Медицинский портал. Щитовидная железа, Рак, диагностика

Статья на тему роботы в медицине. Обзор состояния робототехники в восстановительной медицине

В мировую медицину активно интегрируются искусственный интеллект и сложные методы автоматизации из робототехники. Применение роботов поднимает здравоохранение на новый уровень, оптимизируя ход лечения, отслеживания динамики, проведения анализа и хирургических операций. Ниже представлена подборка из 10 любопытных медицинских роботов, выпущенных на сегодняшний день.

Робот-ассистент da Vinci

Производитель: компания Intuitive Surgical, США.

Головной офис компании Intuitive Surgical, Inc. расположен в городе Саннивейл, штат Калифорния. Считается мировым лидером в роботической малоинвазивной хирургии.

Краткая справка о роботе

Робот da Vinci разработан как вспомогательный инструмент для хирургов. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно. Робот использует специальные инструменты, включая миниатюрные камеры для визуализации и стандартные инструменты (т.е. ножницы, скальпели и пинцеты), разработанные для точной диссекции при проведении полостных операций.

За 2016 год было проведено 750 000 операций с помощью da Vinci. С момента выпуска робота – 4 000 000. По состоянию на 31 декабря 2016 года в мире было установлено 3919 систем. В России – 26 систем во всех крупных городах. Создатели робота da Vinci нацелены на решение ряда проблем в хирургии. Во-первых, улучшенное качество изображения (в 3D), которое помогает хирургам и персоналу преодолеть ограничения невооруженного глаза при идентификации тканевых структур при операции. Во-вторых, внедрение интеллектуальных систем. Современные датчики, обеспечивающие одновременную обратную связь, упрощают выявление тканевых структур как источника осложнений и вариабельности.

Робот Preceyes

Производитель: компания Preceyes B.V., Голландия.

Головной офис компании Preceyes B.V. расположен в городе Эйндховен, провинция Северный Брабант. Целью компании считается развитие новых высокоточных методов терапии и облегчение способов проведения витреоретинальной хирургии.

Робот Preceyes разработан как деликатное роботизированное решение для помощи хирургам-офтальмологам при проведении операции. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно – через сенсорный экран и джойстик. Компания Preceyes B.V. ставит еще одной своей целью повышение профессионализма хирургов, а не замену человека машиной.

Краткая справка о роботе

Первая операция с использованием робота Preceyes прошла в оксфордской клинике Джона Рэдклиффа в Великобритании в 2016 году. Создатели робота Preceyes нацелены на решение ряда проблем в хирургии:

  • смягчение резких неосторожных движений хирурга, что помогает хирургу исключить повреждения внутренних органов;
  • повышенная точность. Точность движений робота – 1 на 1000 долей миллиметра.

Робот Veebot


Производитель: стартап Veebot, США.

Информация о головном офисе отсутствует. Целью компании считается предоставление точного и непродолжительного забора крови у пациента с автоматизацией процесса и проведением инфузионной терапии.

Краткая справка о роботе

Робот Veebot пока проходит испытания и демонстрирует выбор места введения иглы в 83% случаев. Создатели машины заявляют о планах повысить результат до 90% перед проведением первых клинических испытаний. Для зажатия и улучшения визуализации вен робот оснащен рукавом. Также для улучшения видимости вен применяются инфракрасные и звуковые датчики, вид с камеры и четкий алгоритм для определения места, наклона и глубины введения иглы.

Робот SurgiBot


Производитель: компания TransEnterix, США.

Головной офис компании TransEnterix находится в городе Моррисвилль, штат Северная Каролина. Компания считается пионером в области применения робототехники для повышения качества малоинвазивной хирургии. Также компания нацелена на решение клинических и экономических сложностей при проведении лапароскопии.

Краткая справка о роботе

Роботизированная система SurgiBot TM разработана как малоинвазивная платформа с применением инструментов в ходе единичного рассечения. Применение гибких инструментов при операции контролируется хирургом из стерильного поля. Робот оснащен щупами, регулятором чувствительности управляющих ручек и камерой с фонариком, которая выводит изображение хода процесса на стандартный монитор.

Робот SurgiBot пока не доступен для покупки.

Робот Smart Tissue Autonomous Robot (STAR), США


Производитель: "Национальный детский медицинский центр" (Children"s National Medical Center), город Вашингтон, округ Колумбия. Ученые-разработчики нацелены на создание высокоточного робота для автономных операций на мягких тканях.

Краткая справка о роботе

Робот STAR основан на работе технологии NVIDIA GeForce GTX TITAN GPU с применением механической руки, с 3D-камерой, машинным зрением в ближнем диапазоне инфракрасных волн и биомаркерами для четкой ориентации в оперируемой полости.

Система Robodoc


Производитель: компания Curexo Technology Corporation, США.

Головной офис компании Curexo Technology Corporation расположен в городе Фремонт, штат Калифорния. Миссия компании заключается в повышении заботы о пациентах посредством работы над качеством и создания точных роботизированных платформ.

Краткая справка о роботе

На территории США, Европы, Японии, Кореи и Индии при помощи Robodoc было проведено 28000 операций по замене суставов.

Работа с роботом включает два этапа: планирование и составление плана перед операцией. В ходе первого этапа пациент проходит КТ-сканирование для получения и вывода изображения на 4 рабочих окна, составляющих один экран. После выбора и анализа точной анатомической структуры импланта из базы идет планирование операции с передачей информации на вспомогательный механизм ROBODOС Surgical Assistant. Робот оснащен фиксаторами и специальным регистратором DigiMatch, формирующим точное изображение картины костной ткани в пространстве.

Auris Robotic Endoscopy System (ARES)

Производитель: компания Auris Surgical Robotics, США.

Головной офис компании Auris Surgical Robotics расположен в Силиконовой долине. Компания нацелена на создание нового поколения хирургических роботов, способных расширить сферу применения специализированных платформ для проведения медицинских процедур.

Краткая справка о роботе

В конце 2014 года было проведено клиническое исследование с участием пациентов с подозрением развития рака. Типы хирургических операции проводятся за счет взаимозаменяемости механических рук робота с инструментами и гибкого эндоскопа. Среди инструментов отмечены лазеры, пинцеты, иглы и скальпели, при помощи которых хирург проведет биопсию, операцию по восстановлению слизистой желудка и иссечение опухолей. Робот не запрограммирован под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через рабочую станцию на рабочем столе компьютера.

Роботизированная установка CorPath 200

Производитель: компания Corindus Vascular Robotics, США.

Головной офис компании Corindus Vascular Robotics расположен в городе Уолтем, штат Массачуссетс. Компания считается мировым лидером в области роботизированной сердечно-сосудистой хирургии.

Краткая справка о роботе

Роботизированная установка CorPath 200 предназначена для коронарной ангиопластики с расширением суженных или заблокированных артерий. Стандартное проведение операции допускает риск облучения из-за рентгена. Установка не запрограммирована под самостоятельное проведение операции, поскольку процедура и ход операции контролируются человеком дистанционно через джойстик. Удаленный контроль уточняет движение катетера и повышает безопасность пациента.

Магнитные микророботы


Производитель: Федеральная политехническая школа Лозанны (EPFL), Франция, и Eidgenössische Technische Hochschule Zürich (ETHZ), Швейцария.

Краткая справка о роботе

Магнитные микророботы предназначены для точечной доставки лекарственных веществ в организм пациента. Структура микроробота имитирует тело червя Trypanosoma brucei, который передвигается при помощи регулярного сжатия придатка-жгутика. Использование биосовместимого гидрогеля и магнитных наночастиц делает микророботов безмоторными, гибкими и мягкими. Управление проходит через электромагнитное поле, которое преобразует магнитные наночастицы в крепления и инициируют движение микроробота.


Страна-производитель: компания Medtech S.A., Франция.

Головной офис компании Medtech расположен в городе Монпелье. Миссия компании заключается в создании отношений, инструментов и программ, нацеленных на внедрение передовых медицинских решений на рынок медицинских услуг.

Краткая справка о роботе

Робот Rosa разработан для результативности и безопасности хирургических операций по неврологии. Робот Rosa – единственный роботизированный механизм, который прошел одобрение на проведение неврологических операций на территории Европы, США и Канады. Механизм работает по принципу GPS для черепа в ходе краниальных операций, требующих хирургического планирования на основании предоперационной информации, точной анатомии пациента и управления инструментами. Робот Rosa включает нейронавигационную станцию и высокоточный манипулятор, которые повышают безопасность и скорость точных нейрохирургических операций.

Профессор Дмитрий Пушкарь говорит: "Роботизированная хирургия стала настоящим переворотом в медицине. Робот da Vinci изменил качество хирургии во всем мире".

Применение роботов в медицине аналогично революции, которая предвосхищает тесное взаимодействие человека и технологий. Благодаря автоматизации снижается роль человеческого фактора, приводящего к ошибкам врачей, а лечение становится доступнее.

Фото: roboticsbusinessreview.com

Da Vinci

Назначение : хирург

Как устроен : Пока робот-хирург - это не самостоятельно действующий механизм, а послушный 500-килограммовый инструмент в руках врача. У операционного модуля четыре «руки». Три из них оканчиваются миниатюрными хирургическими инструментами - скальпелями и зажимами, а четвертая управляет крошечной видеокамерой. Da Vinci оперирует через сантиметровые проколы, поэтому без камеры не обойтись, зато у пациента почти не остается шрамов. Когда робот «колдует» над больным, хирург-человек сидит за пультом в отдалении от стола. Врач манипулирует джойстиками, которые с ювелирной точностью передают движения пальцев и кисти «рукам» da Vinci. Как и у человеческой кисти, у них семь степеней свободы, но манипуляторы гораздо сильнее, не устают и мгновенно замирают, если хирург отпустит джойстики. Свои действия врач контролирует через окуляр, куда поступает увеличенная до 12 раз картинка с видеокамеры.

Где применяется : Роботы-хирурги da Vinci работают в сотнях клиник по всему миру. В России 20 таких аппаратов. Один из них - в Федеральном центре сердца, крови и эндокринологии им. В.А. Алмазова (СПб.), где da Vinci выполняет около сотни операций в год. Его «конек» - точное и аккуратное удаление лишнего: опухолей, грыж, аневризм.

Kirobo

Назначение : антидепрессант для космонавтов

Как устроен : Человекоподобный робот высотой всего 34 см создан специально для «живого» общения с человеком. Робот разговаривает, понимает сказанное и естественно реагирует на вопросы. Искусственный интеллект Kirobo отличает человеческую речь (пока только японскую) от окружающих звуков, выделяет в ее потоке отдельные слова и определяет смысл фраз. Андроид запоминает и узнает конкретных людей, различает эмоции, выраженные мимикой и жестами. Тело робота имеет 20 степеней свободы, так что Kirobo отвечает человеку не только словом, но и движениями.

Где применяется : С декабря 2013 года Kirobo общается на Международной космической станции с астронавтом из Японии Коити Ваката. Все беседы записываются на видео, и по итогам миссии японские ученые хотят выяснить, может ли андроид оказать реальную психологическую поддержку человеку.

PARO

Назначение : зоотерапевт

Как устроен : PARO - робот, который выглядит как детеныш гренландского тюленя. Снаружи - мягкая белая шкурка и умильная мордочка. Внутри - датчики прикосновения, света, звука, температуры, положения в пространстве, синтезатор голоса и искусственный интеллект. Электронная зверушка понимает, где находится, запоминает данное ей имя и откликается на него, различает грубость и похвалу. Общаясь с человеком, робот формирует собственный «характер» и становится «настоящим» питомцем.

Где применяется : PARO можно гладить, обнимать, делиться с ним переживаниями. Робозверь поймет и ответит соответственно. Такого эмоционального отклика часто не хватает в больницах детям, пожилым и тем, кто надолго прикован к постели. Зоотерапия помогает пережить долгие дни в госпитале, но содержать животных в больнице часто невозможно. Поэтому с 2003 года роботюленями обзавелись клиники Японии, Европы и США, например клиника Национальной ассоциации болезни Альцгеймера (Чикаго), Детский диагностический центр (Вентура, Калифорния).

HOSPI

Назначение : фармацевт

Как устроен : Огромную часть времени медперсонал больниц тратит на простые действия вроде «принеси-унеси-найди-где-лежит». HOSPI освободил врачей и медсестер для более важных дел. Роботизированная «аптечка» высотой 130 см перевозит до 20 кг лекарств и образцов. В память робота вводят указания, кому какие препараты прописаны, и HOSPI сам выбирает оптимальный маршрут. По пути он огибает препятствия, в том числе движущиеся. Прибыв на сестринский пост, робот сообщает, что и кому он привез. Персоналу остается только отдать лекарства пациентам.

Где применяется : У себя на родине, в Японии, HOSPI работает более чем в 50 клиниках. В 2009 году несколько экземпляров отправились в больницы Южной Кореи.

RP-VITA

Назначение : врач на расстоянии

Как устроен : RP-VITA - робот телеприсутствия, с его помощью врач может виртуально делать обходы или наблюдать за тяжелым больным круглые сутки, находясь в другом месте. По больничным коридорам за доктора будет кататься робот высотой около 1,5 м, который прокладывает путь с помощью системы лазерных и звуковых датчиков. В палате пациент или медсестра видят лицо врача на экране и могут пообщаться с доктором. RP-VITA возит с собой базовый набор диагностических инструментов, и, если доктору нужно что-то уточнить, медсестра тут же проводит обследование. Врачу для общения с пациентом нужен только ноутбук или планшет.

Где применяется : С мая 2013 года RP-VITA находится на службе в шести клиниках США и в Институте здравоохранения Мексики. Роботы следят за тяжелыми пациентами, чтобы вовремя заметить опасные изменения жизненных показателей.

HAL

Назначение : экзоскелет

Как устроен : HAL - робот-костюм, предназначенный для того, чтобы в прямом смысле поднять на ноги парализованных людей. Датчики экзоскелета, прикрепленные к поверхности кожи, считывают слабые электрические импульсы, которые мозг посылает мышцам, а затем двигатели робота делают всю работу. HAL существует в двух вариантах: целый скелет или только «ноги».

Где применяется : Роботы HAL проходят испытания в 10 японских клиниках. Они помогают восстановить двигательные навыки пациентов, временно обездвиженных из-за травмы или долгой болезни.

IBM Watson

Назначение : онколог-диагност

Как устроен : IBM Watson - классический суперкомпьютер из 90 серверов по 4 восьмиядерных процессора в каждом, а его оперативная память - 16 терабайт. «Ватсон» - машина с искусственным интеллектом, он самостоятельно изучает источники информации и делает выводы. Прежде чем приступить к работе, будущий диагност проанализировал 605 000 медицинских документов. Врач загружает в память робота историю болезни и через несколько минут получает вероятный диагноз и курс лечения. Если доктору нужно что-то уточнить, он может задать Ватсону вопрос в письменной форме.

Где применяется : В 2013 году шесть «Ватсонов» были приняты в клиники США в качестве онкологов-диагностов. Результаты превзошли все ожидания: суперкомпьютеры ставят диагноз и выбирают курс лечения на 40% точнее, чем живые врачи. Впрочем, итоговое решение все равно остается за онкологом-человеком. Зато с суперкомпьютером всегда можно посоветоваться. Например, отправить сообщение вроде «Пациент ночью кашлял» или «Эритроциты упали» - «Ватсон» тут же пересмотрит историю болезни и уточнит вердикт.

Фото: AFP/EAST NEWS, CORBIS/FOTO S.A., PANASONIC, DIOMEDIA, REUTERS/VOSTOCK PHOTO, IBM

На сегодняшний день робототехнологии шагнули далеко вперед, благодаря чему концепция лечения людей значительно изменилась. Исходя из того, какое количество исследовательских групп сейчас занимается изготовлением роботов, в медицине намечается огромный прогресс, особенно если сравнивать с успехами восьмилетней давности.

Первые успешные мероприятия по приходятся на 2006 год, когда ученый Сильван Мартель собрал исследовательскую группу и создал уникального на тот момент крошечного робота, габариты которого едва превышали шарик от обычной ручки. Этот искусственный организм был помещен в сонную артерию живой свиньи, где он успешно перемещался по заданным точкам. С тех пор роботы в медицине заняли свою нишу и продолжают активно развиваться. А если судить по опыту последних нескольких лет, эти технологии движутся огромными шагами.

Преимущества роботов

Главная цель создания подобных «помощников» - перемещаться не только по наиболее крупным артериям человека, но и получать данные с участков с узкими кровеносными сосудами. Благодаря этому применение роботов в медицине позволит выполнять довольно сложные операции без травматического вмешательства. Таким образом, значительно снижается риск смертности от слишком агрессивной анестезии или из-за того, что пациент страдает от аллергической реакции на тот или иной препарат.

Однако это не единственный плюс использования роботов в медицине. Например, подобные технологии могут помочь при лечении рака. Дело в том, что микророботы способны доставлять лекарственные препараты непосредственно к очагу злокачественного образования. В отличие от химиотерапии, когда агрессивные препараты распространяются по всему телу больного и вызывают непоправимые последствия, такой метод не нанесет сильного удара по иммунной системе человека.

Современные роботы в медицине способны справляться с большим перечнем задач. Однако и сегодня остается масса вопросов касательно того, как заставить столь малый искусственный организм перемещаться по крови или отслеживать его местоположение. Но некоторые современные разработки, позволяют справляться с поставленными задачами. Рассмотрим их подробнее.

«Биоракеты»

Эти роботы-помощники в медицине являются своего рода титановыми ядрами, заключенными в алюминиевые оболочки. При этом их размер не превышает 20 мкм. Когда алюминиевая оболочка соприкасается с водой, начинается реакция, в ходе которой на поверхности ядра образуется водород. Именно это вещество заставляет микроконструкцию перемещаться со скоростью, равной 150 своим диаметрам за секунду. Это равносильно тому, что человек ростом 2 метра способен проплыть за столько же времени 300 метров. Химический двигатель этого уникального робота в медицине применяется благодаря добавке специального вещества - галлия. Этот компонент уменьшает скорость образования оксидного налета. Благодаря этому микроробот может проработать порядка 5 минут с максимальным запасом хода 900 мм (при условии пребывания в воде).

Чтобы направить микроскопический агрегат по заданному направлению, используется внешнее магнитное поле. Таким образом, «биоракета» применима для доставки лекарственных препаратов в определенную точку организма человека.

Мускульные роботы

Это довольно интересное направление робототехники. Мускульные роботы в медицине применяются для стимуляции мышечных клеток. Работают такие микроскопические агрегаты посредством электрических импульсов, которые они передают. Сами роботы представляют собой своего рода хребты, изготовленные из гидрогеля. Они работают по такому же принципу, что и в организме млекопитающих. Например, если речь идет о человеческом теле, то мышцы начинают сокращаться благодаря сухожилиям. В случае с микророботом этот процесс происходит благодаря электрическому заряду.

Да Винчи

Робот «Леонардо» в медицине получил особую популярность. Он был создан, чтобы в будущем заменить хирургов. На сегодняшний день этот самостоятельный механизм весом 500 кг, оснащенный четырьмя «руками», способен справляться с огромным количеством задач. Три его конечности оснащены миниатюрными инструментами для выполнения сложнейших операций. На четвертой «руке» находится крошечная видеокамера.

То, как действуют такие роботы в медицине, фото демонстрирует лучше всего. Да Винчи способен оперировать через самые крошечные разрезы, ширина которых составляет не более нескольких сантиметров. Благодаря этому после хирургического вмешательства у пациента не остается безобразных шрамов.

В процессе работы «Леонардо» на некотором отдалении от него сидит медицинский работник, который управляет пультом. Благодаря современному джойстику врач может выполнять сложнейшие манипуляции с ювелирной точностью. Все действия передаются конечностям робота, который повторяет движения пальцев рук.

Стоит также отметить, что «руки» агрегата немного отличаются от человеческих кистей тем, что манипуляторы способны работать в режимах. Кроме этого искусственные «пальцы» не устают и могут мгновенно замирать, если оператор случайно отпустит пульт управления. Врач может контролировать свои движения при помощи мощных окуляров, которые позволяют увеличивать картинку в 12 раз.

«Киробо»

Этот интересный робот был разработан специально для космонавтов, которые испытывают психологическое давление, находясь так далеко от родной планеты. Человекообразная машина отличается небольшими габаритами. Ее рост составляет всего 34 см. Однако этого вполне достаточно. Робот способен поддерживать полноценную беседу, реагировать на вопросы и имитировать «живое» общение. Единственный минус новой разработки заключается в том, что общается он пока что исключительно на японском языке.

Робот прекрасно отличает человеческую речь от прочих звуков. Кроме этого, он способен узнавать людей, с которыми уже общался до этого. Он может определять настроение исходя из мимики и вообще много чего умеет. При необходимости он может даже обнять.

Некоторые ученые полагают, что данные интеллектуальные роботы в медицине не нужны. Однако они вполне могут найти применение в психотерапии.

«ПАРО»

Этот помощник работает в качестве зоотерапевта. Внешне он был создан в виде Наружная оболочка робота изготовлена из мягкого материала, который напоминает натуральную белую шкуру реального животного. Внутри он набит всевозможными датчиками (прикосновения, температуры, света, положения, звука и прочего). Этот полноценный искусственный интеллект прекрасно осознает где он находится, способен откликаться на присвоенное ему имя. Уникальный робот с умилительной мордочкой различает грубость и ласковое отношение.

Сегодня этот интересный робот уже широко применяется для терапии различных категорий пациентов. Его можно погладить, обнять, пообщаться с ним или просто рассказать о своих переживаниях. В будущем данные роботы будут направлены в дома престарелых, детские сады и реабилитационные центры для помощи людям, страдающим от психологических переживаний. Очень часто в послеоперационный период пациенты нуждаются в поддержке, однако в медицинских учреждениях невозможно содержать животных, поэтому такой искусственный интеллект станет настоящим прорывом в восстановительной медицине.

«Хоспи»

Этот робот предназначен для того, чтобы заменить фармацевтов. Это поможет медперсоналу значительно сэкономить время на поиск нужных лекарственных препаратов и доставку их в стенах больниц. По большому счету этот помощник представляет собой роботизированную аптечку, высота которой составляет 130 см. Робот способен перевозить вес до 20 кг, этого вполне достаточно для того, чтобы перемещать по госпиталю большое количество самых разных лекарственных препаратов и образцов. При перемещении "Хоспи" способен огибать препятствия, поэтому риск того, что он столкнется с персоналом или посетителями больницы сведен практически к нулю.

«РП Вита»

Этот робот способен оказывать помощь в консультировании на расстоянии. Виртуальный «помощник» позволяет лечащему врачу совершать обход за считанные минуты. Кроме этого благодаря роботу становится возможным следить за состоянием тяжелобольных пациентов, требующих особенного внимания на протяжении дня и ночи.

Высота чуда техники составляет 1,5 метров. Внутри робота установлена система специальных звуковых и лазерных датчиков, за счет которых осуществляется построение маршрута агрегата. Также он оснащен экраном, на котором будет отображаться лицо лечащего врача. Благодаря этому имитируется полноценное общение с пациентами, которые в полной мере ощущают присутствие медицинского сотрудника. «РП Вита» также оснащен современными диагностическими инструментами. Для работы с агрегатом достаточно ноутбука или планшета.

«Хал»

Данный робот представляет собой специализированный экзоскелет, благодаря которому парализованные люди смогут полноценно передвигаться.

Датчики оборудования закрепляются на коже пациентов и начинают считывать силу импульсов, которые исходят от тех или иных мышц. Если какой-либо узел работает не в полной мере, то активируется экзоскелет, и органы получают необходимые для их работы заряды.

Сегодня робот представлен в двух модификациях: целый скелет или только для ног.

«Ватсон»

Этот суперкомпьютер оснащен сразу 90 серверами по четыре процессора, в каждом из которых установлено по восемь ядер. Оперативная память робота составляет шестнадцать терабайт. «Ватсон» - это онколог, который способен ставить диагнозы за короткое время. Агрегат оснащен отличным искусственным интеллектом, благодаря чему он способен быстро считывать информацию и делать необходимые выводы. Робот за считанные минуты обрабатывает до 600 000 медицинских справочников и других необходимых для диагностирования документов. Врачу остается загрузить в память болезни пациента и получить вероятный диагноз. Кроме того, «Ватсону» можно задавать вопросы, только пока что исключительно в письменной форме.

В заключение

Исходя из быстро развивающихся технологий, несложно сделать вывод, что роботы в медицине в будущем будут незаменимы. Они позволят медицинским учреждениям перейти на новый уровень диагностирования и лечения самых сложных заболеваний. При этом речь идет также и о психических больных.

Казанский Государственный

Технологический Университет

Реферат на тему:

Робототехника в медицине

Выполнил студент группы

Нигматуллин А.Р.

Казань 2010.


Вступление

1. Виды медицинских роботов

Заключение


Вступление

В эпоху бурного развития науки и техники появляется множество различных нововведений в самых различных областях. Прилавки супермаркетов заполняются экзотической пищей, в торговых комплексах появляются одежды из новейших материалов, а в гипермаркетах электроники и того дальше, невозможно угнаться за развитием новых изобретений. Все привычное старое стремительно сменяется на необыкновенное, новое, к которому так не просто привыкнуть. Но если бы не было прогресса, то люди не познали бы множества загадок, которые еще не раскрыты, и природа тщательно скрывает их от нас. Несмотря на все это, благодарю высокой профессиональности современных ученых физиков, безостановочно ведутся разработки в различных сферах. Простой человек вряд ли озадачивался вопросом что же нового можно внести в этот и без того безгранично цивилизованный и прогрессивный мир. Для примера можно рассмотреть наш мир, каким он был даже одну сотню лет назад. Не было не телевизоров, не компьютеров, не бытовой техник, без которой современному человеку в быту просто не обойтисьли даже 10 лет назад, когда сотовые телефоны только –только вышли в свет и были громоздкими и очень малофункциональными, что касается и компьютерной техники. Наука движет мир вперед, и в любых областях жизнедеятельности человека нужны какие – либо нововведения. В данном пример хотелось бы выбрать как определенный аспект – область медицины, а точнее ее технического потенциала. Медицина так же не стоит на месте, появляются новее сложнейшие аппараты, для жизнеобеспечения человека, примером тому могут стать множество аппаратов, например аппарат для искусственной вентиляции легких, либо аппарат искусственной почки и т.п. Появились миниатюрные измерители сахара в крови, электронные измерители пульса и давления, этот список можно дополнить неоднократно. Конкретнее хочется остановиться на примере внедрения робототехники в медицинскую отрасль. Различные роботы создаются человеком примерно с конца 20 –ого века, за пройденное время они были значительно улучшены и модернизированы. На данный момент существуют роботы – помощники, военные разработки роботов, космические, бытовые и конечно медицинские. Далее стоит подробнее разобрать какие виды роботов и для какого применения существуют на данный момент времени.


Виды медицинских роботов

Один из наиболее известных и прославленных достижений последнего времени стал робот по названием «Да Винчи», который, как можно догадаться был назван в честь великого инженера, художника и ученого Леонардо Да Винчи. Новинка позволяет хирургам выполнять самые сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Робот, который может применяться в кардиологии, гинекологии, урологии и общей хирургии, был продемонстрирован медицинским центром и отделением хирургии университета штата Аризона.

Во время операции с “да Винчи” хирург находится за пару метров от операционного стола за компьютером, на мониторе которого представлено трехмерное изображение оперируемого органа. Врач управляет тонкими хирургическими инструментами, проникающими в тело пациента сквозь небольшие отверстия. Такие инструменты с дистанционным управлением можно использовать для точных операций на небольших и труднодоступных участках тела.

Доказательством необычайных возможностей “да Винчи” стал первый в мире полностью эндоскопический байпас, выполненный совсем недавно в Колумбийском Пресвитерианском медицинском центре в Нью-Йорке. Уникальную операцию провели директор центра по роботизированной кардиохирургии Майкл Аргензиано, и заведующий отделом кардиоторакальной хирургии доктор Крейг Смит. При этом они использовали всего лишь три небольших отверстия - два для манипуляторов и одно - для видеокамеры. Понять, что это значит, может только человек, хоть раз наблюдавший “традиционную” операцию на открытом сердце.

Действия бригады, “открывающей” грудную клетку пациента, производят на новичка (по журналистскому заданию мне как-то пришлось побывать в этой роли) неизгладимое впечатление. До сих пор помню мурашки по всему телу от жуткого визга разрезающей грудину дисковой пилы и огромную рану, в которой деловито сновали руки в окровавленных резиновых перчатках.

В Соединенных Штатахбайпасили аортокоронарное шунтирование является самой распространенной операцией на открытом сердце. Ежегодно эту процедуру проходят здесь 375 тысяч человек. Широкое внедрение “да Винчи” могло бы значительно облегчить их судьбу, помогая пациентам быстрее поправляться после операции и раньше выписываться из госпиталей.

Главный хирург аризонского центра, где испытывают “да Винчи”, доктор Алан Гамильтон вообще уверен в том, что роботостроение произведет революцию в хирургии. Пока что эта революция только начинается, а вот в... кино “да Винчи” уже произвел изрядный фурор. Хирургический робот сыграл роль в последнем кинофильме сериала о Джеймсе Бонде “Умри в другой день” (Die Another Day).

В начале фильма крупным планом показываются три механические руки, шарящие по телу захваченного врагами агента 007. “Хирурги и шпионы похожи друг на друга, поскольку они стремятся выполнить свои задачи без излишней суеты и с использованием новейших технологий, - сказал представитель лондонского Имперского колледжа, где трудится сейчас “да Винчи”. - Фильмы о Джеймсе Бонде всегда восхищали меня демонстрацией невиданных технических новинок. Но я никогда не думал, что когда-нибудь отдел, который я возглавляю, будет сотрудничать с производителями бондианы”.

“Да Винчи” - лишь один из примеров развития новой отрасли в медицине.

Другие роботы применяются в самых различных операциях, вплоть до хирургии головного мозга. Пока что эти устройства достаточно громоздки, но врачи надеются на появление и миниатюрных помощников. Прошлым летом, например, отдел энергетики американской Национальной лаборатории Sandia в Альбукерке уже построил самый маленький в мире робот высотой в один сантиметр. А британская корпорация Nanotechnology Development разрабатывает крошку Fractal Surgeon, который будет самостоятельно собираться из еще меньших блоков внутри человеческого тела, проводить там необходимые действия и саморазбираться.

Теперь же робота оснастили самыми продвинутыми "глазами" в мире(о чём свидетельствуетпресс-релизкомпании). Трёхмерное зрение было у него и раньше, а вот высокой чёткости добились только сейчас.

Новая версия позволяет следить за операцией сразу двум хирургам.Один из них может как ассистировать, так и учиться мастерству у старших коллег. На рабочем дисплее может быть отображена не только картинка с камер, но и два дополнительных параметра, например данные ультразвука и ЭКГ.

Многорукий da Vinci позволяет оперировать с большой точностью, а значит, и с минимальным вмешательством в организм пациента. В результате восстановление после операции происходит быстрее, чем обычно (фото 2009 Intuitive Surgical)

Еще одна интересная новость. Сотрудники Университета Вандербильта (США) выступили с концепцией новой автоматической когнитивной системы TriageBot. Машины будут собирать медицинскую информацию, осуществлять основные диагностические измерения и в конечном итоге ставить предварительные диагнозы, пока люди занимаются более неотложными проблемами. В результате пациенты будут меньше ждать, а специалисты вздохнут свободнее и существенно снизят количество ошибок.«Последние достижения в области дизайна гуманоидных роботов, сенсорных технологий и архитектуры когнитивного контроля сделали такую систему возможной», - подчёркивает соавтор проекта Митч Уилкс.В США около 40% пациентов отделений экстренной помощи поступают туда в состоянии, опасном для жизни. Врачам приходится уделять им первоочередное внимание. Роботы могли бы заняться остальными 60%.Если проект окажется успешным, через пять лет возле стойки регистрации появятся электронные терминалы, подобные тем, что установлены в аэропортах, а также специальные «умные» стулья и мобильные роботы.При поступлении пациент должен прежде всего зарегистрироваться. В предлагаемой системе сопровождающее лицо сможет внести все необходимые данные через терминал с сенсорным экраном. Возможны голосовые подсказки. При этом автомат сможет распознавать наличие критической информации (например, острая боль в груди) и информировать о ней врача, чтобы пациентом занялись как можно скорее. В противном случае больного направят в зал ожидания.План более подробной диагностики пациента разрабатывается в соответствии с этими первоначальными сведениями. В предлагаемой системе простейшие процедуры можно проделать уже в приёмной, на специальном стуле, который измерит кровяное давление, пульс, насыщение крови кислородом, частоту дыхания, высоту и вес.Кроме того, мобильные помощники будут периодически проверять состояние пациентов в зале ожидания, уделяя особое внимание артериальному давлению, частоте пульса и, возможно, интенсивности болевых ощущений. В случае обнаружения критических изменений робот обязан проинформировать человеческий персонал.Последний элемент системы TriageBot - это администратор, который следит за машинами, обеспечивает связь с больничной базой данных и служит посредником между автоматикой и медиками.Планируется провести ряд исследований, в ходе которых будет определён точный набор функций роботов и их внешний вид. Параллельно разрабатываются прототипы.

Для более точных и удобных расчетов ученые создали чудного робота –фармацевта. Электронно-механическое чудо, работающее в большом подвале Пресвитерианской больницы в городе Альбукерке, штат Нью-Мексико, зовут Рози. “Родитель” этого мощного механического агрегата, перемещающегося по четырехметровому рельсу в темной застекленной комнате, - новое подразделение корпорации Intel - Intel Community Solutions, использующее достижения фирмы для решения социальных задач.

". Перевод на русский язык редакции сайт

2.3 Медицина и робототехника

2.3.1 Обзор области

Здравоохранение и роботы

В результате демографических изменений во многих странах системы здравоохранения сталкиваются с возрастающей нагрузкой, поскольку им приходится обслуживать стареющее население. На фоне роста спроса на услуги совершенствуются процедуры, что приводит к улучшению результатов. Одновременно растут затраты на оказание медицинских услуг, несмотря на снижение числа людей, занятых в области оказания медицинской помощи.

Применение технологий, включая робототехнику, представляется частью возможного решения. В данном документе отрасль медицины разделена на три подобласти:

- Роботы для больниц (Clinical Robotics) : Можно определить соответствующие робототехнические системы, как те, что обеспечивают процессы "заботы" и "излечения". Прежде всего - это роботы для диагностики, лечения, хирургического вмешательства и ввода медикаментов, а также в системах экстренной помощи. Такие роботы управляются персоналом больницы или обученными специалистами в области заботы о пациентах.

- Роботы для реабилитации (Rehabilitation) : Такие роботы обеспечивают послеоперационную или посттравматическую помощь, когда прямое физическое взаимодействие с робототехнической системой будет либо ускорять процессс восстановления (выздоровления), либо обеспечивать замену утраченной функциональности (например, когда речь идет о протезе ноги или руки).

- Вспомогательные роботы (Assistive robotics) : В этот сегмент относят другие аспекты робототехники, применяемой в медицинской практике, когда первичным назначением робототехнических систем является обеспечение поддержки либо тому, кто оказывает медицинскую помощь, либо непосредственно пациенту, независимо от того, идет ли речь о больнице или о другом медицинском учреждении.

Все перечисленные поддомены характеризуются тем, что требуют обеспечения системами безопасности, которые принимают в расчет клинические потребности пациентов. В типовом случае управлением или настройками таких систем занимается квалифицированный больничный персонал.

Медицинская робототехника - больше, чем просто технология

Кроме развития непосредственно робототехнических технологий, важно, чтобы соответствующие роботы внедрялись, как часть процессов лечения в больнице или других медицинских процедур. Требования к системе должны формироваться на основе четко выявленных потребностей пользователя и получателя услуг. При разработке таких систем, принципиально важно демонстрировать ту дополнительную пользу, которую они могут обеспечить при их внедрении, это критически важно для дальнейшего успеха на рынке. Получение дополнительной пользы требует прямого вовлечения в процесс разработки данной техники профессионалов в области медицины, а также пациентов, как на стадии дизайна, так и на стадии внедрения при разработке роботов. Разработка систем в контексте среды их будушего применения обеспечивает вовлечение заинтересованных сторон. Ясное понимание существующей медицинской практики, очевидная необходимость обучения медицинского персонала пользованию системой, владение различной информацией, которая может потребоваться для разработки, - критически необходимые факторы при создании пригодной к дальнейшему внедрению системы. Введение роботов в медицинскую практику потребует адаптации всей системы оказания медицинских услуг. Это деликатный процесс, в рамках которого технология и практика оказания медицинских услуг оказывают взаимное влияние и должны будут адаптироваться друг к другу. С момента начала разработки, важно принимать во внимание этот аспект "взаимозависимости".

Разработка роботов для нужд медицины включает очень широкий набор различных потенциальных приложений. Рассмотрим их ниже, в контексте выделенных ранее трех основных сегментов рынка.

Роботы для больниц

Этот сегмент представлен разнообразными приложениями. Можно выделить, например, такие категории:

Системы, которые непосредственно расширяют возможности хирурга в плане ловкости (гибкости и точности) и силы;

Системы, которые позволяют проводить дистанционную диагностику и вмешательства. В эту категорию можно включать, как телеуправляемые системы, когда врач может находиться на большем или меньшем удалении от пациента, так и системы для использования внутри тела пациента;

Системы, которые обеспечивают поддержку во время диагностических процедур;

Системы, которые обеспечивают поддержку во время хирургических процедур.

Кроме этих приложений для больниц, существует некоторое количество вспомогательных приложений для больниц, включая роботов для взятия образцов, лабораторных исследований образцов ткани, а также других услуг, необходимых в больничной практике.

Роботы для реабилитации

Реабилитационная робототехника включает такие устройства, как протезы или например, роботизированные экзоскелеты или ортезы, которые обеспечивают тренировку, поддержку или замену утраченных активностей или нарушенной функциональностей человеческого тела и его структуры. Такие устройства могут применяться, как в больницах, так и в повседневной жизни пациентов, но как правило требуют первичной настройки медицинскими специалистами и последующего наблюдения за их правильной работой и взаимодействием с пациентом. Постоперационное восстановление, особенно в ортопедии, согласно прогнозам, будет основной сферой применения таких роботов.

Поддержка специалистов и ассистивная робототехника

Этот сегмент включает ассистивных роботов, предназначенных для использования в больницах или в домашней среде, которые разработаны для того, чтобы помогать персоналу больниц или сиделкам выполнять рутинные операции. Можно отметить существенную разницу в дизайне и внедрениях робототехнических систем, связанную с местом и условиями их использования. В контексте использования квалифицированным персоналом, будь то условия больницы или домашние условия при использовании робота для заботы о пожилом человеке, разработчики могут рассчитывать на то, что роботом управляет квалифицированный специалист. Такой робот должен соответствовать требованиям и стандартам больницы и системы здравоохранения и обладать соответствующими сертификатами. Эти роботы будет оказывать помощь персоналу соответствующих медицинских учреждений в их повседневной работе, особенно медсестрам и сиделкам. Такие робототехнические системы должны позволять сиделке проводить больше времени с пациентами, сокращая физическую нагрузку, например, робот сможет поднимать пациента для того, чтобы провести с ним необходимые рутинные операции.

2.3.2 Возможности в настоящее время и в перспективе

Робототехника для медицины - это чрезвычайно сложное направление для разработок в силу мультидисциплинарной природы и необходимости соблюдения различных жестких требований, а также из-за того, что во многих случаев медицинские робототехнические системы физически взаимодействуют с людьми, которые к тому же могут находиться в весьма уязвимом состоянии. Приведем основные возможности, существующие в выделенных нами сегментах медицины.

2.3.2.1 Больничные роботы

Это роботы для хирургии, диагностики и терапии. Рынок роботов для хирургического вмешательства велик по размерам. Робото-ассистивные возможности могут использоваться практически во всех областях - кардиологии, сосудологии, ортопедии, онкологии и неврологии.

С другой стороны, есть множество технических проблем, связанных с ограничениями на размеры, емкость, связанных с окружающей средой и небольшим числом технологий, которые доступны для немедленного использования в больничных условиях.

Кроме технологических проблем, есть и коммерческие. Например, связанные с тем, что США старается сохранять монопольное положение на этом рынке за счет объемной интеллектуальной сосбственности. Обойти эту ситуацию можно только за счет разработки принципиально нового "железа", ПО и концепций управления. Также для таких разработок требуется солидная финансовая поддержка высокозатратных, но необходимых разработок и соответствующих клинических испытаний. Типичные области, где сейчас есть возможности:

Минимально инвазивная хирургия (MIS)

Здесь можно добиться успеха за счет разработки систем, способных расширить возможности гибкости движений инструментов за пределы, обеспечиваемые анатомией рук хирурга, повысить эффективность, или дополнить системы обратной связью (например, позволяющей судить о силе нажатия), или дополнительными данными, помогающими осуществлять процедуру. Успехи рыночного внедрения могут зависеть от ценовой эффективности продукта, сокращенного времени его развертывания (подготовки к работе) и сокращения уровня дополнительного обучения, которое необходимо, чтобы научиться использованию роботизированной сситемы. Любая разработанная система должна наглядно демонстрировать "добавленную ценность" в контексте хирургии. Клинические опытные внедрения и оценки в ходе такого тестирования в клиниках являются обязательными для того, чтобы систему приняло хирургическое сообщество.

Если сравнивать с другими направлениями малоинвазивной хирургии, робото-ассистивные системы потенциально обеспечивают хирургу лучшее управление хирургическими инструментами, а также лучший обзор во время операции. От хирурга более не требуется стоять все время операции, поэтому он не устает столь же быстро, как при традиционном подходе. Тремор рук может быть почти полностью отфильтрован программным обеспечением робота, что особенно важно для применения в хирургии, имеющей дело с микромасштабами, например, хирургии глаза. В теории, хирургический робот можно использовать почти 24 часа в день, заменяя бригады хирургов, которые с ним работают.

Робототхеника может обеспечивать быстрое восстановление, сокращение травматизма и снижение негативного влияния на ткани пациента, а также снижение нобходимой радиационной дозы. Роботизированные хирургические инструменты могут разгрузить мозг врача, сократить "кривую обучения" и повысить эргономику рабочего процесса для хирурга. Способы терапии, использование которых сдерживают границы возможностей человеческого тела, также становятся возможными при переходе к использованию робототехнических технологий. Например, новое поколение гибких роботов и инструментов, позволяющих добраться до органов, глубоко скрытых в теле человека, позволяют сократить размер входного разреза в человеческом теле или обойтись естественными отверстиями в человеческом теле для выполнения хирургических операций.

В долгоросрочной перспективе, использование обучающихся систем в хирургии может сократить сложность проведения операции за счет увеличения потока полезной информации, которую хирург будет получать в ходе операции. Другие потенциальные преимущества включают возможность повышения уровня возможностей бригад парамедиков ("скорой помощи") при проведении с помощью роботов стандартных клинических экстренных процедур в полевых условиях, а также проведение теле-хирургических операций на удаленных объектах, где есть только соответствующий робот и нет квалифицированного хирурга.

Можно выделить следующие возможности:

Новые совместимые инструменты, обеспечивающие повышение уровня безопасности, при сохранении всех возможностей манипулции ими, включая негнущиеся инструменты. За счет использования новых методов управления или специальных решений (которые, например, могут встраиваться в инструмент или являться внешними по отношениюк к нему) функционирование инструметов может подстраиваться в реальном времени так, чтобы обеспечить совместимость или стабильность, когда что важнее;

Введение усовершенствованных ассистивных технологий, которые ведут и предупреждают хирурга во время операции, что позволяет говорить об упрощении решения задач хирургии и снижении числа ошибок медиков. Такая "обучающая поддержка" должна повысить "совместимость" оборудования и хирурга, что обеспечит интуитивность и отсутствие сомнений при использовании системы.

Применение подходящих уровней автономии роботов в хирургической практике вплоть до полной автономности конкретных хорошо детерминированных процедур, например: автономная аутопсия; взятие образцов крови (Veebot); биопсия; автоматизация части хирургических действий (затягивание узлов, поддержка камеры...). Повышение автономности обладает потенциалом повышения эффективности.

- "Умные" хирургические инструменты по-сути условно управляются хирургами. Эти инструменты находятся в прямом контакте с тканью и повышают уровень мастерства хирурга. Миниатюризация и упрощение хирургических инструментов в будущем, также как и доступности хирургических процедур внутри и снаружи "операционного театра" - основной путь развития таких технологий.

Обучение : Обеспечение физически точных моделей, что достигается за счет использования инструментов с тактильной обратной связью обеспечивают потенциал улучшения обучения, как на ранних стадиях обучения, так и при достижении уверенных навыков работы. Возможность симулирования широкого разнообразия условий и сложностей также могут повышать эффективность данного типа обучения. Сейчас качество тактильной обратной связи еще содержит ряд ограничений, что создает сложности в демонстрировании превосходства данного типа обучения.

Клинические образцы : Есть много областей для применения автономных систем для взятия образцов - от систем для взятия анализов крови и образцов ткани для биопсии до менее инвазивных методов аутопсии.

2.3.2.2 Робототехника для реабилитации и протезирования

Робототехника для реабилитации покрывает широкий диапазон различных форм реабилитации и может быть разделена на подсегменты. В Европе существует достаточно сильная промышленность в данном секторе и активное взаимодействие с ней ускорит технологическое развитие.

Средства реабилитации

Это средства, которые могут использоваться после травмы или после операции для тренировки и поддержки восстановления. Роль этих средств - поддержка выздоровления и ускорение восстановления, при одновременной защите пользователя и его поддержке. Такие системы могут использоваться в больничных условиях под надзором врачебного персонала или выступать самостоятельным упражнением, когда устройство управляет движениями или ограничивает движения - в зависимости от того, что требуется в данном конкретном случае. Такие системы также могут обеспечивать ценную данные о процессе восстановления и мониторить состояние более непосредственно чем даже при наблюдении за пациентом в условиях больницы.

Средства функциональной замены

Назначение такой робототехнической системы - это замена утраченной функциональности. Это может быть результатом старения или травматического ранения. Такие устройства разрабатывают с целью повышения мобильности и моторных навыков пациента. Они могут выполняться, как протезы, экзоскелеты или ортопедические устройства.

В развитых реабилитационных системах критически важно, чтобы существующие европейские производители были вовлечены в процесс в качестве известных участников рынка, а релевантные клиники и партнеры клиник были вовлечены в процесс разработки. Европа в настоящее время лидирует в мире в этой области.

Нейро-реабилитация

(Сеть COST TD1006, Европейская сеть Робототехники для Нейро-реабилитации обеспечивает платформу для обмена стандартизации определений и примеров разработок по всей Европе).

В настоящее время используется немного роботизованных устройств для нейро-реабилитации, поскольку еще не удалось обеспечить их широкого распространения. Робототехника используется для после-инсультной реабилитации в после-острой фазе и других нейро-моторных патологий, таких, как болезнь Паркинсона, множественный склероз и атаксия. Позитивные результаты с использованием роботов (не хуже или лучше, чем при использовании традиционной терапии) в реабилитационных целях начинают подтверждаться результатами исследований. В последнее время позитивные результаты также подтвержадются исследованиями в области нейро-визуализации. Было доказано, что интеграция с FES показала усиление позитивного результата (как для мышечной системы, так и периферийной и для центральной моторной). Упражнения с биологической обратной связью и игровыми интерфейсами начинают рассматриваться как решения, которые можно реализовать, но такие системы все еще находятся на ранней стадии разработки.

Для того, чтобы разрабатывать работоспособные системы необходимо решить несколько проблем. Это низкая стоимость устройств, проверенные результаты клинических испытаний, хорошо определенный процесс оценки состояния пациента. Возможности систем по корректной идентификации намерений пользователя и тем самым предотвращение травм, в настоящее время ограничивает эффективность таких систем. Управление и мехатроника, интегрированные для того, чтобы отвечать возможностям человеческого тела, включая когнитивную нагрузку, находятся на ранних стадиях развития. Должны быть достигнуты улучшения в надежности и в продолжительности рабочего времени до того, как могут быть разработаны пригодные к коммерческому использованию системы. Также целями разработки должны быть быстрое время развертывания и востребованность терапевтами.

Протезирование

Существенный прогресс может быть получен в области производства умных протезов, которые способны адаптироваться к особенностям движений пользователя и к условиям окружающей среды. Робототехника обладает потенциалом для комбинирования улучшенных способностей самообучения и повышенной гибкости и управления, особенно по части протезов верхних конечностей и кистевых протезов. Частные области исследований включают возможности адаптации к персональному, полу-автономному управлению, обеспечение искуственной чувствительности за счет обратной связи, улучшенная проверка, улучшенная энергоэффективность, self power recovery, улучшенный процессинг миоэлектрических сигналов. Смарт протезы и ортезы, управляемые активностью мышц пациента, позволят воспользоваться преимуществами таких систем обширным группам пользователей.

Системы поддержки мобильности

Пациенты с сокращением физических возможностей, временным или постоянным, могут воспользоваться преимуществами, связанными с повышением мобильности. Роботизированные системы могут обеспечивать поддержку и упражнения, необходимые для увеличения мобильности. Уже есть примеры разработок таких систем, но они находятся на ранней стадии развития.

В будущем возможно что такие системы смогут компенсировать даже когнитивные расстройства, предотвращая падения и несчастные случаи. Ограничения таких систем связаны с их стоимостью, а также с возможностью длительно носить на себе такие системы.

В ряде реабилитационных приложений, есть возможность использования натуральных интерфейсов, таких как миоэлектрика, снятие сигналов с головного мозга, а также интерфейсов, основанных на речи и жестах.

2.3.2.3 Поддержка специалистов и ассистивные роботы.

Поддержка со стороны специалистов и ассистивная робототехника могут быть разделены на ряд областей применения.

Системы поддержки заботящегося о пациенте : Поддерживающие системы, используемые лицами, заботящимися о пациентах, которые взаимодействуют с пациентами или системы, используемые пациентами. Они могут включать роботизированные системы, которые обеспечивают использование лекарственных средств, берут образцы, улучшают гигиену или процессы восстановления.

Подъем и перемещение пациента : Системы подъема и позиционирования пациента могут обладать различными возможностями от точного позиционирования во время хирургических вмешательств или сеансов лучевой терапии до содействия младшему медицинскому персоналу или лицам, заботящимся о пациенте, в подъеме человека с кровати или укладывании на нее, а также в транспортировке пациентов по больнице. Такие системы могут быть разработаны так, чтобы их можно было конфигурировать в зависимости от состояния пациента и использовать их так, чтобы у пациента была определенная степень управления их положением. Ограничения здесь могут быть связаны с необходимостью получения сертификатов безопасности и безопасного управления силами, достаточными для перемещения пациентов так, чтобы исключить возможные травмы пациентов. Энергоэффективные структуры и дизайн, выполненный с учетом необходимости экономии пространства, будут критичны для эффективных внедрений.

При разработке ассистивных робототехнических решений, важно придерживаться набора базовых принципов. Разработка должна фокусироваться на поддержке дефицита функциональности, а не на создании специфических условий. Решения должны быть практичными с точки зрения их использования и обеспечивать заметные преимущества для пользователя. Это может включать использование технологий для мотивирования пациентов делать для себя как можно больше, при одновременном сохранении безопасности. Внедрение таких систем не будет жизнеспособным и востребованным, если они не обеспечат воможности снижения нагрузки на персонал, создавая экономический кейс для внедрения, при одновременной надежности и безопасности использования.

Роботы для биомедицинских лабораторий для медицинских исследований

Роботы уже находят примнение в биомедицинских лабораториях, где они сортируют образцы и манипулируют ими в процессе проведения исследований. Приложения для создания сложных роботизированных систем расширяют возможности еще более, например, в область усовершенствованного скрининга клеток и манипуляций, связанных с клеточной терапией и избирательной сортировкой клеток.

2.3.2.4 Требования в среднесрочном периоде

Следующий список представляет "точки роста" в области медицинской робототехники

Экзоскелеты для нижней части туловища, которые подстраивают свое функционирование к индивидуальным особенностям поведения пациента и/или особенностям его анатомии, оптимизируя поддержку в зависимости от пользователя или условий окружающей среды. Системы могут адаптироваться пользователем к различным условиям и выполнению различных задач. Области применение: нейро-реабилитация и поддержка работников.

Роботы, предназначенные для автономной реабилитации (например, реабилитация в "игровом" режиме, реабилитация верхних конечностей после инсульта) должны воспринимать нужды пациента и его реакции, а также подстраивать под них терапевтическое воздействие.

Роботы, предназначенные для поддержки мобильности и возможностей пациента к манипуляции, должны поддерживать натуральные интерфейсы, гарантируя безопасность и работоспособность в условиях окружающей среды, близкой к "натуральной".

Реабилитационные роботы, разработанные для того, чтобы обеспечивать интеграцию сенсоров и двигателей, за счет обеспечения двунаправленной связи, включая мультирежимный ввод команд (миоэлектрика + инерциальная сенсорика) и мультирежимной обратной связи (электро-тактильной, вибро-тактильной и/или визуальной).

Протезы рук, запяться, кисти, которые автоматически адаптируются к пациенту, позволяя ему управлять по-отдельности любым пальцем, вращением большого пальца, кистевыми DOF-ами. Это должно сопровождаться применением множественных сенсоров и алгоритмов распознавания паттернов, чтобы обеспечить естественность управления (постоянное управление силой) за счет возможных DOFs. Области применения: восстановление функциональности руки для ампутантов.

Протезы и реабилитационные роботы, оснащенные системами полу-автоматического управления для улучшения качества функционирования и/или сокращения когнитивной нагрузки на пользователя. Системы должны позволять восприятие и интерпретацию окружения вплоть до определенного уровня, чтобы сделать возможным автономное принятие решений.

Протезы и реабилитационные роботы способные задействовать разнообразные онлайн-ресурсы (хранилища информации, процессинг) за счет использования облачных вычислений, чтобы внедрить усовершенствованную функциональность, которая находится существенно за пределами возможностей "бортовой" электроники и/или возможностей прямого управления со стороны пользователя.

Недорогие протезы и робототехнические решения, созданные с использованием аддитивных технологий или массовых производств (3D-печать и т.п)

Надомная терапия, снижающая интенсивность невропатической боли или фантомной боли верхних конечностей за счет усовершенствованной интерпретации сигналов, снимаемых с мышц, благодаря использованию роботизированных конечностей (с меньшей гибкостью, чем в предыдущих примерах) и/или "виртуальной реальности".

Биомиметрическое управление взаимодействием с роботом-хирургом.

Адекватные технологии механической актуации и сенсорики для разработки гибких миниатюрных роботов с силовой обратной связью, а также инструментов для усовершенствованной и расширенной хирургии с минимальной инвазивностью.

Системы подзарядки от окружающей среды для имплантируемых микро-роботов.

Для получения биомиметрического управления процессами реабилитации: интеграция волевых "импульсов" при движении субъекта, при поддержке FES для улучшенного повторного обучения моторике, при управлении роботом.

Разработка применимых в условиях больницы методов для восстановления двигательной активности, которая выходит за пределы парадигмы обычно используемых статичных механизмов с ручной настройкой.

На низком TRL

Автоматизированное когнитивное понимание необходимых задач в действующем окружении. Бесшовное физическое объединение человек-робот для условий "обычной" окружающей среды на базе дополнительного управляющего интерфейса. Полноценная, не требующая настроек адаптивность к пациенту. Надежность выявления намерений.

Загрузка...