в субэндокардиальной области сердца и проводят потенциалы действия непосредственно к сократительному миокарду.

Механизм автоматик и проведение возбуждения по проводящей системе

Генерация потенциалов действия осуществляется в нормальных условиях специализированными клетками СА-узла, который называют водителем ритма 1-го порядка или пейсмекером. У здорового взрослого человека в нем ритмично генеририруются потенциалы действия с частотой 60-80 за 1 мин. Источником этих потенциалов являются атипичные круглые клетки СА-узла, имеющие небольшие размеры, содержащие мало органелл и редуцированный сократительный аппарат. Иногда их называют Р-клетками. В узле имеются также клетки вытянутой формы, занимающие промежуточное положение между атипичными и обычными сократительными кардиомиоцитами предсердий. Их называют переходными клетками.

Р-клетки покрыты , содержащей ряд разнообразных ионных каналов. Среди них имеются пассивные и потенциалзависимые ионные каналы. Потенциал покоя в этих клетках составляет 40-60 мВ и является неустойчивым, что обусловлено различной проницаемостью ионных каналов. Во время диастолы сердца мембрана клетки самопроизвольно медленно деполяризуется. Этот процесс назван медленной диастолической деполяризацией (МДД) (рис. 2).

Рис. 2. Потенциалы действия сократительных миоцитов миокарда (а) и атипичных клеток СА-узла (б) и их ионные токи. Пояснения в тексте

Как видно на рис. 2, сразу же после окончания предыдущего потенциала действия начинается спонтанная МДД мембраны клетки. МДД в самом начале ее развития обусловлена входом ионов Na+ через пассивные натриевые каналы и задержкой выхода ионов К+ вследствие закрытия пассивных калиевых каналов и снижения выхода ионов К+ из клетки. Вспомним, что выходящие через эти каналы ионы К обычно обеспечивают реполяризацию и даже некоторую степень гиперполяризации мембраны. Очевидно, что снижение проницаемости калиевых каналов и задержка выхода ионов К+ из Р-клетки вместе с поступлением в клетку ионов Na+ будут вести к накоплению положительных зарядов на внутренней поверхности мембраны и развитию МДД. МДД в области значений E кр (около-40 мВ) сопровождается открытием потенциалзависимых медленных кальциевых каналов, через которые в клетку поступают ионы Са 2+ , обусловливающие развитие поздней части МДД и фазы ноль потенциала действия. Хотя допускается, что в это время возможно дополнительное поступление в клетку ионов Na+ через кальциевые каналы (кальций-натриевые каналы), но решающую роль в развитии самоускоряющейся фазы деполяризации и перезарядке мембраны играют входящие в пейсмекерную клетку ионы Са 2 +. Генерация потенциала действия развивается относительно медленно, так как вход ионов Са 2+ и Na+ в клетку происходит через медленные ионные каналы.

Перезарядка мембраны ведет к инактивации кальциевых и натриевых каналов и прекращению входа ионов в клетку. К этому времени нарастает выход из клетки ионов К+ через медленные потенциалзависимые калиевые каналы, открытие которых происходит при E кр одновременно с активацией упоминавшихся кальциевых и натриевых каналов. Выходящие ионы К+ реполяризуют и несколько гиперполяризуют мембрану, после чего их выход из клетки задерживается и таким образом процесс самовозбуждения клетки повторяется. Ионное равновесие в клетке поддерживается работой натрий-калиевого насоса и натрий-кальциевого обменного механизма. Частота возникновения потенциалов действия в пейсмекере зависит от скорости спонтанной деполяризации. При возрастании этой скорости частота генерации пейсмекерных потенциалов и частота сердечных сокращений увеличиваются.

Из СА-узла потенциал распространяется со скоростью около 1 м/с в радиальном направлении на миокард правого предсердия и по специализированным проводящим путям на миокард левого предсердия и к АВ-узлу. Последний сформирован теми же типами клеток, что и СА-узел. Они также обладают способностью самовозбуждаться, но в нормальных условиях она не проявляется. Клетки АВ-узла могут начать генерировать потенциалы действия и стать водителем ритма сердца, когда к ним не поступают потенциалы действия от СА-узла. В обычных условиях потенциалы действия, возникшие в СА-узле, проводятся через область АВ-узла к волокнам пучка Гиса. Скорость их проведения в области АВ-узла резко уменьшается и промежуток времени, необходимый для распространения потенциала действия, удлиняется до 0,05 с. Эту временную задержку проведения потенциала действия в области АВ-узла называют атриовентрикулярной задержкой.

Одной из причин АВ-задержки является особенность ионных и, прежде всего кальциевых ионных, каналов мембран клеток, формирующих АВ-узел. Это находит свое отражение в более низкой скорости МДД и генерации потенциала действия этими клетками. Кроме того, клетки промежуточного участка АВ-узла характеризуются более продолжительным периодом рефрактерности, превышающим по времени фазу реполяризации потенциала действия. Проведение возбуждения в области АВ-узла предполагает его возникновение и передачу с клетки на клетку, поэтому замедление этих процессов на каждой клетке, участвующей в проведении потенциала действия, обусловливает более длительное суммарное время проведения потенциала через АВ-узел.

АВ-задержка имеет важное физиологическое значение в установлении определенной последовательности предсердий и желудочков. В нормальных условиях систола предсердий всегда предшествует систоле желудочков и систола желудочков начинается сразу же после завершения систолы предсердий. Именно благодаря АВ-задержке проведения потенциала действия и более позднего возбуждения миокарда желудочков по отношению к миокарду предсердий, желудочки заполняются необходимым объемом крови, а предсердия успевают совершить систолу (прссистолу) и изгнать дополнительный объем крови в желудочки. Объем крови в полостях желудочков, накапливаемый к началу их систолы, способствует осуществлению наиболее эффективного сокращения желудочков.

В условиях, когда нарушена функция СА-узла или имеется блокада проведения потенциала действия от СА-узла к АВ-узлу, роль водителя ритма сердца может взять на себя АВ-узел. Очевидно, что вследствие более низких скоростей МДД и развития потенциала действия клеток этого узла частота генерируемых им потенциалов действия будет ниже (около 40- 50 в 1 мин), чем частота генерации потенциалов клетками С А-узла.

Время от момента прекращения поступления потенциалов действия от водителя ритма к АВ-узлу до момента проявления его называют преавтоматической паузой. Ее длительность обычно находится в пределах 5-20 с. В это время сердце не сокращается и чем короче преавтоматическая пауза, тем лучше для больного человека.

При нарушении функции СА- и АВ-узлов водителем ритма может стать пучок Гиса. При этом максимальная частота его возбуждений составит 30-40 в 1 мин. При такой частоте сокращений сердца даже в состоянии покоя у человека будут проявляться симптомы недостаточности кровообращения. Волокна Пуркинье могут генерировать до 20 импульсов в 1 мин. Из приведенных данных видно, что в проводящей системе сердца существует градиент автомашин — постепенное снижение частоты генерации потенциалов действия ее структурами по направлению от СА-узла к волокнам Пуркинье.

Преодолев АВ-узел, потенциал действия распространяется на пучок Гиса, затем на правую ножку, левую ножку пучка Гиса и ее ветви и достигает волокон Пуркинье, где скорость его проведения возрастает до 1-4 м/с и за 0,12-0,2 с потенциал действия достигает окончаний волокон Пуркинье, с помощью которых проводящая система взаимодействует с клетками сократительного миокарда.

Волокна Пуркинье сформированы клетками, имеющими диаметр 70-80 мкм. Полагают, что это является одной из причин того, что скорость проведения потенциала действия данными клетками достигает наиболее высоких значений — 4 м/с по сравнению со скоростью в любых других клетках миокарда. Время проведения возбуждения по волокнам проводящей системы, связывающим СА- и АВ-узлы, АВ-узлу, пучку Гиса, его ножкам и волокнам Пуркинье до миокарда желудочков определяет продолжительность интервала РО на ЭКГ и колеблется в норме в пределах 0,12-0,2 с.

Не исключается, что в передаче возбуждения с волокон Пуркинье на сократительные кардиомиоциты принимают участие переходные клетки, характеризующиеся как промежуточные между клетками Пуркинье и сократительными кардиомио- цитами, структурой и свойствами.

В скелетной мышце к каждой клетке поступает потенциал действия по аксону мотонейрона и после сииаптической передачи сигнала на мембране каждого миоцита генерируется собственный потенциал действия. Взаимодействие волокон Пуркинье и миокарда совершенно иные. По всем волокнам Пуркинье к миокарду предсердий и обоих желудочков проводится потенциал действия, возникший в одном источнике — водителе ритма сердца. Этот потенциал проводится в точки контакта окончаний волокон и сократительных кардиомиоцитов в субэндокардиальной поверхности миокарда, но не к каждому миоциту. Между волокнами Пуркинье и кардиомиоцитами отсутствуют синапсы и нейромедиаторы и возбуждение может быть передано с проводящей системы на миокард через ионные каналы щелевых контактов.

Возникающий в ответ на мембранах части сократительных кардиомиоцитов потенциал проводится по поверхности мембран и по Т-трубочкам внутрь миоцитов с помощью локальных круговых токов. Потенциал передается также соседним клеткам миокарда через каналы щелевых контактов вставочных дисков. Скорость передачи потенциала действия между миоцитами достигает в миокарде желудочков 0,3-1 м/с, что способствует синхронизации сокращения кардиомиоцитов и более эффективному сокращению миокарда. Нарушение передачи потенциалов через ионные каналы щелевых контактов может быть одной из причин десинхронизации сокращения миокарда и развития слабости его сокращения.

В соответствии со строением проводящей системы потенциал действия достигает первоначально верхушечной области межжелудочковой перегородки, сосочковых мышц, верхушки миокарда. Возникшее в ответ на поступление этого потенциала в клетках сократительного миокарда возбуждение распространяется в направлениях от верхушки миокарда к его основанию и от эндокардиальной поверхности к эпикардиальной.

Функции проводящей системы

Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Возбуждение распространяется по предсердиям со скоростью 1 м/с, достигая атриовентрикулярного узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и атриовентрикулярным узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих проводящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В атриовентрикулярном узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения (построен по принципу синапса) возникает некоторая задержка проведения возбуждения (скорость распространения составляет 0,2 м/с). Вследствие задержки возбуждение доходит до атриовентрикулярного узла и волокон Пуркинье лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждение в пучке Гиса и в волокнах Пуркинье достигает 4,5-5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т.е. синхронно. Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через атриовентрикулярный пучок, а по клеткам рабочего миокарда, т.е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались бы в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности. Это не позволило бы создать достаточного давления, обеспечивающего выброс крови в аорту.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца:

  • спонтанную деполяризацию;
  • ритмическую генерация импульсов (потенциалов действия);
  • необходимую последовательность (координацию) сокращений предсердий и желудочков;
  • синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА (systema conducens cardiacum , LNH; син. сердечная проводящая система ) - комплекс анатомических образований (узлов, пучков и волокон), обладающих способностью генерировать импульс сердечных сокращений и проводить его ко всем отделам миокарда предсердий и желудочков, обеспечивая их координированные сокращения.

Анатомия

Рис. 1. Схематическое изображение проводящей системы сердца: 1 - ветви правой ножки атриовентрикулярного пучка; 2 - правая ножка атриовентрикулярного пучка; 3 - атриовентрикулярный узел; 4 - передний межузловой пучок; 5 - задний межузловой пучок; 6 - пучки, направленные к ушку правого предсердия и нижней полой вене; 7 - синусно-предсердный узел; 8 - пучок, идущий к верхней полой вене; 9 - задний межвенозный пучок (обозначен пунктиром); 10 - пучок, идущий к левому предсердию и устьям легочных вен; 11 - пучок, идущий к ушку левого предсердия; 12 - атриовентрикулярный пучок; 13 - левая ножка атриовентрикулярного пучка.

В П. с. с. выделяют две взаимосвязанные части: синусно-предсердную и атриовентрикулярную (предсердно-желудочковую). К синусно-предсердной части относят синусно-предсердный узел (nodus sinuatrialis) с отходящими от него пучками сердечных проводящих миоцитов. Атриовентрикулярная часть представлена атриовентрикулярным узлом (nodus atrioventricularis), пучком Гиса, или атриовентрикулярным пучком (предсердно-желудочковый пучок, Т.; fasc. atrioventricularis) с его левой и правой ножками и периферическими разветвлениями - проводящими волокнами Пуркинье (myofibrae conducentes purkinjienses). На рис. 1 представлена схема проводящей системы сердца.

Эмбриология

Формирование основных элементов П. с. с. у эмбриона начинается на стадии трубчатого сердца, в, к-ром, по данным Венинка (А. С. G. Wenink, 1976), кроме будущего сократительного миокарда, имеются еще четыре морфологически специализированных мышечных кольца: бульбовентрикулярное, атриовентрикулярное, синоатриальное и трункобульбарное. Из этих колец в процессе петлеобразования и формирования камер сердца развиваются все компоненты П. с. с. Бульбовентрикулярное кольцо участвует в образовании атриовентрикулярного пучка и его ножек, атриовентрикулярное - в формировании атриовентрикулярного узла и пучка, синоатриальное кольцо дает начало синусно-предсердному и атриовентрикулярному узлам. Из трункобульбарного кольца формируются структуры, функционирующие только в сердце эмбрионов.

Распространенная ранее теория Молла (F. P. Mall, 1912), согласно к-рой П. с. с. представляет остаток аурикулярного канала, в настоящее время признана несостоятельной.

Синусно-предсердный узел (nodus sinuatrialis), описанный в 1906 г. Кисом и Флеком (A. Keith, М. Flack), является генератором импульсов возбуждения сердечных сокращений (см. Автоматия). Он расположен на верхней поверхности правого предсердия между устьем верхней полой вены и ушком правого предсердия. Узел всегда выявляется макроскопически. Длина его 8-26 мм, ширина 4-13 мм, толщина 1-3 мм. Связанные с узлом пучки сердечных проводящих миоцитов проводят возбуждение к миокарду различных отделов предсердий и атриовентрикулярному узлу. Выделяют пучки, направленные к верхней и нижней полым венам, задний межвенозный пучок, описанный в 1906-1907 гг. Венкебахом (К. F. Wenckebach), передний и задний межузловые пучки, последний был описан в 1909 г. Торелем (Ch. Thorel). Пучок, проводящий возбуждение от узла к левому предсердию и устьям легочных вен, описал в 1913 г. Ю. Тандлер, а пучок, направленный к ушку левого предсердия, обнаружил в 1916 г. Бахманн (J. G. Bachmann). Размеры и положение пучков индивидуально изменчивы, они не всегда выявляются макроскопически, хотя всегда могут быть обнаружены с помощью гистологических методов исследования (см.).

Рис. 2. Макропрепарат сердца с отпрепарированной левой ножкой пучка Гиса (полость левого желудочка вскрыта): левая ножка (1) пучка Гиса разделяется на переднюю (2), две промежуточные (3) и заднюю (4) ветви.

Атриовентрикулярный узел (nodus atrioventricularis) был описан в 1906 г. Таварой (S. Tawara) и Л. Ашоффом. Он располагается в правом фиброзном треугольнике у передневерхней части устья синуса полых вен ниже прикрепления перегородочной створки трехстворчатого клапана. Атриовентрикулярный узел, так же как пучок Гиса и его ножки, всегда выявляется макроскопически (рис. 2). Форма узла чаще округлая. Длина его 3-15 мм, ширина 1-7 мм, толщина 0,5-2 мм. От узла отходит пучок Гиса, который проникает через правый фиброзный треугольник в перепончатую часть межжелудочковой перегородки, разделяясь у верхнего края ее мышечной части на левую и правую ножки. Часть пучка на протяжении от узла до начала деления на ножки называют стволом (truncus), длина его 3-20 мм. Положение пучка в межжелудочковой перегородке индивидуально изменчиво. Левая ножка (crus sinistrum) пучка Гиса длиной 5-27 мм и шириной у места отхождения от ствола 1,5-15 мм располагается под эндокардом на левой поверхности межжелудочковой перегородки и разделяется на одном уровне на 2-4 ветви (rr. cruris), которые переходят в проводящие мышечные волокна Пуркинье. Правая ножка (crus dextrum) располагается под эндокардом на правой поверхности межжелудочковой перегородки в виде одного, значительно более тонкого, чем левая ножка, ствола, от к-рого на всем протяжении отходят ветви к миокарду правого желудочка.

Описаны также добавочные проводящие тракты - пучки Кента, Джеймса, волокна Махейма, которые макроскопически не выявляются.

Кровоснабжение

Синусно-предсердный узел получает артериальную кровь из ветви синусно-предсердного узла (r. nodi sinuatrialis), отходящей чаще от правой коронарной (венечной, Т.) артерии, реже от огибающей ветви (r. circumflexus) левой коронарной артерии. Капиллярная сеть, образованная артериолами, отходящими от ветви синусно-предсердного узла, ориентирована по ходу волокон. Посткапиллярные венулы, образующие густую сеть, формируют 1-3 вены диаметром до 0,5 мм, впадающие в вены стенки верхней полой вены, в вены ушка правого предсердия. Пучки сердечных проводящих миоцитов, связанные с синусно-предсердным узлом, васкуляризируются от близлежащих ветвей коронарных артерий. Кровь в атриовентрикулярный узел поступает из ветви атриовентрикулярного узла (r. nodi atrioventricularis), отходящей чаще от правой коронарной артерии и очень редко от огибающей ветви (r. circumflexus) левой коронарной артерии. Отток венозной крови из узла происходит по посткапиллярам и венулам в дренирующие вены, идущие к венечному синусу сердца (sinus coronarius) и к средней вене сердца (v. cordis media). К стволу атриовентрикулярного пучка и его ножкам подходят мелкие артерии и артериолы, идущие от артерии, снабжающей кровью атриовентрикулярный узел, а также от первой перегородочной межжелудочковой ветви (r. mterventricularis septalis I) и передней межжелудочковой ветви (r. interventricularis anterior) левой коронарной артерии. Плотность артериол в атриовентрикулярном узле в 10 раз меньше, чем в пучке. Венозный отток из узла и пучка осуществляется по мелким венам к большой вене сердца (v. cordis magna). Артериолы и венулы в атриовентрикулярном пучке расположены параллельно сердечным проводящим миоцитам. По данным Ван-дер-Хауарта, Струбандта, Верхаге (L. G. Van der Hauwaert, R. Stroobandt, L. Verhaeghe, 1972), анастомозы между сосудистыми образованиями П. с. с. и сосудами межжелудочковой перегородки отсутствуют.

Лимфоотток

Лимф. сосуды и капилляры в атриовентрикулярном узле обнаружил в 1909 г. Карран (E. J. Curran), а в 1976 г. Элиш ка и Элишкова (О. Eliska, М. Eliskova) нашли их в синусно-предсердном узле. По лимф. сосудам лимфа оттекает из П. с. с. к трахеобронхиальным или средостенным лимф. узлам.

Иннервация

П. с. с. иннервируется многочисленными симпатическими, парасимпатическими и чувствительными нервными волокнами интракардиального нервного сплетения (см. Внутрисердечная нервная система ; Сердце , анатомия).

Гистология

В состав образований П. с. с., помимо специализированных кардиомиоцитов, входят нервные элементы (нервные стволы различной толщины, состоящие из миелиновых и безмиелиновых нервных волокон, нервные окончания), соединительная ткань с сосудами. В отличие от сократительного миокарда для П. с. с. характерно количественное преобладание соединительнотканных и нервных элементов над мышечными и сосудистыми. По данным Труэкса (R. Truex) с соавт. (1974), кардиомиоциты П. с. с. при общепринятых гистол. окрасках выглядят светлее, чем клетки сократительного миокарда и отличаются от них по размерам. С помощью электронно-микроскопических исследований установлено, что в этих клетках хорошо развиты комплекс Гольджи (см. Гольджи комплекс), локализующийся около ядра или субсарколеммально, зернистая и незернистая эндоплазматическая сеть (см. Эндоплазматический ретикулум), рибосомы (см.); имеются мелкие округлые митохондрии (см.), небольшое количество лизосом (см.), содержатся гранулы гликогена. Характерной особенностью специализированных кардиомиоцитов является наличие туннелевидных инвагинаций сарколеммы, содержащих соединительнотканные и нервные элементы, выраженных субсарколеммальных цистерн, комплекса миофиламентов с полирибосомами. В зависимости от размера, формы клеток, количества и положения миофибрилл выделяют четыре типа специализированных кардиомиоцитов. Клетки I, II, III типов обнаружены в составе П. с. с. практически у всех млекопитающих, в т. ч. и у человека. Они имеют меньший размер, чем клетки сократительного миокарда. К клеткам I типа относят кардиомиоциты веретеновидной формы, которые по сравнению с кардиомиоцитами сократительного миокарда содержат меньшее количество неправильно ориентированных миофибрилл. Кардиомиоциты II типа имеют неправильную отростчатую форму, содержат примерно такое же количество миофибрилл, как и клетки сократительного миокарда, но в отличие от последнего миофибриллы в кардиомиоцитах II типа расположены беспорядочно.

К кардиомиоцитам III типа относят клетки веретеновидной формы с малым количеством упорядоченно расположенных вдоль длинной оси клетки миофибрилл и большим количеством гранул гликогена. Клетки IV типа (клетки Пуркинье) встречаются лишь у некоторых видов животных. У большинства млекопитающих и человека имеются клетки, подобные клеткам Пуркинье, которые сходны с клетками Пуркинье по функциональным показателям.

Разные части П. с. с. содержат различные типы специализированных кардиомиоцитов. Синусно-предсердный узел состоит из клеток I и II типов, атриовентрикулярный узел - из клеток II и III типов, пучок Гиса содержит клетки всех типов, ножки этого пучка и его концевые разветвления состоят из клеток III типа и клеток, подобных клеткам Пуркинье, или только из последних.

Различают несколько видов контактов между кардиомиоцитами П. с. с. С помощью вставочных дисков и нексусов контактируют между собой гл. обр. клетки II типа, а также клетки III типа. Между клетками I типа эти контакты редки, для них характерны простые контакты. Простые контакты встречаются также и между всеми другими типами кардиомиоцитов П. с. с.

Функциональное значение

П. с. с. определяет частоту, последовательность и силу сокращений сердца. Пусковым механизмом сокращения миокарда является импульс возбуждения, возникающий в специализированных пейсмекерных (см. Пейсмекер) кардиомиоцитах I типа, входящих в состав синусно-предсердного узла. Этот импульс возникает в узле через равные промежутки времени от 60 до 80 раз в 1 мин. В норме синусно-предсердный узел является водителем сердечного ритма. Из узла импульс возбуждения распространяется со скоростью 0,8-1 м/сек по пучкам сердечных проводящих миоцитов к кардиомиоцитам сократительного миокарда предсердий и к атриовентрикулярному узлу. В проведении импульса по пучкам участвуют медленнопроводящие кардиомиоциты II типа. Из атриовентрикулярного узла импульс возбуждения со скоростью 1 - 1,5 м/сек проходит по быстропроводящим кардиомиоцитам III типа и пуркиньеподобным клеткам пучка Гиса и его ножек и затем со скоростью 3-5 м/сек- по их ветвям и проводящим волокнам Пуркинье к кардиомиоцитам сократительного миокарда желудочков сердца (см. также Сердце , физиология) .

Патология

Пороки развития П. с. с. могут возникать вследствие нарушения формирования межжелудочковой перегородки, при этом двойной контакт бульбовентрикулярного и атриовентрикулярного колец может привести к образованию двух (переднего и заднего) раздельных атриовентрикулярных узлов. Аномальные связи между другими специализированными мышечными кольцами приводят к возникновению ряда дополнительных проводящих структур, описанных в 1976 г. Венинком у некоторых животных и человека: ретроаортального узла, узлоподобных структур в межпредсердной перегородке, проводящих элементов атриовентрикулярного кольца. Исследования Андерсона (R. Н. Anderson) с соавт. (1977) показали, что нарушение нормальной связи предсердного и желудочкового миокарда при отделении атриовентрикулярного узла от одноименного пучка может привести к врожденной полной блокаде сердца, а наличие дополнительных проводящих путей (пучок Кента) между предсердиями и желудочками, идущих в обход атриовентрикулярного пучка, может способствовать развитию синдрома Вольффа - Паркинсона - Уайта (см. Вольффа-Паркинсона-Уайта синдром). При наличии пучка Джеймса, соединяющего миокард предсердия со стволом атриовентрикулярного пучка, или волокон Махейма, соединяющих ствол атриовентрикулярного пучка с миокардом желудочков, могут развиваться различные формы синдрома преждевременного возбуждения желудочков.

Приобретенная патология П. с. с. может возникать при функциональных или органических ее повреждениях (воспалении, ишемии, некрозе, дистрофии). В зависимости от уровня, степени и характера поражения П. с. с. развиваются различного типа нарушения нормальной координации сокращений между различными участками миокарда или отделами сердца (см. Аритмии сердца , Блокада сердца , Мерцательная аритмия , Пароксизмальная тахикардия , Сердце , патология, Экстрасистолия),

Библиография: Братанов В. С. Индивидуальные и возрастные особенности топографии предсердно-желудочковой проводящей системы человека, Вестн. хир., т. 105, № 10, с. 22, 1970; Михайлов С. С. и Ч укбар А. В. Топография элементов проводящей системы сердца человека, Арх. анат., гистол, и эмбриол., т. 44, № 6, с. 56, 1982; У м о-в и с т В. Н. Проводящая система при врожденных дефектах перегородок сердца, Киев, 1973, библиогр.; X у б у-тия Б. И., Ермолова 3. С. и Телятников С. С. Хирургическая анатомия проводящей системы сердца, Грудн. хир., № 1, с. 41, 1975; Ч е р в о-в а И. А. и Павлович Е. Р. Морфология основных отделов проводящей системы сердца крысы, Арх. анат., гистол, и эмбриол., т. 77, № 8, с. 67, 1979; А п-d er son R. Н. а. о. Congenitally complete heart block, developmental aspects, Circulation, v. 56, p. 90, 1977; В 1 о о г С. М. Cardiac pathology, Philadelphia, 1978; Brechenmacher C. Atrio-His bundle tracts, Brit. Heart J.* v. 37, p. 853, 1975; В u г с h e 1 1 H. B. In support of Kent, J. thorac. cardiovasc. Surg., v. 79, p. 637, 1980; The conduction system of the heart, Structure, function and clinical implications, ed. by H. J. Wel-lens a. o., p. 55, Leiden, 1976; D a-v i e s M. J. Pathology of conducting tissue of the heart, L., 1971; E 1 i s k a O. a. E 1 i s k о у a M. Venous circulation of the human cardiac conduction system, Brit. Heart J., v. 42, p. 508, 1979; они ж e, Lymphatic drainage of the ventricular conduction system in man and in the dog, Acta anat., v. 107, p. 205, 1980; Gardner E. a. O’ R a h i 1 1 у R. The nerve supply and conducting system of the human heart at the end of the embryonic period proper, J. Anat., v. 121, p. 571, 1976; Michailow S. Neue anatomische Forschungsergebnisse vom Nerven- und Reizleitungssystem des Herzens, S. 84, Stuttgart, 1974; Navaratnam V. The human heart and circulation, L.- N. Y., 1975; Osterwalder B. a. Schneider J. Morphologische Untersuchungen am menschlichen Reizleitungs, в кн.: Probleme der Medizin in der Ud SSR, hrsg. v. V. Parin u. L. Staroselsij, system, Schweiz, med. Wschr., S. 953, 1976; Sherf L. a. James Th. N. Fine structure of cells and their histologic organization within internodal pathways of the heart, clinical and electrocardiographic implications, Amer. J. Cardiol., v. 44, p. 345, 1979; Van der Hauwaert L. G., Stroobandt R. a. Yerhaeghe L. Arterial blood supply of the atrioventricular node and main bundle, Brit. Heart J., v. 34, p. 1045, 1972; Wenink A. C. G. Development of the human cardiac conducting system, J. Anat., v. 121, p. 617, 1976.

С. С. Михайлов, И. А. Червова.


Когда-то были описаны удивительные клетки, их обнаружил крупнейший чешский физиолог и естествоиспытатель Ян Пуркинье (рис. 1), впоследствии они получили его имя. Клетки Пуркинье при изучении под микроскопом имеют в своем составе актиновые и миозиновые нити, что делает их сходными с миоцитами, но нити эти не лежат одна над другой и неспособны к упорядоченному взаимодействию, как в кардиомиоцитах. К тому же их мало, и куда больше цитоплазмы, перенасыщенной ионами кальция. Высокая концентрация кальция и некоторые другие электролитные характеристики наделяют эти необычные клетки способностью самостоятельно создавать электрические сигналы, что роднит их с нейронами. Благодаря чему, в сердце существует весьма представительная группа клеток, способных к периодическому самопроизвольному возбуждению.

Рис.1. Ян Пуркинье


Клетки Пуркинье структурно расположены по всему миокарду. Существует три скопления этих клеток (рис. 2). Первое - синоатриальный узел (1), связано с мышечной системой левого и правого предсердий , это скопление клеток Пуркинье находится под эпикардом. Второе скопление - атриовентрикулярный узел (2) находится в стенке правого предсердия, в той части, где проходит граница между правым предсердием и правым желудочком. Третье - пучок Гиса , оно имеет вытянутую форму (3), и находится в межжелудочковой перегородке, начинается пучок от второго скопления - атриовентрикулярного узла, затем оно расходится на две части (ножки пучка Гиса ), которые (4) образуют ветвящуюся сеть в левом и правом желудочке , это ветвление носит название волокон Пуркинье (5).


Рис.2. Строение проводящей системы сердца


Наибольшим значением обладает синоатриальный узел, его также называют «водителем ритма». Но все чаще можно услышать другое его обозначение, пришедшее из английского языка: пейсмекер, то есть «тот, кто задает темп». Так вот, клетки пейсмекера создают импульсы частота которых колеблется в пределах 60-80 в минуту, за счёт этого они и «задают темп» всему сердцу, подобная частота соответствует пульсу здорового человека. Импульс создает возбуждение, которое охватывает предсердия, данные полости синхронно сокращаются. Дальше возбуждение доходит до второго скопления клеток Пуркинье - атриовентрикулярного узла, передается на пучок Гиса, затем на его ножки, и разбегается за счет волокон Пуркинье по миокарду желудочков. В ответ на импульс, желудочки синхронно сокращаются. Как выяснилось, в случае выпадения в силу каких-либо причин синоатриального узла из работы, роль пейсмекера берет на себя следующее звено проводящей системы - атриовентрикулярный узел, правда, он способен к созданию импульсов с частотой 40-50 в мин. Если поражается и он, то пучок Гиса берет в свои руки «командование парадом», хотя его возможности ограничиваются в среднем 30 импульсами в минуту. Наконец, последним звеном, способным, задыхаясь, управлять слабеющим сердцем, оказываются сами волокна Пуркинье, возбуждающиеся около 20 раз в минуту.

Карагандинский государственный медицинский университет

Кафедра: анатомии

Дисциплина: анатомия-2

На тему: "Узлы и пучки проводящей системы сердца"

Выполнил: Паливода Д.С.

Проверила: Баймагомбетова Д.Д.

Караганда 2012

Проводящая система сердца

Электрическая ось сердца

Волокна Пуркинье

Заключение

Проводящая система сердца

Сердце как орган, работающий в системе постоянного автоматизма, включает в себя проводящую систему сердца, systema conducens cordis, координирующую, корригирующую и обеспечивающую его автоматизм с учетом сокращения мускулатуры отдельных камер.

Проводящая система сердца состоит из узлов и проводящих путей (пучков). Эти пучки и узлы, сопровождаемые нервами и их разветвлениями, служат для передачи импульсов с одного отдела сердца на другие, обеспечивая последовательность сокращений миокарда отдельных камер сердца.

У места впадения верхней полой вены в правое предсердие, между веной и правым ушком, располагается синусно-предсердный узел, nodus sinuatrialis. Волокна от этого узла идут вдоль пограничного гребня, т.е. по границе, разделяющей правое ушко и синус полых вен, и окружают проходящий здесь артериальный стволик, направляясь к миокарду предсердий и к предсердно-желудочковому узлу.

Мускулатура предсердий в основном изолирована от мускулатуры желудочков. Исключение составляет пучок волокон, начинающийся в межпредсердной перегородке в области венечного синуса сердца. Этот пучок состоит из волокон с большим количеством саркоплазмы и небольшим количеством миофибрилл. В состав пучка входят и нервные волокна, они направляются к межжелудочковой перегородке, проникая в ее толщу.

В пучке различают утолщенную начальную часть - предсердно-желудочковый узел, nodus atrioventricularis, переходящий в более тонкий предсердно-желудочковый пучок, fasciculus atrioventricularis. Начальная часть пучка - ствол, truncus, направляется к межжелудочковой перегородке, проходит между обоими фиброзными кольцами и у верхнезаднего отдела мышечной части перегородки делится на правую и левую ножки.

Правая ножка, crux dextrum, короткая и более тонкая, следует по перегородке со стороны полости правого желудочка к основанию передней сосочковой мышцы и в виде сети тонких волокон распространяется в мышечном слое желудочка.

Левая ножка, crus sinistrum, шире и длиннее правой, располагается по левой стороне межжелудочковой перегородки, в своих начальных отделах залегает более поверхностно, ближе к эндокарду. Направляясь к основанию сосочковых мышц, она рассыпается на тонкую сеть волокон, образующих переднюю и заднюю ветви, распространяющиеся в миокарде левого желудочка.

проводящая узел пучок сердце

Внутренняя оболочка сердца, или эндокард. Эндокард, endocardium, образована из эластических волокон, среди которых располагаются соединительнотканные и гладкомышечные клетки. Со стороны полости сердца эндокард покрыт эндотелием.

Эндокард выстилает все камеры сердца, плотно сращен с подлежащим мышечным слоем, следует за всеми его неровностями, образуемыми мясистыми трабекулами, гребенчатыми и сосочковыми мышцами, а также их сухожильными выростами.

На внутреннюю оболочку отходящих от сердца и впадающих в него сосудов - полых и легочных вен, аорты и легочного ствола - эндокард переходит без резких границ. В предсердиях эндокард толще, чем в желудочках, особенно в левом предсердии, и тоньше там, где покрывает сосочковые мышцы с сухожильными хордами и мясистые трабекулы.

В наиболее истонченных участках стенок предсердий, где в их мышечном слое образуются промежутки, эндокард близко соприкасается и даже срастается с эпикардом. В области фиброзных колец предсердно-желудочковых отверстий, а также отверстий аорты и легочного ствола эндокард путем удвоения своего листка - дупликатуры эндокарда - образует створки предсердно-желудочковых клапанов и полулунные клапаны легочного ствола и аорти. Волокнистая соединительная ткань между обоими листками каждой из створок и полулунных заслонок соединена с фиброзными кольцами и таким образом фиксирует к ним клапаны.

Расположение элементов проводящей системы сердца

Синоатриальный узел

Атриовентрикулярный узел

Пучок Гиса

Левая ножка пучка Гиса

Левая передняя ветвь

Левая задняя ветвь

Левый желудочек

Межжелудочковая перегородка

Правый желудочек

Правая ножка пучка Гиса

Основную массу сердца составляет миокард. Его образуют отдельные мышечные волокна, соединённые последовательно с помощью вставочных дисков - нексусов, обладающих незначительным электрическим сопротивлением, и тем самым обеспечивающие функциональное единство миокарда. Кроме сократительных волокон в миокарде имеется особая система мышечных единиц, способных к генерации спонтанной ритмической активности, распространению возбуждения по всем мышечным слоям и координации последовательности сокращения камер сердца. Эти специализированные мышечные волокна образуют проводящую систему сердца. Проводящая система сердца включает в себя:

Синоатриальный (синусно-предсердный, синусовый, Ашоффа-Товара) узел - центр автоматизма (пейсмекер) первого порядка, расположенный в месте впадения полых вен в правое предсердие. Он генерирует 60 - 80 импульсов в минуту;

Межузловые проводящие тракты Брахмана, Векенбаха и Тореля;

Атриовентрикулярный (предсердно-желудочковый) узел, расположенный справа от межпредсердной перегородки рядом с устьем коронарного синуса (вдаваясь в перегородку между предсердиями и желудочками), и атриовентрикулярное соединение (место перехода АВ узла в пучок Гиса). Они являются пейсмекерами второго порядка и генерируют 40 - 50 импульсов в минуту;

Пучок Гиса, берущий начало от АВ узла и образующий две ножки, и волокна Пуркинье - пейсмекеры третьего порядка. Они вырабатывают около 20 импульсов в минуту.

Сокращение сердечной мышцы называется систолой, а её расслабление - диастолой. Систола и диастола четко согласованы во времени и вместе они составляют сердечный цикл, общая продолжительность которого составляет 0,6 - 0,8 с. Сердечный цикл имеет три фазы: систола предсердий, систола желудочков и диастола. Началом каждого цикла считается систола предсердий, длящаяся 0,1 с. При этом волна возбуждения, генерируемая синоатриальным узлом, распространяется по сократительному миокарду предсердий (сначала правого, затем обоих и на заключительном этапе - левого), по межпредсердному пучку Бахмана и межузловым специализированным трактам (Бахмана, Венкебаха, Тореля) к атриовентрикулярному узлу. Основное направление движения волны деполяризации предсердий (суммарного вектора) - вниз и влево. Скорость распространения возбуждения составляет 1 м/с. Далее поток возбуждения достигает атриовентрикулярного (АВ) узла. Возбуждение через него может проходить только в одном направлении, ретроградное проведение импульса невозможно. Так достигается направленность движения процесса возбуждения, и как следствие, координированность работы желудочков и предсердий. При прохождении через АВ узел импульсы задерживаются на 0,02 - 0,04 с, скорость распространения возбуждения при этом составляет не более 2-5 см/с. Функциональное значение этого явления состоит в том, что за время задержки успевает завершиться систола предсердий и их волокна будут находиться в фазе рефрактерности. По окончании систолы предсердий начинается систола желудочков, длительность которой 0,3 с. Волна возбуждения пройдя АВ-узел быстро распространяется по внутрижелудочковой проводящей системе. Она состоит из пучка Гиса (предсердно-желудочкового пучка), ножек (ветвей) пучка Гиса и волокон Пуркинье. Пучок Гиса делится на правую и левую ножки. Левая ножка вблизи от основного ствола пучка Гиса разделяется на два разветвления: передне-верхнее и задне-нижнее. В ряде случаев имеется третья, срединная ветвь. Конечные разветвления внутрижелудочковой проводящей системы представлены волокнами Пуркинье. Они располагаются преимущественно субэндокардиально и непосредственно связаны с сократительным миокардом. Скорость распространения возбуждения по пучку Гиса составляет 1 м/с, по его ветвям - 2-3 м/с, а по волокнам Пуркинье - до 3-4 м/с. Большая скорость способствует почти одновременному охвату желудочков волной возбуждения. Возбуждение идет от эндокарда к эпикарду. Суммарный вектор деполяризации правого желудочка направлен вправо и вперед. После вступления в процесс возбуждения левого желудочка суммарный вектор сердца начинает отклоняться вниз и влево, а затем по мере охвата все большей массы миокарда левого желудочка он отклоняется все больше влево. После систолы желудочков миокард желудочков начинает расслабляться и наступает диастола (реполяризация) всего сердца, которая продолжается до следующей систолы предсердий. Суммарный вектор реполяризации имеет то же направление, что и вектор деполяризации желудочков. Из вышесказанного следует, что в процессе сердечного цикла суммарный вектор, постоянно изменяясь по величине и ориентации, большую часть времени направляет сверху и справа вниз и влево. Проводящая система сердца обладает функциями автоматизма, возбудимости, и проводимости.

Автоматизм - способность сердца вырабатывать электрические импульсы, вызывающие возбуждение. В норме наибольшим автоматизмом обладает синусовый узел.

Проводимость - способность проводить импульсы от места их возникновения до миокарда. В норме импульсы проводятся от синусового узла к мышце предсердий и желудочков.

Возбудимость - способность сердца возбуждаться под влиянием импульсов. Функцией возбудимости обладают клетки проводящей системы и сократительного миокарда.

Важными электрофизиологическими процессами являются рефрактерность и аберрантность.

Рефрактерность - это невозможность клеток миокарда снова активизироваться при возникновении дополнительного импульса. Различают абсолютную и относительную рефрактерность. Во время относительного рефрактерного периода сердце сохраняет способность к возбуждению, если сила поступающего импульса сильнее, чем обычно. Абсолютный рефрактерный период соответствует комплексу QRS и сегменту RS-T, относительный - зубцу Т. Во время диастолы рефрактерность отсутствует. Аберрантность - это патологическое проведение импульса по предсердиям и желудочкам. Аберрантное проведение возникает в тех случаях, когда импульс, чаще поступающий в желудочки, застает проводящую систему в состоянии рефрактерности. Таким образом, электрокардиография позволяет изучать функции автоматизма, возбудимости, проводимости, рефрактерности и аберрантности. О сократительной функции по электрокардиограмме можно получить лишь косвенное представление.

Электрическая ось сердца

Сердце имеет так называемую электрическую ось, представляющую собой направление распространения процесса деполяризации в сердце. Электрическая ось сердца определяется состоянием пучка Гиса и мышцы желудочка и до некоторой степени анатомической позицией сердца. Последнее особенно важно для определения электрической оси здорового сердца. Электрическая ось в норме направлена от основания к верхушке почти параллельно анатомической оси сердца. Ее направление зависит в основном от следующих факторов: положения сердца в грудной клетке, соотношения массы миокарда желудочков, нарушения проведения импульса к желудочкам и очаговых поражений миокарда. В настоящее время большинство авторов выделяет пять вариантов положения электрической оси сердца, определяемых во фронтальной плоскости: нормальное, вертикальное, отклонение вправо, горизонтальное и отклонение влево. Все эти варианты могут быть выражены количественно в градусах угла α (рис.2.9). При нормальном положении электрической оси сердца угол α находится в пределах от +30о до +70о. При вертикальном положении электрической оси, обусловленном небольшим поворотом его вправо, угол α находится в пределах от +70о до +90о. Более значительный поворот электрической оси вправо с углом α от +90о до +180о называется отклонением оси сердца вправо. Значительное отклонение оси сердца вправо, обычно встречается при патологии. Оно может наблюдаться при вертикальном положении сердца, блокаде правой ножки пучка Гиса, гипертрофии правого желудочка, инфаркте передней стенки, декстрокардии, смещении вниз диафрагмы (при эмфиземе легких, инспирации).

Варианты положения электрической оси сердца, выраженные в градусах угла α. При горизонтальном положении электрической оси сердца угол α колеблется в пределах от +30о до 0о. Отклонением электрической оси влево считается такое ее положение, когда угол α становится отрицательным (когда средний вектор находится между 0о и - 90о). Заметное отклонение оси влево обычно встречается при патологии. Оно может быть результатом горизонтального положения сердца, блокады левой ножки пучка Гиса, синдрома преждевременного возбуждения желудочков, гипертрофии левого желудочка, верхушечного инфаркта миокарда, кардиомиопатии, некоторых врожденных заболеваний сердца, смещения вверх диафрагмы (при беременности, асцитах, внутрибрюшных опухолях).

Синусно-предсердный синоатриальный узел (синоатриальный узел Киса-Флака, пейсмекер)

Автоматизм сердца - это его способность ритмически сокращаться под влиянием возникающих в нем самом (в клетках его проводящей системы) импульсов. Генератором этих импульсов является синусно-предсердныи узел, в клетках которого возникает потенциал действия (около 90 - 100 мВ), передающийся соседним клеткам проводящей системы, а с них - через вставочные диски на рабочие кардиомиоциты. Возбуждение распространяется по миокарду. Вначале сокращаются предсердия, а затем желудочки.

Синоатриальный (синусно-предсердный) узел расположен в правом предсердии у места впадения верхней полой вены. Этот узел является рудиментарным остатком венозного синуса низших позвоночных. Он состоит из небольшого числа беспорядочно расположенных сердечных мышечных волокон, бедных миофибрилами и иннервированных окончаниями вегетативных нейронов.

В клетках синоатриального узла за счет разности концентраций ионов поддерживается мембранный потенциал около - 90 мВ. Мембране этих клеток всегда свойственна высокая проницаемость для натрия, поэтому ионы натрия непрерывно диффундируют внутрь клетки. Поступление ионов натрия ведет к деполяризации мембраны, в результате чего в клетках, соседствующих с синоатриальным узлом, возникают распространяющиеся потенциалы действия. Волна возбуждения проходит по мышечным волокнам сердца и заставляет их сокращаться. Синоатриальный узел называют водителем сердечного ритма (пейсмекером), так как именно в нем зарождается каждая волна возбуждения, которая, в свою очередь, служит стимулом для зарождения следующей волны.

Раз начавшись, сокращение распространяется по стенкам предсердия через сеть сердечных мышечных волокон со скоростью 1 м/с. Оба предсердия сокращаются более - менее одновременно. Мышечные волокна предсердий и желудочков полностью разделены соединительнотканной предсердно - желудочковой перегородкой, и связь между ними осуществляется только в одном участке правого предсердия - атриовентрикулярном узле.

Схема. Влияние управляющих сигналов, поступающих по волокнам симпатических нервов (1) и по волокнам парасимпатических нервов (2), соответствующих медиаторов или гуморальных активных веществ на электрическую активность синоатриального узла.

На верхней части рисунка (1) изображены два процесса. Ритмическое самовозбуждение синоатриального узла в условиях отсутствия внешних воздействий - кривая черного цвета. Ритмическое самовозбуждение синоатриального узла в условиях раздражения симпатических нервных волокон - кривая красного цвета. Горизонтальный пунктир черного цвета - критический уровень деполяризации. Горизонтальная тонкая сплошная линия - уровень минимальной полярности клеток пейсмекера. От этого уровня начинается самопроизвольная медленная диастолическая деполяризация клеток пейсмекера (пейсмекерный потенциал). Когда процесс медленной деполяризации достигает критического уровня (пунктир), возникает потенциал действия, распространяющийся по межузловым путям к атриовентрикулярному узлу. Чем меньше разница между минимальным уровнем полярности и критическим уровнем деполяризации, тем выше возбудимость пейсмекера и тем больше частота самовозбуждений. Именно это и возникает при раздражении симпатических нервных волокон. Смещения минимального исходного уровня полярности (деполяризации) показаны стрелками синего цвета, направленными вверх.

На нижней части рисунка (2) изображены два процесса. Ритмическое самовозбуждение синоатриального узла в условиях отсутствия внешних воздействий - кривая черного цвета. Ритмическое самовозбуждение синоатриального узла в условиях раздражения парасимпатических нервных волокон - кривая красного цвета. Горизонтальный пунктир черного цвета - критический уровень деполяризации. Горизонтальная тонкая сплошная линия - уровень минимальной полярности клеток пейсмекера. От этого уровня начинается самопроизвольная медленная диастолическая деполяризация клеток пейсмекера (пейсмекерный потенциал). Когда процесс медленной деполяризации достигает критического уровня (пунктир), возникает потенциал действия, распространяющийся по межузловым путям к атриовентрикулярному узлу. Чем больше разница между минимальным уровнем полярности и критическим уровнем деполяризации, тем ниже возбудимость пейсмекера и тем меньше частота самовозбуждений. Именно это и возникает при раздражении парасимпатических нервных волокон. Смещения минимального исходного уровня полярности (гиперполяризации) показаны стрелками красного цвета, направленными вниз.

В норме единственным водителем ритма является СА-узел, который подавляет автоматическую активность остальных (эктопических) водителей ритма.

Атриовентрикулярный (АВ, предсердно-желудочковый) узел (Ашоффа-Тавара)

Атриовентрикулярный узел расположен в правом предсердии в нижней части межпредсердной перегородки сразу над трикуспидальным кольцом и спереди от коронарного синуса, кровоснабжается в 90% случаев задней межжелудочковой ветвью правой коронарной артерии. Его ткань сходна с тканью синоатриального узла. От атриовентрикулярного узла отходит пучок специализированных волокон (атриовентрикулярный пучок) - единственный путь, по которому волна возбуждения передается от предсердий к желудочкам. Передача импульсов от синоатриального узла к атриовентрикулярному происходит с задержкой, составляющей около 0,15 с, благодаря чему систола предсердий успевает закончиться раньше, чем начнется систола желудочков. Атриовентрикулярный пучок переходит в пучок Гиса, который состоит из видоизмененных сердечных мышечных волокон и от которого отходят более тонкие веточки - волокна Пуркине. Импульсы проходят по пучку со скоростью 5 м/с и распространяются в конце концов по всему миокарду желудочков. Оба желудочка сокращаются одновременно, причем волна их сокращения начинается в верхушке сердца и распространяется вверх, выталкивая кровь из желудочков в артерии, которые отходят от сердца вертикально вверх.

Скорость проведения в АВ-узле низкая, что приводит к физиологической задержке проведения, на ЭКГ она соответствует сегменту PQ.

На электрическую активность синусового узла и АВ-узла оказывает существенное влияние вегетативная нервная система. Парасимпатические нервы подавляют автоматизм синусового узла, замедляют проводимость и удлиняют рефрактерный период в синусовом узле и прилежащих к нему тканях и в АВ-узле. Симпатические нервы оказывают противоположное действие.

Волокна Пуркинье

Пучок Гиса отходит от АВ-узла, проникает в строму сердца, направляется вперед и пересекает мембранозную часть межжелудочковой перегородки. В мышечной части межжелудочковой перегородки пучок Гиса делится на широкую левую и узкую правую ножки. Их разветвления стелются по эндокарду желудочков, и от них вглубь миокарда отходят конечные ветви - волокна Пуркинье.

Клетки Пуркинье (Purkinje cells) - крупные эфферентные нервные клетки, имеющиеся в большом количестве в коре мозжечка. Свое название клетки получили в честь их первооткрывателя, чешского врача и физиолога Яна Эвангелисты Пуркинье.

Тело клетки Пуркинье имеет грушевидную форму, от которой отходит множество обильно разветвляющихся дендритов, которые образуют множество синапсов с другими нейронами и направляются к поверхности мозжечка. Длинный аксон, который берет свое начало от расположенного в глубине коры мозжечка основания клетки, направляется через белое вещество к ядрам мозжечка, образуя синапсы с их нейронами, а также к вестибулярным ядрам.

Рисунок "Потенциал действия волокон Пуркинье"

Клетки Пуркинье (А) и гранулярные клетки (B) в срезе мозгового вещества голубя. Рисунок Сантьяго Рамон-и-Кахаля

Заключение

Пейсмекеры относятся к популяции миоцитов сердца и локализованы в узлах автоматии

Узлы автоматии

) синоатриальный узел (SA - узел), или узел Кис-Фляка (венозный вход в правое предсердие) - реальный пейсмекер, или водитель 1-го порядка;

) атриовентрикулярный узел, или узел Ашофф - Тавара (на границе 4 камер) - водитель 2-го порядка;

) волокна Пуркинье как компоненты пучка Гиса - водитель 3 - го порядка

Вариабельность ритма сердца (ВСР), или синусовая аритмия, определяемая, в частности, по изменению длительности цикла (RR), - это нормальное явление, обусловленное влиянием на водитель ритма симпатических, парасимпатических и других воздействий.

Математический анализ вариабельности сердечного ритма - один из современных методов оценки состояния вегетативной нервной системы

Чем ниже ЧСС, чем больше ВСР - тем больше вероятность парасимапатических воздействий. При доминировании симпатических воздействий - выше ЧСС и меньше ВСР.

Список использованной литературы

1.А.Н. Климов, Б.М. Липовецкий. "Быть или не быть инфаркту" "Беларусь". Минск.

2.1987г. - 80 с.

.Д. Ковалёв. "Кровеносная и лимфатическая системы" Энциклопедия для детей.

.Синельников. Атлас "Анатомия человека"

Загрузка...