Медицинский портал. Щитовидная железа, Рак, диагностика

Ацетилхолин препараты. Ацетилхолин - это медиатор нервного возбуждения

АЦЕТИЛХОЛИН - медиатор нервного возбуждения. Синтезируется в организме из аминоспирта холина и уксусной кислоты. Биологически очень активное вещество.

Ацетилхолин оказывает многостороннее действие на организм. Основная функция - медиация нервных импульсов. Нервные волокна и соответствующие им нейроны, осуществляющие передачу нервных импульсов посредством ацетилхолина, называются холинергическими. К ним относятся мотонейроны, иннервирующие скелетные мышцы; преганглионарные нейроны парасимпатических и симпатических нервов; постганглионарные нейроны всех парасимпатических и некоторых симпатических нервов (матки, потовых желез) и некоторые нейроны центральной нервной системы. Все холинергические волокна содержат холинацетилтрансферазу - специфический фермент, с помощью которого происходит синтез ацетилхолина. Ацетилхолин находится в нервных окончаниях в пузырьках, из которых он изливается в синаптическую щель в момент прихода нервного импульса. Освобождение ацетилхолина нервными окончаниями носит квантовый характер. По-видимому, содержимое пузырька и составляет ту наименьшую порцию ацетилхолина (квант), которая может быть выделена. В нормальных условиях каждый нервный импульс вызывает выделение нескольких сотен квантов ацетилхолина. Взаимодействуя со специфической макромолекулой на постсинаптической мембране - холинорецептором, ацетилхолин повышает проницаемость мембраны для ионов: возникает постсинаптический потенциал, который изменяет возбудимость эффекторной клетки, а в случае нервно-мышечного синапса является непосредственной причиной генерации потенциала действия. Эффект ацетилхолина прекращается под влиянием фермента ацетилхолинэстеразы (см. Холинэстеразы), который гидролизует ацетилхолин на малоактивный холин и уксусную кислоту, а также вследствие простой диффузии ацетилхолина из синаптической щели. В молекуле ацетилхолина есть две активные группы, обеспечивающие взаимодействие с холинорецептором: заряженная триметиламмониевая группа (катионная «головка»), которая реагирует с анионной группой в холинорецепторе, и сильно поляризованная сложноэфирная группа, реагирующая с так называемым эстерофильным участком холинорецептора.

Различают два вида действия ацетилхолина: мускариноподобное и никотиноподобное. Мускариноподобное действие проявляется эффектами, аналогичными тем, которые возникают при раздражении парасимпатических нервов гладких мышц, сердца, желез, и снимается атропином; никотиноподобное выражается возбуждением вегетативных ганглиев и мозгового вещества надпочечников, а также скелетной мускулатуры и снимается большими дозами никотина, гексонием, тубокурарином. В соответствии с этим холинореактивные системы разных органов обозначают как м-холинореактивные (мускариночувствительные) и н-холинореактивные (никотиночувствительные) .

В обычных условиях преобладает мускариноподобное действие ацетилхолина. При инстилляции ацетилхолина в глаз происходит сужение зрачка и спазм аккомодации, снижается внутриглазное давление. При попадании в общий кровоток наблюдается снижение кровяного давления, вызванное расширением сосудов (коронарные сосуды человека ацетилхолин суживает) и в меньшей степени замедлением сердечной деятельности, усиление двигательной активности желудочно-кишечного тракта, сокращение мускулатуры бронхов, желчного и мочевого пузыря, матки, усиление секреции желез с холинергической иннервацией, особенно слюнных и потовых.

Никотиноподобное действие ацетилхолина на вегетативные ганглии и надпочечники проявляется после атропинизации и при использовании более высоких доз. Оно выражается в прессорном эффекте. Ацетилхолин также стимулирует никотиночувствительные системы каротидных клубочков и рефлекторно возбуждает дыхание.

Все эффекты ацетилхолина можно усилить путем предварительного введения антихолинэстеразных веществ (эзерин, прозерин и др.). При обычных путях введения ацетилхолин не проникает через гемато-энцефалический барьер и не оказывает влияния на центральную нервную систему. Многообразие эффектов ацетилхолина, среди которых могут оказаться нежелательные, ослабляющие друг друга, а также кратковременность действия крайне ограничивают его применение в медицинской практике. Ацетилхолин широко используют при экспериментальном исследовании функций холинергических структур в виде хорошо растворимой соли - ацетилхолина хлорида (Acetylcholini chloridum, Acetylcholinum chloratum; список Б). Форма выпуска: ампулы по 5 мл, содержащие 0,2 г препарата.

Ацетилхолин как медиатор аллергических реакций

Сходство картины отравления ацетилхолином у собак с картиной развития у них анафилактического шока (см.) позволило предположить непосредственное участие холинергических процессов, имеющих место в деятельности некоторых органов, в механизме аллергических реакций этих органов. Таким органом является, напр., язык собаки, имеющий парасимпатическую иннервацию. Предполагалось, что точкой приложения антигена в сенсибилизированном органе служат окончания парасимпатических нервов. Это было подтверждено экспериментально. Введение антигена в сосуды языка сенсибилизированной собаке вызывает явный сосудорасширяющий эффект. В норме эти явления не наблюдаются. При выключении парасимпатической иннервации половины языка путем предварительного (за месяц до опыта) вылущения подчелюстной и подъязычных слюнных желез и вместе с ними подчелюстных и подъязычных периферических узлов парасимпатического иннервационного аппарата сосудов языка собаки полностью снимается описанная выше реакция сосудов этой половины языка на антиген. Вместе с тем при перерезке язычного нерва характер сосудистой реакции на антиген не меняется, что свидетельствует об отсутствии реакции на антиген чувствительных окончаний соматических нервов. Участие ацетилхолина в процессах распространения отравления в организме маловероятно. Роль анафилактического яда в этом смысле выполняют, очевидно, более стойкие продукты распада ткани, к которым относятся активные кинины, серотонин, гистамин и др. Таким образом, ацетилхолиновая гипотеза патогенеза аллергии ни в какой степени не противоречит представлению об участии гистамина в качестве одного из важных звеньев в механизме аллергической альтерации ткани. Участие ацетилхолина и холинергических процессов в механизме «органной» аллергии, то есть в условиях его действия in loco nascendi в соответствующих холинергических синапсах, имеет значение существенного, а в ряде структур и основного звена в определении функциональных выражений аллергии. К таким структурам относятся синаптические связи в вегетативной и центральной нервной системе, парасимпатическая сосудодвигательная иннервация, иннервация сердца и т. д. Вероятно, в них изменяется активность холинэстеразы, увеличивается скорость освобождения ацетилхолина при возбуждении их специфическим антигеном и, что самое важное, в них появляется возбудимость к специфическому антигену, который совершенно или почти совершенно отсутствовал в нормальном состоянии.

Библиография: Аничков С. В. и Гребенкина М. А. Фармакологическая характеристика холинорецепторов центральной нервной системы, Бюлл. эксперим. биол, и мед., т. 22, № 3, с. 28, 1946; Кибяков А. В. Химическая передача нервного возбуждения, М.- Л., 1964, библиогр.; Михельсон М. Я. и Зеймаль Э.В. Ацетилхолин, о молекулярном механизме действия, Л., 1970, библиогр.; Руководство по фармакологии, под ред. Н. В. Лазарева, т. 1, с. 137, Л., 1961; Турпаев Т. М. Медиаторная функция ацетилхолина и природа холино-рецептора, М., 1962; Э к к л с Д. Физиология синапсов, пер. с англ., М., 1966, библиогр.; Central cholinergic transmission and its behavioral aspects, Fed. Proc., v. 28, p. 89, 1969, bibliogr.; Dale H.H. The action of certain esters and ethers of choline, and their relation to muscarine, J. Pharmacol., v. 6, p. 147, 1914; Goodman L. S. a. G i 1 m a n A. Pharmacological basis of therapeutics, N. Y., 1970; Katz B. The release of neural transmitter substances, Springfield, 1969, bibliogr.; Michelson M. J. a. Danilov A. F. Cholinergic transmissions, в кн.: Fundament. biochem. Pharmacol., ed. by Z. M. Bacq, p. 221, Oxford a. o., 1971.

H. Я. Лукомская, М. Я. Михельсон; А. Д. Адо (алл.).

Роль ацетилхолина в организме.

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он способствует передаче нервного возбуждения в ЦНС, вегетативных ганглиях, окончаниях парасимпатических (двигательных) нервов. Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, - холинорецепторами. Холинорецепторы - сложные белковые молекулы (нуклеопротеиды) тетрамерной структуры, локализованные на внешней стороне постсинаптической (плазматической) мембраны. По природе они неоднородны. Холинорецепторы, расположенные в области постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а находящиеся в области ганглионарных синапсов и в соматических нервно-мышечных синапсах - как н-холинорецепторы (никотиночувствительные) (С. В. Аничков). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами, мускариноподобных (снижение артериального давления, брадикардия, усиленная секреция слюнных, слезных, желудочных и других экзогенных желез, сужение зрачков и т. д.) в первом случае и никотиноподобных (сокращение скелетной мускулатуры и т. п.) во втором. М- и н-холинорецепторы локализованы в разных органах и системах организма, включая ЦНС. Мускариновые рецепторы стали делить в последние годы на ряд подгрупп (м1, м2, м3, м4, м5). Наиболее изучена в настоящее время локализация и роль м1- и м2-рецепторов. Ацетилхолин не оказывает строго избирательного действия на различные холинорецепторы. В той или другой степени он влияет на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и снижении артериального давления, активизации перистальтики желудка и кишечника, сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, увеличении секреции пищеварительных, бронхиальных, потовых и слезных желез, сужении зрачков (миоз). Последний эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвительного нерва (n. oculomotorius). Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации. Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно снижением внутриглазного давления. Этот эффект частично объясняется расширением при сужении зрачка и уплощении радужной оболочки шлеммова канала (венозный синус склеры) и фонтановых пространств (пространства радужно-роговичного угла), за счет чего улучшается отток жидкости из внутренних сред глаза. Не исключено, однако, что в снижении внутриглазного давления принимают участие и другие механизмы. Благодаря способности снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), широко применяются для лечения глаукомы1. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших - может вызывать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения. Ацетилхолину принадлежит также важная роль как медиатору в ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом в малых концентрациях облегчает, а в больших - тормозит синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Некоторые центральнодействующие его антагонисты являются психотропными препаратами. Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (галлюциногенный эффект и др.). Для применения в медицинской практике и экспериментальных исследований выпускается ацетилхолина хлорид (Acetylcholini chloridum).

Источник: "Лекарственные средства " под редакцией М.Д. Машковского.

Ацетилхолиновые рецепторы.

Трансмембранные рецепторы, лигандом которых является ацетилхолин. Ацетилхолин служит нейротрансмиттером как в пре-, так и в постганглионарных синапсах парасимпатической системы и в преганглионарных симпатических синапсах, в ряде постганглионарных симпатических синапсов, нервно-мышечных синапсах (соматическая нервная система), а также в некоторых участках ЦНС. Нервные волокна, выделяющие ацетилхолин из своих окончаний, называются холинергическими.

Синтез ацетилхолина происходит в цитоплазме нервных окончаний; запасы его хранятся в виде пузырьков в пресинаптических терминалях. Возникновение пресинаптического потенциала действия ведет к высвобождению содержимого нескольких сотен пузырьков в синаптическую щель. Ацетилхолин, выделяющийся из этих пузырьков, связывается со специфическими рецепторами на постсинаптической мембране, что повышает ее проницаемость для ионов натрия, калия и кальция и приводит к появлению возбуждающего постсинаптического потенциала. Действие ацетилхолина ограничивается путем его гидролиза с помощью фермента ацетилхолинэстеразы.

Типы ацетилхолиновых рецепторов:

    Никотиновый ацетилхолиновый рецептор.

Никотин

Никотиновый ацетилхолиновый рецептор (н-холинорецептор, nACh-receptor) - подвид ацетилхолиновых рецепторов, который обеспечивает передачу нервного импульса через синапсы и активируется никотином (кроме ацетилхолина).

Никотиновый ацетилхолиновый рецептор был открыт в начале XX века, как «рецепторную структуру никотина», приблизительно за 25-30 лет до того, как была исследованная его роль в проведении нервных сигналов, генерированных с помощью ацетилхолина. При попадании ацетилхолина (ACh) на молекулу данного рецептора приоткрывается проницаемый для катионов канал, что приводит к деполяризации клеточной мембраны и генерации нервного импульса в нейроне или сокращение мышечного волокна (в случае нервно-мышечного синапса).

Данный рецептор найден в химических синапсах как в центральной, так и в периферической нервной системе, в нервно-мышечных синапсах, а также в эпителиальных клетках многих видов животных.

Физиология и фармакология

Электрофизиологическая характеристика никотиновых рецепторов мышечной ткани впервые была дана благодаря внутриклеточному отводу электрических потенциалов; кроме того, никотиновый рецептор был одним из первых, на которые удалось записать электрические токи, которые проходят через единичный рецепторный канал. Используя последний подход удалось доказать, что ионный канал данного рецепора существует в дискретных открытом и закрытом состояниях. В открытом состоянии рецептор может пропускать ионы Na+ , К+ и, в меньшей мере, двухвалентные катионы; проводимость ионного канала при этом является постоянной величиной. Тем не менее, время существования канала в открытом состоянии является характеристикой, которая зависит от напряжения приложенного к рецептору потенциала, при этом рецептор стабилизируется в открытом состоянии при переходе от малых значений напряжения (деполяризация мембраны) к большим (гиперполяризация). Долгодействующая аппликация ацетилхолина и других агонистов рецептора приводит к снижению его чувствительности к рецепторной молекуле и увеличению времени пребывания ионного канала в закрытом состоянии - то есть у никотинового рецептора наблюдается явление десенсетизации.

Классической характеристикой никотиновых рецепторов в нервных ганглиях и в главном мозге есть холинергического ответа на электрическое раздражение, которые блокируются дигидро-β-эритроидином; кроме того, для этих рецепторов характерное високоафинноне связывание с тритий-меченным никотином. αBGT-чувствительные рецепторы в нейронах гиппокампа характеризуются низкой чувствительностью к ацетилхолину, в отличие от αBGT-нечувствительных рецепторов. Селективным и оборотным конкурентным антагонистом αBGT-чувствительных рецепторов является метилликаконитин, а некоторые производные анабезиина вызывают селективное активационное влияние на эту группу рецепторов. Проводимость ионного канала αBGT-чувствительных рецепторов является довольно высокой (73pS); также им присущая относительно высокая проводимость ионов кальция сравнительно с ионами цезия. Данный рецептор обладает необыкновенными вольт-зависимыми свойствами: обще-клеточный ток, записанный в физиологическом состоянии, при наложении деполяризационных величин электрического потенциала указывает на достоверное уменьшение прохождение ионов через ионные каналы; при этом это явление регулируется концентрацией в растворе ионов Mg2+. Для сравнения, никотиновые рецепторы на мышечных клетках не претерпевают никаких изменений ионного тока при изменении значений мембранного электрического потенциала, а N-метил-D-аспартатний рецептор, которому также присущая высокая относительная проницаемость для ионов Са2+ (PCa/PCs 10.1), обладает обратной картиной изменения ионных токов в ответ на смену электрического потенциала и наличие ионов магния: при повышении электрического потенциала до гиперполяризущих величин и повышении концентрации ионов Mg2+ ионный ток через данный рецептор блокируется.

Другое важное свойство αBGT-чувствительных нейрональных никотиновых рецепторов - это их реакция на стимуляцию. Экспозиция высоких концентраций ацетилхолина приводит к очень быстрой десенсетизации ответа отдельного канала и быстрого падения электрического ответа всей клетки. Повторная экспозиция коротких импульсов ацетилхолина также приводит к уменьшению максимальной амплитуды рецепторного ответа. При этом энергетический подкорм клетки высокоэнергоёмкими молекулами (АТФ, фосфокреатин, креатин-фосфокиназа) или промежуточными продуктами их метаболизма способно предотвратить такое уменьшение. Почти все аспекты функционирования αBGT-чувствительных никотиновых рецепторов, включая эффективность агонистов, кооперативные эффекты, а также фракционирование по активности и десенсетизация, регулируются внешнеклеточной концентрацией Са2+. Такая регуляция может быть особенно важной в случаях, когда рецепторы расположены на дендритах.

В дополнение к селективной активации рецепторов ацетилхолинподобными агонистами, все подтипы никотиновых рецепторов активируются производными физостигмина; тем не менее, такая активация присущая только низкочастотным токам единичных рецепторов, которые не могут быть приглушены антагонистами ацетилхолина.

Ацетилхолин – это натуральное вещество, которое образуется в организме. Он относится к биогенным аминам. В передаче нервных импульсов в центральной нервной системе, в окончаниях двигательных и парасимпатических нервов, в вегетативных узлах принимает участие ацетилхолин. Действие ацетилхолина в организме нельзя переоценить.
Ацетилхолин замедляет сердечные сокращения, понижает давление, расширяет периферические кровеносные сосуды. Он усиливает перистальтику желудка и кишечника, усиливает секрецию желез, сокращает мышцы (мочевого и желчного пузырей, бронхов, матки), сужает зрачки.
Сосуды и ацетилхолин
Ацетилхолин значительно стимулирует мозговую деятельность: усиливает концентрацию внимания и память, в определенных дозировках улучшает сон, улучшает настроение. Кроме того, он способствует улучшению питания внутренних органов, мышц, клеток кожи за счет расширения мелких сосудов.
Увеличение уровня ацетилхолина часто помогало людям с сахарным диабетом, избежать таких серьезных осложнений, как диабетическая ангиопатия нижних конечностей, сосудов почек, сетчатки.
Кожа и ацетилхолин
Упругость кожи, ее тонус и внешний вид ацетилхолин повышает. Это происходит за счет того, что нормализуется скорость обновления клеток, регулируется кровообращение, лимфоток. А от этого, в свою очередь, улучшается питание клеток кожи и подкожной жировой клетчатки. Считается, что мезофлавон (природный источник ацетилхолина) способствует сжиганию жира, регулирует обмен жиров.
Зрение и ацетилхолин
Часто при глаукоме назначают синтетические препараты ацетилхолина. Под его действием зрачки сужаются, понижается внутриглазное давление, а это способствует лучшему оттоку жидкости из внутренних сред глаза.
Фитнес и ацетилхолин
При недостатке ацетилхолина не удастся эффективно тренироваться — мышцы будут вялыми. Действие ацетилхолин в организме человека способствует укреплению поперечнополосатой мускулатуры.
Мезофлавон (по рейтингу добавок для бодибилдинга) считается одним из лучших для повышения тонуса. Он просто необходим людям, заботящимся о своей фигуре. (об этом в следующих статьях)
Ацетилхолин синтетический и натуральный
Это очень важный момент, т.к. речь идет о применении средств, содержащих ацетилхолин, для омоложения кожи и организма в целом. А это подразумевает применение только природного вещества.
В медицинской практике при спазмах периферических сосудов, артерий сетчатки и в рентген-кабинетах применяется синтетический ацетилхолин.
Ацетилхолин — препарат сильнодействующий. Его нельзя самостоятельно использовать. Синтетический ацетилхолин похож на природный в самых общих чертах. Приблизительно, как кустарная и фирменная вещь.
Безопасно и эффективно можно использовать только мезофлавон, как источник ацетилхолина.

Ацетилхолин - это передатчик нервного возбуждения в ЦНС, окончаниях парасимпатических нервов и Он выполняет важнейшие задачи в процессах жизнедеятельности. Аналогичными функциями обладают аминокислоты, гистамин, дофамин, серотонин, адреналин. Ацетилхолин считается одним из важнейших передатчиков импульсов в мозг. Рассмотрим это вещество подробнее.

Общие сведения

Окончания волокон, от которых медиатор ацетилхолин осуществляет передачу, именуются холинергическими. Кроме этого, существуют специальные элементы, с которыми он взаимодействует. Они называются холинорецепторами. Эти элементы представляют собой сложные молекулы белка - нуклеопротеиды. Рецепторы ацетилхолина отличаются тетрамерной структурой. Они локализуются на внешней поверхности плазматической (постсинаптической) мембраны. По своей природе эти молекулы неоднородны.

В экспериментальных исследованиях и в медицинских целях используется препарат "Ацетилхолин-хлорид", представленный в растворе для инъекций. Другие лекарственные средства на основе этого вещества не выпускаются. Существуют синонимы препарата: "Миохол", "Ацеколин", "Цитохолин".

Классификация холиновых белков

Некоторые молекулы находятся в районе холинергических постганглионарных нервов. Это область гладкой мускулатуры, сердца, желез. Они называются м-холинорецепторами - мускариночувствительными. Другие белки расположены в районе ганглионарных синапсов и в нервно-мышечных соматических структурах. Они именуются н-холинорецепторами - никотиночувствительными.

Пояснения

Приведенная выше классификация обуславливается спецификой реакций, которые возникают, когда взаимодействуют эти биохимические системы и ацетилхолин. Это , в свою очередь, объясняет причины некоторых процессов. Например, снижение давления, усиленную секрецию желудочных, слюнных и прочих желез, брадикардию, сужение зрачков и пр. при влиянии на мускариночувствительные белки и сокращение скелетных мышц и пр. при воздействии на никотиночувствительные молекулы. При этом в последнее время ученые начали разделять м-холинорецепторы на подгруппы. Наиболее изучена сегодня роль и локализация м1- и м2-молекул.

Специфика влияния

Ацетилхолин - это не избирательный элемент системы. В той или иной степени он воздействует и на м-, и на н-молекулы. Интерес представляет мускариноподобное влияние, которое оказывает ацетилхолин. Это воздействие проявляется в замедлении сердечного ритма, расширении кровеносных сосудов (периферических), активизации перистальтики кишечника и желудка, сокращении мышц матки, бронхов, мочевого, желчного пузыря, интенсификации секреции бронхиальных, потовых, пищеварительных желез, миозе.

Сужение зрачка

Круговая мышца радужной оболочки, иннервируемая постганглионарными волокнами в начинает усиленно сокращаться одновременно с ресничной. При этом имеет место расслабление цинновой связки. В результате возникает спазм аккомодации. Сужение зрачка, связанное с влиянием ацетилхолина, как правило, сопровождается понижением внутриглазного давления. Данный эффект частично обуславливается расширением оболочки в шлеммовом канале и фонтановых пространств на фоне миоза и уплощения радужной оболочки. Это способствует улучшению оттока жидкости из внутренних глазных сред.

Благодаря возможности понижать внутриглазное давление, как ацетилхолин, препараты на основе других подобных ему веществ используются при лечении глаукомы. К ним, в частности, относят холиномиметики.

Никотиночувствительные белки

Никотиноподобное действие ацетилхолина обуславливается его участием в процессе передачи сигналов с преганглионарных нервных волокон на постганглионарные, находящиеся в вегетативных узлах, и с двигательных окончаний на поперечнополосатые мышцы. В малых дозах вещество выступает в качестве физиологического передатчика возбуждения. Если , то может развиться стойкая деполяризация в районе синапсов. Также существует вероятность блокирования передачи возбуждения.

ЦНС

Ацетилхолин в организме играет роль передатчика сигналов в различных мозговых отделах. В малой концентрации он может облегчать, а в большой - замедлять синаптическую трансляцию импульсов. Изменения обмена вещества могут способствовать развитию мозговых нарушений. Антагонисты, которым противопоставляется ацетилхолин, - препараты психотропной группы. При их передозировке может возникнуть нарушение высших нервных функций (галлюциногенный эффект и пр.).

Синтез ацетилхолина

Он происходит в цитоплазме в нервных окончаниях. Запасы вещества располагаются в пресинаптических терминалях в виде пузырьков. Возникновение приводит к высвобождению ацетилхолина из нескольких сотен "капсул" в синаптическую щель. Вещество, выделяющееся из пузырьков, связывается на постсинаптической мембране со специфическими молекулами. Это повышает ее проницаемость для натриевых, кальциевых и калиевых ионов. В результате возникает возбуждающий постсинаптический потенциал. Влияние ацетилхолина ограничивается посредством его гидролиза с участием фермента ацетилхолиэстеразы.

Физиология никотиновых молекул

Первому описанию способствовал внутриклеточный отвод электрических потенциалов. Никотиновый рецептор стал одним из первых, на который удалось записать токи, пропускаемые через единичный канал. В открытом состоянии сквозь него могут проходить ионы К+ и Na+, в меньшей степени двухвалентные катионы. При этом проводимость канала выражена в постоянной величине. Продолжительность открытого состояния, тем не менее, выступает характеристикой, зависящей от напряжения потенциала, приложенного к рецептору. При этом последний стабилизируется при переходе от деполяризации мембраны к гиперполяризации. Кроме этого, отмечается явление десенсетизации. Оно возникает при продолжительной аппликации ацетилхолина и прочих антагонистов, снижающей чувствительность рецептора и увеличивающей длительность открытого состояния канала.

Электрическое раздражение

Дигидро-β-эритроидин блокирует никотиновые рецепторы головного мозга и нервных ганглий при проявлении ими холинергического ответа. Для них также характерно высокоафинное сродство с тритий-меченным никотином. Чувствительные нейронные рецепторы αBGT в гиппокампе отличаются низкой восприимчивостью ацетилхолина, в отличие от нечувствительных αBGT-элементов. Оборотным и селективным конкурентным антагонистом первых выступает метилликаконитин.

Отдельные производные анабезиина провоцируют селективное активационное воздействие на группу αBGT-рецепторов. Проводимость их ионного канала достаточно высока. Эти рецепторы отличаются уникальными вольт-зависимыми характеристиками. Общеклеточный ток при участии деполяризационных величин эл. потенциала указывает на уменьшение пропуска ионов через каналы.

Данное явление при этом регулируется содержанием в растворе элементов Mg2+. Этим данная группа отличается от рецепторов мышечных клеток. Последние не претерпевают каких-либо изменений тока ионов при корректировке величин мембранного потенциала. При этом а N-метил-D-аспартатный рецептор, обладающий относительной проницаемостью для элементов Са2+, показывает обратную картину. При увеличении потенциала до гиперполяризующих значений и повышении содержания ионов Mg2+ ионный ток блокируется.

Особенности мускариновых молекул

М-холинорецепторы относятся к классу серпентивных. Они передают импульсы через гетеротримерные G-протеины. Группа мускариновых рецепторов была выявлена благодаря их свойству связывать алкалоид мускарин. Опосредованно эти молекулы были описаны в начале 20-го столетия при изучении эффектов кураре. Непосредственное исследование этой группы началось в 20-30 гг. того же века после идентификации соединения ацетилхолина как нейромедиатора, поставляющего импульс в нервно-мышечные синапсы. М-белки активизируются под влиянием мускарина и блокируются атропином, н-молекулы активируются под воздействием никотина и блокируются кураре.

Спустя время в обеих группах рецепторов было выявлено большое количество подтипов. В нервно-мышечных синапсах присутствуют только никотиновые молекулы. Мускариновые рецепторы обнаруживаются в клетках желез и мускулатуры, а также - вместе с н-холинорецепторами - в нейронах ЦНС и нервных ганглиях.

Функции

Мускариновые рецепторы обладают целым комплексом различных свойств. В первую очередь они располагаются в автономных ганглиях и отходящих от них постганглиозных волокнах, направленных к органам-мишеням. Это указывает на участие рецепторов в трансляции и модуляции парасимпатических эффектов. К ним, например, относят сокращение гладких мышц, расширение сосудов, усиление секреции желез, снижение частоты сокращений сердца. Холинергические волокна ЦНС, в составе которых присутствуют интернейроны и мускариновые синапсы, сконцентрированы преимущественно в коре мозга, гиппокампе, ядрах ствола, стриатуме. В других участках они обнаруживаются в меньшем количестве. Центральные м-холинорецепторы влияют на регуляцию сна, памяти, обучения, внимания.

Ацетилхолицин представляет собой нейромедиатор, осуществляющий связующие функции в организме человека. Это соединение доводит импульсы до мышц и целого ряда органов. Оно используется в исследованиях, при этом его лекарственное значение в настоящее время невелико вследствие существенных побочных эффектов при большой дозе и наличия более действенных аналогов.

Общие сведения

Ацетилхолин имеет формулу CH 3 -CO 2 -CH 2 -CH 2 -N(CH 3) 3 .

Ацетилхолин - это органическое соединение, которое выступает в организме как , в том числе в парасимпатической нервной системе и в нервно-мышечном синапсе. В качестве нейромедиатора данное соединение обладает следующими характеристиками:

  • его синтез происходит в пресинаптическом нейроне;
  • аккумуляция ацетилхолина происходит в пузырьках;
  • это соединение выделяется в прямой пропорции к силе стимула, вызывающего такое выделение (частоте импульсации);
  • постсиноптическое действие этого вещества прямым образом иллюстрируется с помощью микроинофореза;
  • дезактивировать данный медиатор можно с помощью действенных механизмов.

Определено, что лишь соединения, у которых наблюдается каждая из данных характеристик, могут рассматриваться как медиаторы.

В химическом плане ацетилхолин является сложным эфиром, образованным холином и уксусной кислотой.

В организме данное вещество синтезируется посредством холинэстеразы - особого фермента. При его разрушении происходит образование уксусной кислоты и оксида. Соединение нестойкое и под влиянием ацетилхолинэстеразы оно также распадается весьма быстро.

Также возможно получить его искусственным путем в форме одной и из солей, к примеру, хлорида. Полученный таким способом препарат (ацетилхолин-хлорид) применяют для исследования в сфере фармакологии и в редких случаях как лекарственный препарат. Выпускается соединение в виде ампулы объёмом 5 миллилитров, в которых находится 0,1 либо 0,2 грамма сухого вещества. Для инъекций его растворяют в стерильной воде объёмом 2–5 миллилитров.

Ацетилхолин представляет собой кристаллическую массу белого цвета или бесцветные кристаллы.

Классификация холиновых белков (какие бывают и их специфика)

Холиновые белки подразделяются на воздействующие на н-холинорецепторы и м-холинорецепторы. Холинрецепторы - макромолекулы белка сложной структуры, которые располагаются на наружной стороны постсинаптической мембраны.

Первые из нихотиночувствительные, отсюда и буква «н» в их названии. Они встречаются внутри нервно-мышечных структур и ганглионных синапсов.

Вторая разновидность белков приобрела букву «м», поскольку они являются мускариночувствительными. Они присутствуют в области холинергических постганглионарных нервов. Иначе говоря, в сердце, гладкой мускулатуре и железах.

В нервной системе ацетилхолин синтезируется с участием глюкозы. При ее распаде возникают ацетильные группы, выделяется энергия. Благодаря этой энергии возникает аденозинтрифосфат, а уже посредством этого соединения происходит фосфорилирование соединений промежуточного характера, требуемых для синтеза. Предпоследняя стадия - это формирование ацетилкофермента А, из которого следом при реакции с холином возникает уже сам ацетилхолин.

При этом механизм попадания холинов в место образования ацетилхолина для реакции с ацетилкоферментом А в настоящее время неизвестен. Предполагается, что его половина поступает в это место из плазмы крови, а ещё половина остается после гидролиза прежнего

Синтез данного вещества происходит в нервных окончаниях внутри цитоплазмы аксонов. После этого соединение складируется в синаптических везикулах (пузырьках), В отдельном подобном органоиде находится от 1000 до 10000 молекул этого соединения. Предполагается, что примерно 15–20% объема данного вещества в пузырьках составляет количество ацетилхолина, доступное к немедленному использованию. Прочий хранящийся в везикулах запас может быть активирован для использования лишь спустя некоторое время после соответствующего сигнала.

Распад ацетилхолина в человеческом организме происходит весьма быстро. Запускается данный процесс ацетилхолинэстераза, специальный фермент.

Функции

Функция ацетилхолина - служить медиатором внутри ЦНС (центральной нервной системы). Это вещество влияет на передачу импульсов от одних разделов головного мозга к другим. При этом небольшое содержание данного вещества способствует передаче импульсов, а его значительное количество - тормозит её.

Также ацетилхолин служит для передачи к мускулам тела. При нехватке данного вещества сила, с которой сокращаются мускулы, падает. Недостаток именно данного соединения приводит к тому, что человека начинает страдать болезнью Альцгеймера.

Действие ацетилхолина выражается в более медленном ритме сердцебиения, снижении артериального давления, увеличении диаметра кровеносных сосудов периферического расположения. Соединение улучшает перистальтику в пищеварительном тракте (кишечнике и желудке). Также его присутствие усиливает сокращательную способность мускулатуры целого ряда органов, включая мочевой и желчный пузыри, матку, а также бронхи. Ацетилхолин усиливает железную секрецию, в частности у слёзных, потовых, бронхиальных и пищеварительных желёз.

Помимо этого он вызывает сужение зрачка (миоз), этот эффект становится следствием более интенсивных сокращение управляющей радужной оболочкой круговой мышцы, на которую воздействуют находящиеся в глазодвигательном нерве постганглионарные холинергетические волокна. .Такое сужение зрачка чаще всего идет в сочетании с уменьшением внутриглазного давления. Это обусловлено тем, что при таком сужении происходит расширение шлеммова канала, а также пространства в углу, образуемом радужной оболочкой и роговицей. Вследствие этого жидкость получает большую возможность для оттока из глазной внутренней среды.

Также ацетилхолин служит для улучшения концентрации внимания путем выработки нейронов, располагающихся в .

Ещё одна функция соединения - это влияние на засыпание и пробуждение. Спящий просыпается, после того как возрастает интенсивность деятельности холинергических нейронов, располагающихся в стволе головного мозга, а также в переднем мозге в базальных ядрах.

Ацетилхолицин, выработанный искусственно, используют для лечения лишь в некоторых случаях. Это обусловлено тем, что при пероральном приёме данное соединение быстро подвергается гидролизации, в результате чего его всасывания со слизистых желудочно-кишечного тракта не происходит. При введении его в организм иным образом, в том числе посредством инъекций он также не оказывает существенного воздействия на центральную нервную систему. Именно поэтому сейчас в большинстве случаев от него отказываются.

Также требуется иметь в виду, что ацетилхолин сужает вены в сердце. Если ввести пациенту чрезмерную дозу данного вещества, то результатом может стать брадикардия, падение артериального давления, аритмия, потливость и иные неблагоприятные эффекты.

Загрузка...