Медицинский портал. Щитовидная железа, Рак, диагностика

Понятие о нервной и гуморальной регуляции деятельности сердца. Механизмы нервной и гуморальной регуляции сердца и сосудов

Регуляция работы сердца

Работа сердца регулируется нервной системой в зависимости от воздействия внутренней и внешней среды: концентрации ионов калия и кальция, гормона щитовидной железы, состояния покоя или физической работы, эмоционального напряжения.

Нервная и гуморальная регуляция деятельности сердца согласует его работу с потребностями организма в каждый данный момент независимо от нашей воли. Вегетативная нервная система иннервирует сердце, как и все внутренние органы. Нервы симпатического отдела увеличивают частоту и силу сокращений сердечной мышцы (например, при физической работе). В условиях покоя (во время сна) сердечные сокращения становятся слабее под влиянием парасимпатических (блуждающих) нервов. Гуморальная регуляция деятельности сердца осуществляется с помощью имеющихся в крупных сосудах специальных хеморецепторов, которые возбуждаются под влиянием изменений состава крови. Повышение концентрации углекислого газа в крови раздражает эти рецепторы и рефлекторно усиливает работу сердца. Особенно важное значение в этом смысле имеет адреналин, поступающий в кровь из надпочечников и вызывающий эффекты, подобные тем, которые наблюдаются при раздражении симпатической нервной системы. Адреналин вызывает учащение ритма и увеличение амплитуды сердечных сокращений. Важная роль в нормальной жизнедеятельности сердца принадлежит электролитам. Изменения концентрации в крови солей калия и кальция оказывают весьма значительное влияние на автоматию и процессы возбуждения и сокращения сердца. Избыток ионов калия угнетает все стороны сердечной деятельности, действуя отрицательно хронотропно (урежает ритм сердца), инотропно (уменьшает амплитуду сердечных сокращений), дромотропно (ухудшает проведение возбуждения в сердце), батмотропно (уменьшает возбудимость сердечной мышцы). При избытке ионов К+сердце останавливается в диастоле. Резкие нарушения сердечной деятельности наступают и при уменьшении содержания ионов К+ в крови (при гипокалиемии). Избыток ионов кальция действует в обратном направлении: положительно хронотропно, инотропно, дромотропно и батмотропно. При избытке ионов Са2+ сердце останавливается в систоле. При уменьшении содержания ионов Са2+ в крови сердечные сокращения ослабляются.

Таблица. Нейрогуморальная регуляция деятельности сердечно-сосудистой системы

Работа сердца связана и с деятельностью других органов. Если возбуждение в центральную нервную систему передается от работающих органов, то из центральной нервной системы оно передается на нервы, усиливающие функцию сердца. Так рефлекторным путем устанавливается соответствие между деятельностью различных органов и работой сердца.

Работы сердца играет подчиненную роль, так как сдвиги в обмене веществ вызываются посредством нервной системы. Сдвиги содержания различных веществ в крови, в свою очередь, оказывают влияние на рефлекторную регуляцию сердечнососудистой системы.

На работу сердца влияют изменения содержания калия и кальция в крови. Увеличение содержания калия оказывает отрицательно хронотропное, отрицательно инотропное, отрицательно дромотропное, отрицательно батмотропное и отрицательно тонотропное влияния. Увеличение содержания кальция действует наоборот.

Для нормальной работы сердца необходимо известное соотношение обоих ионов, которые действуют сходно с блуждающими (калий) и симпатическими (кальций) нервами.

Предполагается, что при деполяризации мембран мышечных волокон сердца из них быстро выходят ионы калия и , что способствует их сокращению. Следовательно, реакция крови имеет значение для сокращения мышечных волокон сердца.

При раздражении блуждающих нервов в кровь поступает ацетилхолин, а при раздражении симпатических нервов - вещество, сходное по своему составу с адреналином (О. Леви, 1912, 1921), - норадреналин. Основной медиатор симпатических нервов сердца млекопитающих животных - норадреналин (Эйлер, 1956). Содержание адреналина в сердце примерно в 4 раза меньше. Сердце больше других органов накапливает адреналин, введенный в организм (в 40 раз больше скелетной мышцы).

Ацетилхолин быстро разрушается. Поэтому он действует только местно, там, где он выделяется, т. е. в окончаниях блуждающих нервов в сердце. Небольшие дозы ацетилхолина возбуждают автоматизм сердца, а большие - тормозят частоту и силу сокращений сердца. Норадреналин также разрушается в крови, но он более стоек, чем ацетилхолин.

При раздражении общего ствола блуждающих и симпатических нервов сердца образуются оба вещества, но вначале проявляется действие ацетилхолина, а затем уже норадреналина.

Введение в организм адреналина и норадреналина увеличивает освобождение ацетилхолина, и, наоборот, введение ацетилхолина увеличивает образование адреналина и норадреналина. Норадреналин повышает систолическое и диастолическое кровяное давление, а адреналин - только систолическое.

В почках в нормальных условиях и особенно при уменьшении их кровоснабжения образуется рении, который действует на гипертензиноген и превращает его в гипертензин, вызывающий сужение сосудов и подъем кровяного .

Местное расширение сосудов вызывается накоплением кислых продуктов обмена веществ, особенно углекислоты, молочной и адениловой кислот.

Большую роль в расширении кровеносных сосудов играют также ацетилхолин и гистамин. Ацетилхолин и его производные раздражают окончания парасимпатических нервов и вызывают местное расширение мелких артерий. Гистамин - продукт белкового распада - образуется в стенке желудка и кишечника, в мышцах и других органах. Гистамин при поступлении его в вызывает расширение капилляров. В нормальных физиологических условиях гистамин в небольших дозах улучшает кровоснабжение органов. В мышцах во время работы гистамин расширяет капилляры наряду с углекислотой, молочной и адениловой кислотами и другими веществами, которые образуются при сокращении. Гистамин вызывает также расширение капилляров кожи при облучении солнечными лучами (ультрафиолетовой частью спектра), при действии на кожу сероводорода, тепла, при ее потирании.

Увеличение количества гистамина, поступающего в кровь, приводит к общему расширению капилляров и резкому падению кровяного давления - циркуляторный шок.

Регуляция работы сердца осуществляется как нервными, так и гуморальными путями. Нервную регуляцию работы сердца осуществляет вегетативная нервная система. Она может изменять частоту сокращений сердца - хронотропное действие, влиять на скорость атривентрикулярного проведения - дромотропное действие, на возбудимость сердечной мышцы - батмотропное влияние и изменять силу сокращений - инотропное воздействие. Замедление частоты сокращений сердца называется брадикардией, а учащение - тахикардией.

Парасимпатическая иннервация представлена блуждающими нервами, а симпатическая - волокнами симпатической нервной системы.

Блуждающие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатические нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I--V грудные сегменты). Блуждающие и симпатические нервы оканчиваются в синоаурикулярном и атриовентрикулярном узлах, также в мускулатуре сердца. В результате при возбуждении этих нервов наблюдаются изменения в автоматии синоаурикулярного узла, скорости проведения возбуждения по проводящей системе сердца, в интенсивности сердечных сокращений.

Парасимпатические волокна блуждающих нервов берут начало в продолговатом мозге и дают ветви к сердцу. Блуждающие нервы тормозят работу сердца. Они оказывают отрицательное хроно-, ино-, дромо- и батмотропное влияние.

Правый блуждающий нерв иннервирует преимущественно правое предсердие и особенно интенсивно синоатриальный узел. К атриовентрикулярному узлу подходят, главным образом, волокна от левого блуждающего нерва. Вследствие этого правый блуждающий нерв влияет преимущественно на частоту сокращений, а левый - на атривентрикулярное проведение. Парасимпатическая иннервация желудочков выражена слабо и оказывает свое влияние косвенно - за счет торможения симпатических эффектов.

Симпатическая иннервация действует противоположно парасимпатической. Она вызывает усиление и учащение сокращений сердца. Симпатическая иннервация в отличие от блуждающих нервов практически равномерно распределена по всем отделам сердца. Преганглионарные симпатические сердечные волокна берут начало в боковых рогах верхних грудных сегментов спинного мозга. Преганглионарные волокна переключаются на постганглионарные нейроны в шейных и в верхних грудных ганглиях симпатического ствола, в частности в звездчатом ганглии. Отростки постганглионарных нейронов подходят к сердцу в составе нескольких сердечных нервов.

У человека деятельность желудочков контролируется преимущественно симпатическими нервами. Что касается предсердий и особенно синоатриального узла, то они находятся под постоянными антагонистическими воздействиями со стороны блуждающих и симпатических нервов. Так, при выключении парасимпатических влияний частота сокращений сердца возрастает. При подавлении же симпатической активности частота сердечных сокращений падает. Эти постоянные влияния блуждающих и симпатических нервов связаны с их тонусом.

Парасимпатические и симпатические нервы действуют на сердце согласованно. Во время сна усиливается влияние блуждающих нервов, и деятельность сердца замедляется. Влияние симпатических нервов в это время ослабевает.

Факторами гуморальной регуляции являются:

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца. При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации.

Гормон надпочечников адреналин увеличивает силу и частоту сердечных сокращений и вызывает эффект, аналогичный действию симпатической нервной системы. При чрезмерных физических нагрузках, а также при психических нагрузках в кровь поступают большие количества адреналина.

Тироксин (гормон щитовидной железы) усиливает работу сердца.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются.

Работа сердца связана и с деятельностью других органов. Если возбуждение в центральную нервную систему передается от работающих органов, то из центральной нервной системы оно передается на нервы, усиливающие функцию сердца. Так рефлекторным путем устанавливается соответствие между деятельностью различных органов и работой сердца.

Факторы гуморальной регуляции делят на две группы:

1) вещества системного действия;

2) вещества местного действия.

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца (положительный инотропный эффект). При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. При повышении их концентрации наблюдается положительный батмотропный и дромотропный эффект. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации. Однако небольшое повышение содержания K стимулирует коронарный кровоток. В настоящее время обнаружено, что при увеличении уровня K по сравнению с Ca наступает снижение работы сердца, и наоборот.

Гормон адреналин увеличивает силу и частоту сердечных сокращений, улучшает коронарный кровоток и повышает обменные процессы в миокарде.

Тироксин (гормон щитовидной железы) усиливает работу сердца, стимулирует обменные процессы, повышает чувствительность миокарда к адреналину.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются. К ним относятся медиаторы. Например, ацетилхолин оказывает пять видов отрицательного влияния на деятельность сердца, а норадреналин – наоборот. Тканевые гормоны (кинины) – вещества, обладающие высокой биологической активностью, но они быстро разрушаются, поэтому и оказывают местное действие. К ним относятся брадикинин, калидин, умеренно стимулирующие сосуды. Однако при высоких концентрациях могут вызвать снижение работы сердца. Простагландины в зависимости от вида и концентрации способны оказывать различные влияния. Метаболиты, образующиеся в ходе обменных процессов, улучшают кровоток.

Таким образом, гуморальная регуляция обеспечивает более длительное приспособление деятельности сердца к потребностям организма.

10. Сосудистый тонус и его регуляция

Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным.

Миогенный тонус возникает, когда некоторые гладкомышечные клетки сосудов начинают спонтанно генерировать нервный импульс. Возникающее возбуждение распространяется на другие клетки, и происходит сокращение. Тонус поддерживается за счет базального механизма. Разные сосуды обладают разным базальным тонусом: максимальный тонус наблюдается в коронарных сосудах, скелетных мышцах, почках, а минимальный – в коже и слизистой оболочке. Его значение заключается в том, что сосуды с высоким базальным тонусом на сильное раздражение отвечают расслаблением, а с низким – сокращением.

Нервный механизм возникает в гладкомышечных клетках сосудов под влиянием импульсов из ЦНС. За счет этого происходит еще большее увеличение базального тонуса. Такой суммарный тонус – тонус покоя, с частотой импульсов 1–3 в секунду.

Таким образом, сосудистая стенка находится в состоянии умеренного напряжения – сосудистого тонуса.

В настоящее время выделяют три механизма регуляции сосудистого тонуса – местный, нервный, гуморальный.

Ауторегуляция обеспечивает изменение тонуса под влиянием местного возбуждения. Этот механизм связан с расслаблением и проявляется расслаблением гладкомышечных клеток. Существует миогенная и метаболическая ауторегуляция.

Миогенная регуляция связана с изменением состояния гладких мышц – это эффект Остроумова-Бейлиса, направленный на поддержание на постоянном уровне объема крови, поступающей к органу.

Метаболическая регуляция обеспечивает изменение тонуса гладкомышечный клеток под влиянием веществ, необходимых для обменных процессов и метаболитов. Она вызвана в основном сосудорасширяющими факторами:

1) недостатком кислорода;

2) повышением содержания углекислого газа;

3) избытком К, АТФ, аденина, цАТФ.

Метаболическая регуляция наиболее выражена в коронарных сосудах, скелетных мышцах, легких, головном мозге. Таким образом, механизмы ауторегуляции настолько выражены, что в сосудах некоторых органах оказывают максимальное сопротивление суживающему влиянию ЦНС.

Нервная регуляция осуществляется под влиянием вегетативной нервной системы, осуществляющей действие как вазоконстриктора, так и вазодилататора. Симпатические нервы вызывают сосудосуживающий эффект в тех из них, в которых преобладают β 1 -адренорецепторы. Это кровеносные сосуды кожи, слизистых оболочек, желудочно-кишечного тракта. Импульсы по сосудосуживающим нервам поступают и в состоянии покоя (1–3 в секунду), и в состоянии активности (10–15 в секунду).

Сосудорасширяющие нервы могут быть различного происхождения:

1) парасимпатической природы;

2) симпатической природы;

3) аксон-рефлекс.

Парасимпатический отдел иннервирует сосуды языка, слюнных желез, мягкой мозговой оболочки, наружных половых органов. Медиатор ацетилхолин взаимодействует с М-холинорецепторами сосудистой стенки, что приводит к расширению.

Для симпатического отдела характерна иннервация коронарных сосудов, сосудов головного мозга, легких, скелетных мышц. Это связано с тем, что адренергические нервные окончания взаимодействуют с β-адренорецепторами, вызывая расширение сосудов.

Аксон-рефлекс возникает при раздражении рецепторов кожи, осуществляющихся в пределах аксона одной нервной клетки, вызывая расширение просвет сосуда в данной области.

Таким образом, нервная регуляция осуществляется симпатическим отделом, который может оказывать как расширяющее, так и суживающее действие. Парасимпатическая нервная система оказывает прямое расширяющее действие.

Гуморальная регуляция осуществляется за счет веществ местного и системного действия.

К веществам местного действия относятся ионы Ca, оказывающие суживающий эффект и участвующие в возникновении потенциала действия, кальциевых мостиков, в процессе сокращения мышц. Ионы К также вызывают расширение сосудов и в большом количестве приводят к гиперполяризации клеточной мембраны. Ионы Na при избытке могут вызвать повышение кровяного давления и задержку воды в организме, изменяя уровень выделения гормонов.

Гормоны оказывают следующее действие:

1) вазопрессин повышает тонус гладкомышечных клеток артерий и артериол, приводя к их сужению;

2) адреналин способен оказывать расширяющее и суживающее действие;

3) альдостерон задерживает Na в организме, влияя на сосуды, повышая чувствительность сосудистой стенки к действию ангиотензина;

4) тироксин стимулирует обменные процессы в гладкомышечных клетках, что приводит к сужению;

5) ренин вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток, действуя на белок ангиотензиноген, который превращается в ангиотензин II, ведущий к сужению сосудов;

6) атриопептиды оказывают расширяющее действие.

Метаболиты (например, углекислый газ, пировиноградная кислота, молочная кислота, ионы H) действуют как хеморецепторы сердечно-сосудистой системы, повышая скорость передачи импульсов в ЦНС, что приводит к рефлекторному сужению.

Вещества местного действия производят разнообразный эффект:

1) медиаторы симпатической нервной системы оказывают в основном суживающее действие, а парасимпатической – расширяющее;

2) биологически активные вещества: гистамин – расширяющее действие, а серотонин – суживающее;

3) кинины (брадикинин и калидин) вызывают расширяющее действие;

4) простагландины в основном расширяют просвет;

5) эндотелиальные ферменты расслабления (группа веществ, образуемых эндотелиоцитами) оказывают выраженный местный суживающий эффект.

Таким образом, на сосудистый тонус оказывают влияние местные, нервные и гуморальные механизмы.

Под регуляцией работы сердца понимают ее приспособление к потребностям организма в кислороде и питательных веществах, реализуемое через изменение кровотока.

Поскольку является производным от частоты и силы сокращений сердца, то регуляция может осуществляться через изменение частоты и (или) силы его сокращений.

Особенно мощное влияние на работу сердца оказывают механизмы его регуляции при физической нагрузке, когда ЧСС и ударный объем могут увеличиваться в 3 раза, МОК — в 4-5 раз, а у спортсменов высокого класса — в 6 раз. Одновременно с изменением показателей работы сердца при изменении физической активности, эмоционального и психологического состояния человека изменяются его метаболизм и коронарный кровоток. Все это происходит благодаря функционированию сложных механизмов регуляции сердечной деятельности. Среди них выделяют внутрисердечные (интракардиальные) и внесердечные (экстракардиальные) механизмы.

Интракардиальные механизмы регуляции работы сердца

Интракардиальные механизмы, обеспечивающие саморегуляцию сердечной деятельности, подразделяют на миогенные (внутриклеточные) и нервные (осуществляемые внутрисердечной нервной системой).

Внутриклеточные механизмы реализуются за счет свойств миокардиальных волокон и проявляются даже на изолированном и денервированном сердце. Один из этих механизмов отражен в законе Франка — Старлинга, который называют также законом гетерометрической саморегуляции или законом сердца.

Закон Франка — Старлинга утверждает, что при увеличении растяжения миокарда во время диастолы увеличивается сила его сокращения в систолу. Такая закономерность выявляется при растяжении волокон миокарда не более чем на 45% от их исходной длины. Дальнейшее растяжение миокардиальных волокон приводит к снижению эффективности сокращения. Сильное растяжение создает опасность развития тяжелой патологии сердца.

В естественных условиях степень растяжения желудочков зависит от величины конечно-диастолического объема, определяемого наполнением желудочков кровью, поступающей во время диастолы из вен, величиной конечно-систолического объема, силой сокращения предсердий. Чем больше венозный возврат крови к сердцу и величина конечно-диастолического объема желудочков, тем больше сила их сокращения.

Увеличение притока крови к желудочкам называют нагрузкой объемом или преднагрузкой. Прирост сократительной активности сердца и возрастание объема сердечного выброса при увеличении преднагрузки не требуют большого увеличения энергетических затрат.

Одна из закономерностей саморегуляции сердца была открыта Анрепом (феномен Анрепа). Она выражается в том, что при увеличении сопротивления выбросу крови из желудочков сила их сокращения возрастает. Такое увеличение сопротивления изгнанию крови получило название нагрузки давлением или постнагрузки. Оно возрастает при повышении крови. В этих условиях резко возрастает работа и энергетические потребности желудочков. Увеличение сопротивления изгнанию крови левым желудочком может развиться также при стенозе аортального клапана и сужении аорты.

Феномен Боудича

Еще одна закономерность саморегуляции сердца отражена в феномене Боудича, называемом также феноменом лестницы или законом гомеометрической саморегуляции.

Лестница Боудича (ритмоионотропная зависимость 1878 г.) — постепенное увеличение силы сердечных сокращений до максимальной амплитуды, наблюдаемое при последовательном нанесении на него раздражителей постоянной силы.

Закон гомеометрической саморегуляции (феномен Боудича) проявляется в том, что при увеличении частоты сердечных сокращений сила сокращений возрастает. Одним из механизмов усиления сокращения миокарда является увеличение содержания ионов Са 2+ в саркоплазме миокардиальных волокон. При частых возбуждениях ионы Са 2+ не успевают удаляться из саркоплазмы, что создает условия для более интенсивного взаимодействия между актиновыми и миозиновыми нитями. Феномен Боудича был выявлен на изолированном сердце.

В естественных условиях проявление гомеометрической саморегуляции можно наблюдать при резком повышении тонуса симпатической нервной системы и увеличении в крови уровня адреналина. В клинических условиях некоторые проявления этого феномена можно наблюдать у больных при тахикардии, когда частота сокращений сердца быстро возрастает.

Нейрогенный внутрисердечныи механизм обеспечивает саморегуляцию работы сердца за счет рефлексов, дуга которых замыкается в пределах сердца. Тела нейронов, составляющих эту рефлекторную дугу, располагаются во внутрисердечных нервных сплетениях и ганглиях. Интракардиальные рефлексы запускаются с рецепторов растяжения, имеющихся в миокарде и коронарных сосудах. Г.И. Косицким в эксперименте на животных было установлено, что при растяжении правого предсердия рефлекторно усиливается сокращение левого желудочка. Такое влияние с предсердий на желудочки выявляется лишь при низком давлении крови в аорте. Если же давление в аорте высокое, то активация рецепторов растяжения предсердий рефлекторно угнетает силу сокращения желудочков.

Экстракардиальные механизмы регуляции работы сердца

Экстракардиальные механизмы регуляции сердечной деятельности подразделяют на нервные и гуморальные. Эти механизмы регуляции происходят при участии структур, находящихся вне сердца (ЦНС, внесердечные вегетативные ганглии, железы внутренней секреции).

Внутрисердечные механизмы регуляции работы сердца

Внутрисердечные (интракардиальные) механизмы регуляции - регуляторные процессы, возникающие внутри сердца и продолжающие функционировать в изолированном сердце.

Внутрисердечные механизмы, подразделяются на: внутриклеточные и миогенные механизмы. Примером внутриклеточного механизма регуляции является гипертрофия клеток миокарда за счет усиления синтеза сократительных белков у спортивных животных или животных, занимающихся тяжелой физической работой.

Миогенные механизмы регуляции деятельности сердца включают гетерометрический и гомеометрический типы регуляции. Примером гетерометрической регуляции может служить закон Франка — Старлинга, который гласит, что чем больше приток крови к правому предсердию и соответственно увеличение длины мышечных волокон сердца во время диастолы, тем сильнее сокращается сердце во время систолы. Гомеометрический тип регуляции зависит от давления в аорте — чем больше давление в аорте, тем сильнее сокращается сердце. Другими словами, сила сердечного сокращения увеличивается при возрастании сопротивления в магистральных сосудах. При этом длина сердечной мышцы не меняется и поэтому данный механизм называется гомеометрическим.

Саморегуляция сердца — способность кардиомиоцитов самостоятельно изменять характер сокращения при изменении степени растяжения и деформации мембраны. Данный тип регуляции представлен гетерометрическим и гомеометрическим механизмами.

Гетерометрическии механизм - рост силы сокращения кардиомиоцитов при увеличении их исходной длины. Опосредован внутриклеточными взаимодействиями и связан с изменением взаиморасположения актиновых и миозиновых миофиламентов в миофибриллах кардиомиоцитов при растяжении миокарда кровью, поступающей в полости сердца (увеличение количества миозиновых мостиков, способных соединить миозиновые и актиновые нити во время сокращения). Этот вид регуляции был установлен на сердечно-легочном препарате и сформулирован в виде закона Франка — Старлинга (1912).

Гомеометрическии механизм — увеличение силы сердечных сокращений при возрастании сопротивления в магистральных сосудах. Механизм определяется состоянием кардиомиоцитов и межклеточными отношениями и не зависит от растяжения миокарда притекающей кровью. При гомеометрической регуляции растет эффективность энергообмена в кардиомиоцитах и активизируется работа вставочных дисков. Данный вид регуляции впервые открыт Г.В. Анрепом в 1912 г. и обозначается как эффект Анрепа.

Кардиокарднальные рефлексы — рефлекторные реакции, возникающие в механорецепторах сердца в ответ на растяжение его полостей. При растяжении предсердий сердечный ритм может как ускоряться, так и замедляться. При растяжении желудочков, как правило, наблюдается урежение сердечных сокращений. Доказано, что эти реакции осуществляются с помощью внутрисердечных периферических рефлексов (Г.И. Косицкий).

Внесердечные механизмы регуляции работы сердца

Внесердечные (экстракардиальные) механизмы регуляции - регуляторные влияния, возникающие вне пределов сердца и не функционирующие в нем изолированно. К экстракардиальным механизмам относятся нервно-рефлекторная и гуморальная регуляция деятельности сердца.

Нервная регуляция работы сердца осуществляется симпатическими и парасимпатическими отделами вегетативной нервной системы. Симпатический отдел стимулирует деятельность сердца, а парасимпатический угнетает.

Симпатическая иннервация берет начало в боковых рогах верхних грудных сегментов спиною мозга, где находятся тела преганглионарных симпатических нейронов. Достигнув сердца, волокна симпатических нервов проникают в миокард. Поступающие по постганглионарным симпатическим волокнам импульсы возбуждения вызывают высвобождение в клетках сократительного миокарда и клетках проводящей системы медиатора норадреналина. Активация симпатической системы и выделение при этом норадреналина оказывает определенные эффекты на сердце:

  • хронотропный эффект — увеличение частоты и силы сердечных сокращений;
  • инотропный эффект — увеличение силы сокращений миокарда желудочков и предсердий;
  • дромотропный эффект — ускорение проведения возбуждения в атриовентрикулярном (предсердно-желудочковый) узле;
  • батмотропный эффект — укорочение рефрактерного периода миокарда желудочков и повышение их возбудимости.

Парасимпатическая иннервация сердца осуществляется блуждающим нервом. Тела первых нейронов, аксоны которых образуют блуждающие нервы, находятся в продолговатом мозге. Аксоны, образующие преганглионарные волокна, проникают в кардиальные интрамуральные ганглии, где располагаются вторые нейроны, аксоны которых образуют постганглионарные волокна, иннервирующие синоатриальный (синусно-предсердный) узел, атриовентрикулярный узел и проводящую систему желудочков. Нервные окончания парасимпатических волокон выделяют медиатор ацетилхолин. Активация парасимпатической системы оказывает на сердечную деятельность отрицательный хроно-, ино-, дромо-, батмотропный эффекты.

Рефлекторная регуляция работы сердца также происходит при участии вегетативной нервной системы. Рефлекторные реакции могут тормозить и возбуждать сердечные сокращения. Эти изменения работы сердца возникают при раздражении различных рецепторов. Например, в правом предсердии и в устьях полых вен имеются механорецепторы, возбуждение которых вызывает рефлекторное учащение сердечных сокращений. В некоторых участках сосудистой системы имеются рецепторы, активирующиеся при изменении давления крови в сосудах — сосудистые рефлексогенные зоны, обеспечивающие аортальные и синокаротидные рефлексы. Рефлекторное влияние с механорецепоров каротидного синуса и дуги аорты особенно важно при повышении кровяного давления. При этом происходит возбуждение этих рецепторов и повышается тонус блуждающего нерва, в результате чего возникает торможение сердечной деятельности и понижается давление в крупных сосудах.

Гуморальная регуляция - изменение деятельности сердца под влиянием разнообразных, в том числе и физиологически активных, веществ, циркулирующих в крови.

Гуморальная регуляция работы сердца осуществляется с помощью различных соединений. Так, избыток ионов калия в крови приводит к уменьшению силы сердечных сокращений и снижению возбудимости сердечной мышцы. Избыток ионов кальция, наоборот, увеличивает силу и частоту сердечных сокращений, повышает скорость распространения возбуждения по проводящей системе сердца. Адреналин повышает частоту и силу сердечных сокращений, а также улучшает коронарный кровоток в результате стимуляции p-адренорецепторов миокарда. Аналогичное стимулирущее действие оказывает на сердце гормон тироксин, кортикостероиды, серотонин. Ацетилхолин уменьшает возбудимость сердечной мышцы и силу ее сокращений, а норадреналин стимулирует сердечную деятельность.

Недостаток кислорода в крови и избыток диоксида углерода угнетают сократительную активность миокарда.

Сердце человека, непрерывно работая, даже при спокойном образе жизни нагнетает в артериальную систему около 10 т крови в сутки, 4000 т в год и около 300 000 т за всю жизнь. При этом сердце всегда точно реагирует на потребности организма, постоянно поддерживая необходимый уровень кровотока.

Приспособление деятельности сердца к изменяющимся потребностям организма происходит при помощи ряда регуляторных механизмов. Часть из них расположена в самом сердце — это внутрисердечные регуляторные механизмы. К ним относятся внутриклеточные механизмы регуляции, регуляция межклеточных взаимодействий и нервные механизмы — внутрисердечные рефлексы. К внесердечным регуляторным механизмам относятся экстракардиальные нервные и гуморальные механизмы регуляции сердечной деятельности.

Внутрисердечные регуляторные механизмы

Внутриклеточные механизмы регуляции обеспечивают изменение интенсивности деятельности миокарда в соответствии с количеством притекающей к сердцу крови. Этот механизм получил название «закон сердца» (закон Франка-Стерлинга): сила сокращения сердца (миокарда) пропорциональна степени его растяжения в диастолу, т.е.исходной длине его мышечных волокон. Более сильное растяжение миокарда в момент диастолы соответствует усиленному притоку крови к сердцу. При этом внутри каждой миофибриллы актиновые нити в большей степени выдвигаются из промежутков между миозиновыми нитями, а значит, растет количество резервных мостиков, т.е. тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Следовательно, чем больше растянута каждая клетка, тем больше она сможет укоротиться во время систолы. По этой причине сердце перекачивает в артериальную систему то количество крови, которое притекает к нему из вен.

Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто механическую функцию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему веществ, третьи - нексусы, или тесные контакты, проводят возбуждение с клетки на клетку. Нарушение межклеточных взаимодействий приводит к асинхронному возбуждению клеток миокарда и появлению сердечной аритмии.

Внутрисердечные периферические рефлексы. В сердце обнаружены так называемые периферические рефлексы, дуга которых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. Эта система включает в себя афферентные нейроны, дендриты которых образуют рецепторы растяжения на волокнах миокарда и коронарных сосудах, вставочные и эфферентные нейроны. Аксоны последних иннервируют миокард и гладкие мышцы коронарных сосудов. Указанные нейроны соединяются между собой синоптическими связями, образуя внутрисердечные рефлекторные дуги.

В эксперименте показано, что увеличение растяжения миокарда правого предсердия (в естественных условиях оно возникает при увеличении притока крови к сердцу) приводит к усилению сокращений левого желудочка. Таким образом, усиливаются сокращения не только того отдела сердца, миокард которого непосредственно растягивается притекающей кровью, но и других отделов, чтобы «освободить место» притекающей крови и ускорить выброс ее в артериальную систему. Доказано, что эти реакции осуществляются с помощью внутрисердечных периферических рефлексов.

Подобные реакции наблюдаются лишь на фоне низкого исходного кровенаполнения сердца и при незначительной величине давления крови в устье аорты и коронарных сосудах. Если камеры сердца переполнены кровью и давление в устье аорты и коронарных сосудах высокое, то растяжение венозных приемников в сердце угнетает сократительную активность миокарда. При этом сердце выбрасывает в аорту в момент систолы меньшее, чем в норме, количество содержащейся в желудочках крови. Задержка даже небольшого дополнительного объема крови в камерах сердца повышает диастолическое давление в его полостях, что вызывает снижение притока венозной крови к сердцу. Излишний объем крови, который при внезапном выбросе его в артерии мог бы вызвать пагубные последствия, задерживается в венозной системе. Подобные реакции играют важную роль в регуляции кровообращения, обеспечивая стабильность кровенаполнения артериальной системы.

Опасность для организма представляло бы и уменьшение сердечного выброса — оно могло бы вызвать критическое падение артериального давления. Такую опасность также предупреждают регуляторные реакции внутрисердечной системы.

Недостаточное наполнение кровью камер сердца и коронарного русла вызывает усиление сокращений миокарда посредством внутрисердечных рефлексов. При этом в момент систолы в аорту выбрасывается большее, чем в норме, количество содержащейся в них крови. Это и предотвращает опасность недостаточного наполнения кровью артериальной системы. К моменту расслабления желудочки содержат меньшее, чем в норме, количество крови, что способствует усилению притока венозной крови к сердцу.

В естественных условиях внутрисердечная нервная система не является автономной. Опалишь низшее звено в сложной иерархии нервных механизмов, регулирующих деятельность сердца. Более высоким звеном в иерархии являются сигналы, поступающие по симпатическим и блуждающим нервам, экстракардиальной нервной системе регуляции сердца.

Внесердечные регуляторные механизмы

Работа сердца обеспечивается нервными и гуморальными механизмами регуляции. Нервная регуляция для сердца не имеет пускового действия, так как оно обладает автоматизмом. Нервная система обеспечивает приспособление работы сердца в каждый момент адаптации организма к внешним условиям и к изменениям его деятельности.

Эфферентная иннервация сердца. Работа сердца регулируется двумя нервами: блуждающим (или вагусом), относящимся к парасимпатической нервной системе, и симпатическим. Эти нервы образованы двумя нейронами. Тела первых нейронов, отростки которых составляют блуждающий нерв, расположены в продолговатом мозге. Отростки этих нейронов заканчиваются в инграмуральных ганглиях сердца. Здесь находятся вторые нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам.

Первые нейроны симпатической нервной системы, регулирующей работу сердца, лежат в боковых рогах I-V грудных сегментов спинного мозга. Отростки этих нейронов заканчиваются в шейных и верхних грудных симпатических узлах. В этих узлах находятся вторые нейроны, отростки которых идут к сердцу. Большая часть симпатических нервных волокон направляются к сердцу от звездчатого ганглия. Нервы, идущие от правого симпатического ствола, в основном подходят к синусному узлу и к мышцам предсердий, а нервы левой стороны — к атриовентрикулярному узлу и мышцам желудочков (рис. 1).

Нервная система вызывает следующие эффекты:

  • хронотропный - изменение частоты сердечных сокращений;
  • инотропныи - изменение силы сокращений;
  • батмотропный - изменение возбудимости сердца;
  • дромотропный - изменение проводимости миокарда;
  • тонотропный - изменение тонуса сердечной мышцы.

Нервная экстракардиальная регуляция. Влияние блуждающего и симпатического нервов на сердце

В 1845 г. братья Вебер наблюдали при раздражении продолговатого мозга в области ядра блуждающего нерва остановку сердца. После перерезки блуждающих нервов этот эффект отсутствовал. Отсюда был сделан вывод о том, что блуждающий нерв тормозит деятельность сердца. Дальнейшими исследованиями многих ученых были расширены представления о тормозящем влиянии блуждающего нерва. Было показано, что при его раздражении уменьшаются частота и сила сердечных сокращений, возбудимость и проводимость сердечной мышцы. После перерезки блуждающих нервов вследствие снятия их тормозящего влияния наблюдалось увеличение амплитуды и частоты сердечных сокращений.

Рис. 1. Схема иннервации сердца:

С — сердце; М — продолговатый мозг; CI — ядро, тормозящее деятельность сердца; СА — ядро, стимулирующее деятельность сердца; LH — боковой рог спинного мозга; 75 — симпатический ствол; V- эфферентные волокна блуждающего нерва; Д — нервдепрессор (афферентные волокна); S — симпатические волокна; А — спинномозговые афферентные волокна; CS — каротидный синус; В — афферентные волокна от правого предсердия и полой вены

Влияние блуждающего нерва зависит от интенсивности раздражения. При слабом раздражении наблюдаются отрицательные хронотропный, инотропный, батмотропный, дромотропный и тонотропный эффекты. При сильном раздражении наступает остановка сердца.

Первые детальные исследования симпатической нервной системы на деятельность сердца принадлежит братьям Цион (1867), а затем И.П. Павлову (1887).

Братья Цион наблюдали увеличение частоты сердечных сокращений при раздражении спинного мозга в области расположения нейронов, регулирующих деятельность сердца. После перерезки симпатических нервов такое же раздражение спинного мозга не вызывало изменений деятельности сердца. Было установлено, что симпатические нервы, иннервирующие сердце, оказывают положительное влияние на все стороны деятельности сердца. Они вызывают положительные хронотропный, инотропный, батморопный, дромотропный и тонотропный эффекты.

Дальнейшими исследованиями И.П. Павлова было показано, что нервные волокна, входящие в состав симпатического и блуждающего нервов, влияют на разные стороны деятельности сердца: одни изменяют частоту, а другие — силу сердечных сокращений. Веточки симпатического нерва, при раздражении которых наступает усиление силы сердечных сокращений, были названы усиливающим нервом Павлова. Было установлено, что усиливающее влияние симпатических нервов связано с повышением уровня обмена веществ.

В составе блуждающего нерва также были найдены волокна, влияющие только на частоту и только на силу сердечных сокращений.

На частоту и силу сокращений влияют волокна блуждающего и симпатического нервов, подходящие к синусному узлу, а сила сокращений изменяется под влиянием волокон, подходящих к атриовентрикулярному узлу и миокарду желудочков.

Блуждающий нерв легко адаптируется к раздражению, поэтому его эффект может исчезнуть, несмотря на продолжающееся раздражение. Это явление получило название «ускользание сердца от влияния вагуса». Блуждающий нерв обладает более высокой возбудимостью, вследствие чего он реагирует на меньшую силу раздражения, чем симпатический, и коротким латентным периодом.

Поэтому при одинаковых условиях раздражения эффект блуждающего нерва появляется раньше, чем симпатического.

Механизм влияния блуждающего и симпатического нервов на сердце

В 1921 г. исследованиями О. Леви было показано, что влияние блуждающего нерва на сердце передается гуморальным путем. В опытах Леви наносил сильное раздражение на блуждающий нерв, что приводило к остановке сердца. Затем из сердца брали кровь и действовали ею на сердце другого животного; при этом возникал тот же эффект — торможение деятельности сердца. Точно гак же можно перенести и эффект симпатического нерва на сердце другого животного. Эти опыты свидетельствуют о том, что при раздражении нервов в их окончаниях выделяются активно действующие вещества, которые или тормозят, или стимулируют деятельность сердца: в окончаниях блуждающего нерва выделяется ацетилхолин, а в окончаниях симпатического — норадреналин.

При раздражении сердечных нервов под влиянием медиатора изменяется мембранный потенциал мышечных волокон сердечной мышцы. При раздражении блуждающего нерва происходит гиперполяризация мембраны, т.е. увеличивается мембранный потенциал. Основу гиперполяризации сердечной мышцы составляет увеличение проницаемости мембраны для ионов калия.

Влияние симпатического нерва передается с помощью медиатора норадреналина, который вызывает деполяризацию постсинаптической мембраны. Деполяризация связана с увеличением проницаемости мембраны для натрия.

Зная, что блуждающий нерв гиперполяризует, а симпатический — деполяризует мембрану, можно объяснить все эффекты действия этих нервов на сердце. Поскольку при раздражении блуждающего нерва увеличивается мембранный потенциал, требуется большая сила раздражения для достижения критического уровня деполяризации и получения ответной реакции, а это свидетельствует об уменьшении возбудимости (отрицательный батмотропный эффект).

Отрицательный хронотропный эффект связан с тем, что при большой силе раздражения вагуса гиперполяризация мембраны столь велика, что возникающая спонтанная деполяризация не может достичь критического уровня и ответ не возникает — наступает остановка сердца.

При малой частоте или силе раздражения блуждающего нерва степень гиперполяризации мембраны меньше и спонтанная деполяризация постепенно достигает критического уровня, вследствие чего наступают редкие сокращения сердца (отрицательный дромотропный эффект).

При раздражении симпатического нерва даже небольшой силой возникает деполяризация мембраны, которая характеризуется уменьшением величины мембранного и порогового потенциалов, что свидетельствует о повышении возбудимости (положительный батмотропный эффект).

Поскольку под влиянием симпатического нерва мембрана мышечных волокон сердца деполяризуется, время спонтанной деполяризации, необходимой для достижения критического уровня и возникновения потенциала действия, уменьшается, что приводит к увеличению частоты сердечных сокращений.

Тонус центров сердечных нервов

Нейроны ЦНС, регулирующие деятельность сердца, находятся в тонусе, т.е. в определенной степени активности. Поэтому импульсы от них постоянно поступают к сердцу. Особенно ярко выражен тонус центра блуждающих нервов. Тонус симпатических нервов выражен слабо, а иногда отсутствует.

Наличие тонических влияний, идущих от центров, можно наблюдать на опыте. Если перерезать оба блуждающих нерва, то наступает значительное увеличение частоты сердечных сокращений. У человека можно выключить влияние блуждающего нерва действием атропина, после чего также наблюдается учащение сердцебиения. О наличии постоянного тонуса центров блуждающих нервов свидетельствуют и опыты с регистрацией потенциалов нерва в момент раздражения. Следовательно, по блуждающим нервам из ЦНС поступают импульсы, тормозящие деятельность сердца.

После перерезки симпатических нервов наблюдается небольшое уменьшение числа сердечных сокращений, что свидетельствует о постоянно стимулирующем влиянии на сердце центров симпатических нервов.

Тонус центров сердечных нервов поддерживается различными рефлекторными и гуморальными влияниями. Особенно существенное значение имеют импульсы, поступающие от сосудистых рефлексогенных зон , расположенных в области дуги аорты и каротидного синуса (места разветвления сонной артерии на наружную и внутреннюю). После перерезки нерва депрессора и нерва Геринга, идущих от этих зон в ЦНС, уменьшается тонус центров блуждающих нервов, вследствие чего наступает учащение сердечных сокращений.

На состояние сердечных центров влияют импульсы, приходящие с любых других интеро- и экстерорецепторов кожи и некоторых внутренних органов (например, кишечника и др.).

Обнаружен ряд гуморальных факторов, влияющих на тонус сердечных центров. Например, гормон надпочечников адреналин повышает тонус симпатического нерва, таким же действием обладают ионы кальция.

На состояние тонуса сердечных центров влияют и вышележащие отделы , включая кору больших полушарий.

Рефлекторная регуляция деятельности сердца

В естественных условиях деятельности организма частота и сила сердечных сокращений постоянно изменяются в зависимости от воздействия факторов среды: выполнения физической нагрузи, передвижения тела в пространстве, влияния температуры, изменения состояния внутренних органов и др.

Основу приспособительных изменений сердечной деятельности в ответ на различные внешние воздействия составляют рефлекторные механизмы. Возбуждение, возникшее в рецепторах, по афферентным путям приходит к различным отделам ЦНС, влияет на регуляторные механизмы сердечной деятельности. Установлено, что нейроны, регулирующие деятельность сердца, располагаются не только в продолговатом мозге, но и в коре больших полушарий, промежуточном мозге (гипоталамусе) и мозжечке. От них импульсы идут в продолговатый и спинной мозг и изменяют состояние центров парасимпатической и симпатической регуляции. Отсюда импульсы поступают по блуждающим и симпатическим нервам к сердцу и вызывают замедление и ослабление или учащение и усиление его деятельности. Поэтому говорят о вагусных (тормозных) и симпатических (стимулирующих) рефлекторных влияниях на сердце.

Постоянные коррективы в работу сердца вносят влияния сосудистых рефлексогенных зон — дуги аорты и каротидного синуса (рис. 2). При повышении кровяного давления в аорте или сонных артериях раздражаются барорецепторы. Возникшее в них возбуждение проходит в ЦНС и повышает возбудимость центра блуждающих нервов, вследствие чего увеличивается количество идущих по ним тормозящих импульсов, что приводит к замедлению и ослаблению сердечных сокращений; следовательно, уменьшается количество крови, выбрасываемое сердцем в сосуды, и давление понижается.

Рис. 2. Синокаротидная и аортальная рефлексогенные зоны: 1 — аорта; 2 — общие сонные артерии; 3 — каротидный синус; 4 — синусный нерв (Геринга); 5 — аортальный нерв; 6 — каротидное тельце; 7 — блуждающий нерв; 8 — языкоглоточный нерв; 9 — внутренняя сонная артерия

К вагусным рефлексам относятся глазо-сердечный рефлекс Ашнера, рефлекс Гольца и др. Рефлекс Литера выражается в возникающем при надавливании на глазные яблоки рефлекторном уменьшении числа сердечных сокращений (на 10-20 в минуту). Рефлекс Гольца заключается в том, что при нанесении механического раздражения на кишечник лягушки (сдавливание пинцетом, поколачивание) возникает остановка или замедление деятельности сердца. Остановку сердца можно наблюдать и у человека при ударе в области солнечного сплетения или при погружении его вхолодную воду (вагусный рефлекс с рецепторов кожи).

Симпатические сердечные рефлексы возникают при различных эмоциональных влияниях, болевых раздражениях и физической нагрузке. При этом учащение сердечной деятельности может наступить вследствие не только усиления влияния симпатических нервов, но и понижения тонуса центров блуждающих нервов. Возбудителем хеморецепторов сосудистых рефлексогенных зон могут быть повышенное содержание в крови различных кислот (углекислого газа, молочной кислоты и др.) и колебание активной реакции крови. При этом наступает рефлекторное усиление деятельности сердца, обеспечивающее быстрейшее удаление этих веществ из организма и восстановление нормального состава крови.

Гуморальная регуляция деятельности сердца

Химические вещества, влияющие на деятельность сердца, условно делятся на две группы: парасимпатикотропные (или ваготропные), действующие, подобно вагусу, и симпатикотропные — подобно симпатическим нервам.

К парасимпатикотропным веществам относятся ацетилхолин и ионы калия. При увеличении содержания их в крови наступает торможение деятельности сердца.

К симпатикотропным веществам относятся адреналин, норадреналин и ионы кальция. При увеличении содержания их в крови наступает усиление и учащение сердечных сокращений. Глюкагон, ангиотензин и серотонин оказывают положительный инотропный эффект, тироксин — положительный хронотропный эффект. Гипоксемия, гиперкаиния и ацидоз угнетают сократительную активность миокарда.

Загрузка...