Медицинский портал. Щитовидная железа, Рак, диагностика

Как получают, делают витамины? Витамины натуральные и синтетические — польза или вред.

Весна — самое подходящее время, чтобы вспомнить о витаминах. Но не столько о том, что все и так знают, сколько о множестве мифов, которые многие принимают за медицинские факты.

Не будем излагать историю открытия витаминов и пересказывать, как каждый из них действует на множество происходящих в организме биохимических процессов. Посвятим эту статью практическим вопросам, о которых и так все всё знают, — тому, что в области витаминотерапии и пациенты, и даже врачи считают истиной и что на самом деле абсолютно не соответствует действительности. Начнем с самого главного и вредного заблуждения.


I. Происхождениe

Миф 1 . Потребность в витаминах можно полностью обеспечить за счет полноценного питания.

Нельзя — по целому ряду причин. Во‑первых, человек слишком быстро «произошел от обезьяны». Современные шимпанзе, гориллы и прочие наши родственники целый день набивают себе брюхо огромным количеством растительной пищи, при этом сорванной прямо с дерева в тропическом лесу. А содержание витаминов в дикорастущих вершках и корешках в десятки раз больше, чем в культурных: отбор сельскохозяйственных сортов тысячи лет происходил не по их полезности, а по более очевидным признакам — урожайности, сытности и устойчивости к болезням. Гиповитаминоз вряд ли был проблемой №1 в питании древних охотников и собирателей, но с переходом на земледелие наши предки, обеспечив себе более надежный и обильный источник калорий, начали испытывать нехватку витаминов, микроэлементов и других микронутриентов (от слова nutricium — питание). Еще в XIX веке в Японии ежегодно до 50 000 бедняков, питавшихся в основном очищенным рисом, умирали от бери-бери — авитаминоза В1. Витамин РР (никотиновая кислота) в кукурузе содержится в связанном виде, а его предшественник, незаменимая аминокислота триптофан, — в ничтожных количествах, и те, кто кормился одними тортильяс или мамалыгой, болели и умирали от пеллагры. В бедных странах Азии до сих пор не меньше миллиона человек в год умирают и полмиллиона слепнет из-за того, что в рисе нет каротиноидов — предшественников витамина А (собственно витамина А больше всего в печени, икре и других мясо- и рыбопродуктах, а первый симптом его гиповитаминоза — нарушение сумеречного зрения, «куриная слепота»).

Витаминный ликбез

Витамины (лат. vita — жизнь) — низкомолекулярные органические соединения, которые в человеческом организме не синтезируются (или синтезируются в недостаточном количестве) и являются активной частью многих ферментов или исходными веществами для синтеза гормонов. Ежедневная потребность человека в различных витаминах составляет от нескольких микрограммов до десятков миллиграммов. Больше никаких общих признаков у витаминов нет, разделить их на группы невозможно ни по химическому составу, ни по механизмам действия, и единственная общепринятая классификация витаминов — деление их на водо- и жирорастворимые.
По строению витамины относятся к самым разным классам химических соединений, а функции их в организме очень разнообразны — не только у разных витаминов, но и у каждого отдельно взятого. Например, витамин Е традиционно считают в первую очередь необходимым для нормальной работы половых желез, но эта его роль на уровне целого организма — всего лишь первая по времени открытия. Он предохраняет от окисления ненасыщенные жирные кислоты мембран клеток, способствует усвоению жиров и, соответственно, других жирорастворимых витаминов, действует как антиоксидант, нейтрализуя свободные радикалы, и этим предупреждает образование раковых клеток и замедляет процесс старения, и т. д. (чтобы понять, как он это делает, нужно для начала выучить трехкилограммовый учебник биохимии). Для большинства остальных витаминов основным также считается самый видимый невооруженным глазом симптом, по которому его когда-то и открыли. Так что уверенность в том, что витамин D помогает от рахита, С — от цинги, В12 необходим для кроветворения и т. п. — это еще одно распространенное заблуждение о витаминах.
Водорастворимые витамины — это витамин С (аскорбиновая кислота), Р (биофлавоноиды), РР (никотиновая кислота) и витамины группы В: тиамин (В1), рибофлавин (В2), пантотеновая кислота (В3), пиридоксин (В6), фолацин, или фолиевая кислота (В9), кобаламин (В12). К группе жирорастворимых витаминов относятся витамины А (ретинол) и каротиноиды, D (кальциферол), Е (токоферол) и К. Кроме 13 витаминов, известно примерно столько же витаминоподобных веществ — В13 (оротовая кислота), В15 (пангамовая кислота), H (биотин), F (омега-3-ненасыщенные жирные кислоты), парааминобензольная кислота, инозитол, холин и ацетилхолин и т. д. Кроме собственно витаминов, поливитаминные препараты обычно содержат органические соединения микроэлементов — веществ, необходимых человеческому организму в ничтожных (не более 200 мг в ДЕНЬ) количествах. Основные из примерно 30 известных микроэлементов — это бром, ванадий, железо, йод, кобальт, кремний, марганец, медь, молибден, селен, фтор, хром и цинк.

Умеренный и даже выраженный гиповитаминоз в России имеется не меньше чем у трех четвертей населения. Близкая проблема — дисмикроэлементоз, избыток одних и недостаток других микроэлементов. Например, умеренно выраженный дефицит йода — явление повсеместное, даже в приморских районах. Кретинизм (увы, только как болезнь, вызванная отсутствием йода в воде и пище) теперь не встречается, но, по некоторым данным, недостаток йода снижает коэффициент интеллектуальности примерно на 15%. А уж к росту вероятности заболеваний щитовидной железы приводит несомненно.

Солдату дореволюционной российской армии при суточных энерготратах в 5000—6000 ккал было положено ежедневное довольствие, включающее, кроме прочего, три фунта черного хлеба и фунт мяса. Полторы-две тысячи килокалорий, которых хватает на день сидячей работы и лежачего отдыха, гарантируют вам нехватку примерно 50% нормы примерно половины известных витаминов. Особенно в том случае, когда калории получены из продуктов рафинированных, замороженных, стерилизованных и т. д. И даже при максимально сбалансированной, высококалорийной и «натуральной» диете нехватка некоторых витаминов в рационе может доходить до 30% от нормы. Так что принимайте поливитамины — по 365 таблеток в год.


Миф 2 . Синтетические витамины хуже натуральных

Многие витамины извлекают из природного сырья, как РР из кожуры цитрусовых или как В12 из культуры тех же самых бактерий, которые синтезируют его в кишечнике. В природных источниках витамины спрятаны за клеточными стенками и связаны с белками, коферментами которых они являются, и сколько вы их усвоите, а сколько пропадет, зависит от множества факторов: например, жирорастворимые каротиноиды на порядок полнее усваиваются из морковки, мелко натертой и тушенной с содержащей эмульгированный жир сметаной, а витамин С, наоборот, при нагревании быстро разлагается. Кстати, вы знаете, что при выпаривании натурального сиропа шиповника витамин С разрушается полностью и только на последнем этапе приготовления в него добавляют синтетическую аскорбиновую кислоту? В аптеке с витаминами ничего не происходит до конца срока годности (и на самом деле — еще несколько лет), а в овощах и фруктах их содержание уменьшается с каждым месяцем хранения и тем более при кулинарной обработке. А после приготовления, даже в холодильнике, — еще быстрее: в нарезанном салате через несколько часов витаминов становится в несколько раз меньше. Большинство витаминов в природных источниках присутствует в виде целого ряда сходных по строению, но разных по эффективности веществ. В аптечных препаратах содержатся те варианты молекул витаминов и органических соединений микроэлементов, которые легче усваиваются и действуют наиболее эффективно. Витамины, полученные с помощью химического синтеза (как витамин С, который делают и био-технологическим, и чисто химическим путем), ничем не отличаются от природных: по структуре это несложные молекулы, и в них просто не может быть никакой «жизненной силы».

II. Дозировка

Миф 1 . Лошадиные дозы витамина … помогают от …

В медицинской литературе статьи на эту тему регулярно появляются, но через 10−20 лет, когда разрозненных исследований на разных группах населения, с разными дозировками и т. д. накапливается достаточно много, чтобы провести их метаанализ, выясняется, что это очередной миф. Обычно результаты такого анализа сводятся к следующему: да, нехватка этого витамина (или другого микронутриента) ассоциируется с большей частотой и/или тяжестью этого заболевания (чаще всего — с какой-нибудь одной или несколькими формами рака), но доза, в 2−5 раз превышающая физиологическую норму, не влияет ни на заболеваемость, ни на течение болезни, а оптимальная дозировка — примерно та, что указана во всех справочниках.


Миф 2 . Грамм аскорбинки в день защищает от простуды и вообще от всего на свете.

Дважды нобелевские лауреаты тоже ошибаются: вошедшие в моду с подачи Лайнуса Полинга гипер- и мегадозы витамина С (до 1 и даже 5 г в день при норме 50 мг), как выяснилось уже много лет назад, не приносят пользы рядовым гражданам. Снижение заболеваемости (на несколько процентов) и продолжительности ОРЗ (менее чем на один день) по сравнению с контрольной группой, принимавшей обычное количество аскорбинки, удалось выявить только в нескольких исследованиях — у лыжников и спецназовцев, тренировавшихся зимой на Севере. Но и большого вреда от мегадоз витамина С не будет, разве что гиповитаминоз В12 или камни в почках, да и то только у немногих из самых рьяных и фанатичных сторонников аскорбинизации организма.

Миф 3 . Лучше недобор витаминов, чем их перебор.

Чтобы перебрать витаминов, нужно очень постараться. Разумеется, есть и исключения, особенно для входящих в состав большинства поливитаминных комплексов минеральных веществ и микроэлементов: тем, кто каждый день съедает порцию творога, не нужен дополнительный прием кальция, а тем, кто работает в гальваническом цехе, — хрома, цинка и никеля. В некоторых местностях в воде, почве и в конечном итоге в организмах живущих там людей присутствуют избыточные количества фтора, железа, селена и других микроэлементов, а то и свинца, алюминия и прочих веществ, польза которых неизвестна, а вред не вызывает сомнений. Но состав поливитаминных таблеток обычно подобран так, что в подавляющем большинстве случаев они покрывают дефицит микронутриентов у среднестатистического потребителя и гарантируют невозможность серьезной передозировки даже при ежедневном и длительном приеме в дополнение к обычному рациону нескольких таблеток.


Гипервитаминозы в большинстве случаев наступают при длительном потреблении витаминов (и только жирорастворимых, которые накапливаются в организме) в дозах, на порядки превышающих норму. Чаще всего, и то исключительно редко, такое встречается в практике педиатров: если от большого ума вместо одной капли в неделю давать новорожденному по чайной ложке витамина D в день… Остальное — на грани анекдотов: например, ходит байка о том, как чуть ли не все хозяйки в поселке купили под видом подсолнечного масла раствор витамина D, украденный с птицефабрики. Или — говорят, бывало и такое — начитавшись всяких бредней о пользе каротиноидов, «предотвращающих рак», люди начинали литрами в день пить морковный сок, и некоторые от этого не просто желтели, а допивались до летального исхода. Усвоить больше определенного природой максимума витаминов через желудочно-кишечный тракт при разовом приеме невозможно: на каждом этапе всасывания в кишечный эпителий, передачи в кровь, а из нее — в ткани и клетки необходимы транспортные белки и рецепторы на поверхности клеток, количество которых строго ограничено. Но на всякий случай многие фирмы фасуют витамины в баночки с «ребенкоустойчивыми» крышками — чтобы младенец не слопал за раз мамину трехмесячную норму.

III. Побочные эффекты

Миф 1 . От витаминов бывает аллергия.

Аллергия может развиться на какой-нибудь лекарственный препарат, который вы принимали раньше и часть молекулы которого по структуре похожа на один из витаминов. Но и в этом случае аллергическая реакция может проявиться лишь при внутримышечном или внутривенном введении этого витамина, а не после приема одной таблетки после еды. Иногда аллергию могут вызвать входящие в состав таблеток красители, наполнители и вкусовые вещества.

An apple a day keeps the doctor away?

Русский аналог этой пословицы — «лук от семи недуг» — тоже неверен. Овощи и фрукты (сырые!) могут служить более-менее надежным источником витамина С, фолиевой кислоты (витамина В 9) и каротина. Чтобы получить суточную норму витамина С, нужно выпить 3−4 литра яблочного сока — из очень свежих яблок или консервированного, в котором содержится примерно столько витаминов, сколько указано на упаковке. Около половины витамина С листовые овощи теряют уже через день после сбора, покрытые кожурой овощи и фрукты — после нескольких месяцев хранения. С другими витаминами и их источниками происходит то же самое. Большинство витаминов разлагается при нагревании и под действием ультрафиолета — не держите бутылку с растительным маслом на подоконнике, чтобы добавленный в него витамин Е не разрушился. И при кипячении и тем более при жарке многие витамины разлагаются с каждой минутой. А если вы прочитаете фразу «100 г гречки содержит…» или «в 100 г телятины содержится…», вас обманули как минимум дважды. Во‑первых, содержится это количество витамина в сыром продукте, а не в готовом блюде. Во‑вторых, километровые таблицы кочуют из одного справочника в другой не менее полувека, а за это время содержание витаминов и других микронутриентов в новых, более урожайных и калорийных сортах растений и в выкормленных ими свининах, говядинах и курятинах снизилось в среднем в два раза. Правда, многие продукты в последнее время витаминизируют, но в целом получить достаточно витаминов с пищей невозможно.

Миф 2 . При постоянном приеме витаминов развивается привыкание к ним.

Привыкание к воздуху, воде, а также жирам, белкам и углеводам никого не пугает. Больше, чем то количество, на которое рассчитаны механизмы усвоения витаминов, вы не получите — если не будете несколько месяцев или даже лет принимать дозы, на порядки больше необходимых. И так называемый синдром отмены для витаминов не характерен: после прекращения их приема организм просто возвращается в состояние гиповитаминоза.


Миф 3 . Люди, которые не принимают витаминов, чувствуют себя прекрасно.

Да — примерно так же, как прекрасно чувствует себя дерево, растущее на скале или на болоте. Симптомы умеренного полигиповитаминоза вроде общей слабости и вялости заметить трудно. Так же трудно бывает догадаться, что сухость кожи и ломкость волос надо лечить не кремами и шампунями, а приемом витамина А и тушеной морковки, что нарушения сна, раздражительность или себорейный дерматит и угревая сыпь — признаки не невроза или гормонального дисбаланса, а нехватки витаминов группы В. Выраженные гипо- и авитаминозы чаще всего бывают вторичными, вызванными какой-нибудь болезнью, при которой нарушается нормальное усвоение витаминов. (И наоборот: гастрит и анемия — нарушение кроветворной функции, видное невооруженным глазом по синюшности губ, — могут быть и следствием, и причиной гиповитаминоза В12 и/или нехватки железа.) А связь гиповитаминоза и повышенной заболеваемости, вплоть до большей частоты переломов при недостатке витамина D и кальция или повышенной встречаемости рака предстательной железы при нехватке витамина Е и селена, заметна только при статистическом анализе больших выборок — тысяч и даже сотен тысяч человек, и часто — при наблюдении в течение нескольких лет.

Миф 4 . Витамины и минеральные элементы препятствуют усвоению друг друга.

Особенно активно эту точку зрения отстаивают производители и продавцы различных витаминно-минеральных комплексов для раздельного приема. А в подтверждение они приводят данные экспериментов, в котором один из антагонистов поступал в организм в обычном количестве, а другой — в десятикратно больших дозах (выше мы упоминали гиповитаминоз В12 как результат увлечения аскорбинкой). Мнения специалистов о целесообразности деления обычной дневной дозы витаминов и минералов на 2−3 таблетки расходятся с точностью до наоборот.


Миф 5 . «Эти» витамины лучше «Тех».

Обычно поливитаминные препараты содержат не менее 11 из 13 известных науке витаминов и примерно столько же минеральных элементов, каждый — от 50 до 150% от дневной нормы: компонентов, нехватка которых встречается крайне редко, — меньше, а веществ, особо полезных для всех или отдельных групп населения, — на всякий случай побольше. Нормы в разных странах различаются, в том числе в зависимости от состава традиционного питания, но не намного, так что можно не обращать внимания на то, кто установил эту норму: американская FDA, Европейское бюро ВОЗ или Наркомздрав СССР. В препаратах одной и той же фирмы, специально разработанных для беременных и кормящих женщин, пожилых людей, спортсменов, курильщиков и т. д. , количество отдельных веществ может различаться в несколько раз. Для детей, от грудничков до подростков, тоже подбирают оптимальные дозировки. В остальном, как говорили когда-то в рекламном ролике, — все одинаковые! А вот если на упаковке «уникальной натуральной пищевой добавки из экологически чистого сырья» не указан процент от рекомендуемой нормы или вообще не написано, сколько милли- и микрограммов или международных единиц (МЕ) содержит одна порция, — это повод задуматься.

Миф 6 . Самая новая легенда.

Год назад СМИ всего мира облетела новость: шведские ученые доказали, что витаминные добавки убивают людей! Прием антиоксидантов в среднем увеличивает коэффициент смертности на 5%!! Отдельно витамин Е — на 4%, бета-каротин — на 7%, витамин А — на 16%!!! А то и больше — наверняка многие данные о вреде витаминов остаются неопубликованными!

Перепутать причину и следствие при формальном подходе к математическому анализу данных очень просто, и результаты этого исследования вызвали волну критики. Из уравнений регрессии и корреляций, полученных авторами сенсационного исследования (Bjelakovic et al., JAMA, 2007), можно сделать прямо противоположный и более правдоподобный вывод: больше общеукрепляющих средств принимают те пожилые люди, которые хуже себя чувствуют, больше болеют и, соответственно, скорее умирают. Но очередная легенда наверняка будет гулять по СМИ и общественному сознанию так же долго, как и другие мифы о витаминах.

Среди биологически активных веществ, необходимых для нормального развития организма животных, одно из первых мест занимают витамины. Важное значение витаминов объясняется их участием в биохимических реакциях, способностью служить катализаторами процессов, обеспечивающих обмен веществ в организме и его связь с окружающей средой.

Витамины - низкомолекулярные органические соединения, присутствующие в живых клетках в низких концентрациях и являющиеся компонентами энзиматических систем, ответственных за различные реакции.

Производство витаминов осуществляется следующими основными путями:

1. Экстракция витаминных препаратов из растительного или животного сырья. С этого направления начиналась витаминная промышленность, поскольку первые витаминные препараты были получены именно таким путем. Например, витамин В 12 получали из сырой печени крупного рогатого скота, каротин - из моркови. Но в настоящее время доля витаминов, получаемых этим методом, незначительна ввиду очень низкого содержания их в природном сырье и ограниченности сырьевых ресурсов.

2. Химический синтез витаминов. Производство синтетических витаминов занимает, пожалуй, ведущее место в современной витаминной промышленности, поскольку основная номенклатура витаминных препаратов представлена веществами, полученными химическим синтезом из химических видов сырья или сочетанием химического синтеза с биосинтезом. Однако такой способ производства витаминов представляет собой сложный, многоступенчатый процесс, сопряженный с большими производственными затратами, что делает конечные продукты слишком дорогими.

3.Биосинтез витаминов. Некоторые витамины, имеющие сложное строение, химический синтез которых в крупномасштабном производстве невозможен или экономически нецелесообразен, получают исключительно биосинтезом, с применением микроорганизмов, способных к сверхсинтезу и накоплению определенных витаминов. Примером может служить производство цианкобаламина (витамина В 12). Микробиологический синтез применяется также в производстве витаминных концентратов, предназначенных для сельского хозяйства, поскольку в данном случае обычно в индивидуальном чистом виде витамины не выделяют.

Следует отметить условность такого деления витаминной промышленности. Производство некоторых витаминов включает и химические стадии и стадии биотрансформации с применением микроорганизмов (например, производство аскорбиновой кислоты). Витамин рибофлавин получают и синтетическим и микробиологическим путями. Некоторые витаминные препараты (например, витамин D 2) получают путем химической модификации провитаминов или витаминов, выделенных из растительных клеток или органов животных.

Использование витаминов в качестве добавок в корма животных требует крупномасштабного производства, поэтому возникла необходимость в более дешевых способах изготовления витаминов. Таким перспективным способом получения ряда витаминов оказался микробиологический синтез.

Для нормальной деятельности организма животных и птиц необходимо включать в рационы витамины A, D, К, группы В и др.

Микробиологическая промышленность нашей страны выпускает кормовые препараты витаминов В 2 и B 12 . Кроме того, микробиологическим можно считать и производство витамина D 2 , который образуется из эргостерина при облучении ультрафиолетовым светом кормовых дрожжей.

Микроорганизмы содержат много различных витаминов, которые чаще всего являются компонентами ферментов. Состав и количество витаминов в биомассе зависят от биологических свойств культуры микроорганизмов и условий их культивирования. Так, кормовые дрожжи, получаемые на гидролизатах древесины и углеводородах, сравнительно богаты витаминами группы В и содержат (в расчете сухую биомассу) следующие витамины (мг/кг):

Тиамин (В 1) - 15-18

Рибофлавин (В 2) - 45-68

Биотин - 1,6-3,0

Инозит - 400 -5000

Фолиевая кислота - 3,4-21,5

Никотиновая кислота - 440-610

Продукцию микроорганизмами отдельных витаминов можно увеличить, изменяя состав питательной среды. Например, количество витамина В 2 (рибофлавина) в биомассе дрожжей зависит от интенсивности аэрации и содержания железа в среде.

Производство кормового концентрата витамина В 2 (рибофлавин). Витамин В 2 входит в структуру многих ферментов, в составе которых участвует в клеточном дыхании, синтезе белков и жиров, регулировании состояния нервной системы, функции печени и т.д. При его недостатке резко замедляется рост, нарушается белковый обмен.

Суточная потребность в витамине В 2 составляет для птиц 3 - 4 г (кристаллического препарата) на 2 т корма, а для свиней 10 - 15 мг на 100 кг живой массы.

В природных условиях источниками рибофлавина являются высшие растения, дрожжи, мицелиальные грибы и бактерии. Большинство микроорганизмов образуют свободный рибофлавин.

В 30-е годы XX в. был найден суперпродуцент витамина - микроскопический гриб Eremothecium ashbyii, образующий до 6000 мкг рибофлавина на 1 г сухого вещества культуральной жидкости.

Для получения витамина В 2 можно также использовать культуру дрожжей, ацетобутиловые бактерии, продуцент лизина Brevibakterium и др.

Микроорганизмы - продуценты рибофлавина

Микроорганизмы - продуценты Выход витамина (мг%)
Clostridium acetobytylicum
Mycobakterium smegmatis
Mycocandida riboflavina
Candida flaveri
Eremothecium ashbyii 2480-6000
Ashbyii gossipii

Технология получения кормового препарата витамина В 2 микробиологическим способом достаточно проста. В качестве микроорганизма-продуцента обычно используют Е. ashbyii.

Технологический процесс производства состоит из трех основных стадий:

1. Аэробная ферментация.

2. Термолиз и концентрирование.

3. Сушка, размол, гранулирование и упаковка.

Посевной материал и стерильный воздух получают по типовой, для многих микробиологических производств, схеме. Ферментация осуществляется в типовых биореакторах объемом 63 - 100 м 3 в стерильных условиях при температуре 28 - 30 °С.

Основными ингредиентами питательной среды являются соевая мука, меласса, технический жир и минеральные соли (СаСОз, КН 2 Р0 4). Продуцент витамина В 2 выращивают также на средах, где источником углерода является глюкоза, сахароза, крахмал, пшеничная мука. В качестве источника азота используют молочную сыворотку, рыбную и кукурузную муку или экстракт, казеин. Развитие гриба-продуцента стимулируется добавлением ненасыщенных жирных кислот, биотина, тиамина, инозита, ростовых веществ, содержащихся в зародыше пшеницы, картофельном соке и дрожжевом автолизате.

Известно использование в производственных условиях питательной среды следующего состава:

1 - 3 % мелассы, гидрола или глюкозы;

3 - 8 % кукурузного экстракта или дрожжевого автолизата;

Добавки N, Mg, Zn.

Культивирование продуцента проводят поверхностным или глубинным способом. Витамин накапливается в клетках гриба-продуцента, либо в виде предшественника - флавина дениннуклеотида, либо в свободном состоянии.

Время культивирования длится 60 - 80 ч до начала лизиса мицелия гриба и образования спор (определяется микроскопически). При этом содержание рибофлавина в культуральной жидкости достигает 1200 мг/л.

Для сохранения штамма Е. ashbyii в активном состоянии рекомендуется производить систематический его рассев на твердые питательные среды и отбирать колонии наиболее.интенсивно окрашенные в оранжевый цвет. Яркая окраска колонии коррелирует с высокой способностью к синтезу рибофлавина.

При подготовке инокулята гриб пересевают последовательно по схеме:

посев на скошенную агаризованную среду в пробирке > жидкая среда > колба > бутыль > инокулятор

Винокуляторе культуру выращивают в течение 21-26 ч. затем ее переводят а биореактор с питательной средой, содержащей кукурузную и соевую муку, кукурузный экстракт, свекловичный сахар, КН 2 РО 4 , СаСОз, NaCl и технический жир.

Среду стерилизуют в смесителе при 120 – 122 °С в течение 1 часа. Культивирование в биореакторе ведут до начала лизиса клеток и появления спор (определяют микроскопически). Температура культивирования 28 - 30 °С, давление воздуха в биореакторе (1 - 2) - 10 4 Па, расход воздуха 1,5 -2,0 л в минуту на 1 л культуральной жидкости. Выход рибофлавина около 1200 мг/л.

По окончании процесса ферментации культуральную жидкость вместе с мицелием передают в вакуум-выпарные аппараты (10), где ее нагревают до 80 °С с целью разрушения (термолиза) клеточных структур и одновременно ведут процесс концентрирования (упаривания) до содержания сухих веществ 30-40 %.

Полученный после упаривания концентрат в виде сиропообразной биомассы высушивают в распылительной сушилке до содержания влаги не более 8 %. В результате получают смесь биомассы мицелия Е. Ashbyii и сухих остатков питательной среды. Для получения однородного товарного продукта смесь размалывают и просеивают. На современных предприятиях концентрат гранулируют, поскольку порошкообразный продукт сильно пылит, что создает неудобства работы с ним и приводит к его потерям.

Кормовой концентрат витамина В 2 представляет собой обработанную, высушенную, размолотую или гранулированную биомассу гриба-продуцента Е. ashbyii, содержащую не менее 15 мг рибофлавин на 1 г вещества. Помимо витамина В 2 , концентрат содержит 0,3- 0,5 % других витаминов группы В (В 1 , В 6 , В 12 , никотинамид), около 20% белковых веществ, а также полисахариды, липиды, минеральные соли.

Для животноводства можно получить кормовой рибофлавин как отход при производстве ацетона. Продуцентами витамина при этом являются ацетобутиловые бактерии.

Преимущество и рентабельность микробного синтеза витамина В 2 иллюстрируется следующими цифрами: из 1 т моркови получают 1г витамина, из 1 т тресковой печени - 6 г, а из 1 т культуральной жидкости гриба E.ashbyii - 25 кг.

Производство витамина В 12 (цианкобаламина). Среди неполимерных биологически активных соединений витамин В 12 имеет самое сложное строение. Его принятое химическое название α-(5.6-диметилбензимидазолил)-кобамидцианид. Это единственный витамин, в структуру которого входит кобальт.

Организм животных не способен к самостоятельному синтезу витамина В 12 . Этот витамин полностью отсутствует в растительных кормах в относительно небольших количествах содержится в кормах животного происхождения (рыбной и мясо-костной муке, молочных отходах). Среди растительного мира витамин В 12 был обнаружен лишь у нескольких видов высших растений (горох, фасоль, побеги бамбука), причем его происхождение в этих растениях окончательно не установлено.

Цианокобаламин обладает высокой биологической активностью с широким спектром действия. В первую очередь, витамин B 12 необходим для нормального кроветворения и созревания эритроцитов, он является эффективным противоанемическим препаратом. Цианкобаламин применяют для лечения злокачественного малокровия, железодефицитных анемий, апластических анемий и т.п. Этот препарат назначают также при лучевой болезни, заболеваниях печени, полиневритах, болезни Дауна, детском церебральном параличе и многих других заболеваниях.

Для медицинских целей субстанцию витамина B 12 получают в виде кристаллического тёмно-красного порошка, содержащего не менее 99% основного вещества. Из этой субстанции готовят различные лекарственные формы, из которых наиболее широкое применение находят цианкобаламин в изотоническом растворе хлорида натрия для инъекций, и таблетки, содержащие цианкобаламин и фолиевую кислоту.

Важное значение витамин B 12 имеет для животноводства. Его недостаток тормозит рост животных и приводит к серьезным заболеваниям. Цианкобаламин повышает усвояемость белка растительных кормов и является необходимым фактором полноценного питания животных.

Для животноводства отечественной промышленностью выпускается кормовой концентрат витамина В 12 (КМВ-12), который по эффективности не уступает кристаллическому препарату, но является более дешевым и доступным для широкого использования в сельском хозяйстве.

Полный химический синтез витамина В 12 был осуществлен через 25 лет после его открытия Р. Вудвордом и А. Эшенмозером с участием большой группы исследователей нескольких лабораторий университетов и научных центров США, Англии, Франции, Японии. Конечно, химический синтез витамина В 12 имеет чисто теоретическое значение и в настоящее время он не может рассматриваться как вариант промышленного производства этого важного препарата.

Единственным способом получения витамина В 12 в промышленном масштабе является его микробиологический синтез с использованием специальных штаммов микроорганизмов, способных активно продуцировать этот витамин.

В природе витамин В 12 синтезируют многие микроорганизмы (например, метанобразующие и пропионовокислые бактерии), а также бактерии,осуществляющие термофильное метановое сбраживание сточных вод.

Активно продуцируют витамин В 12 представители рода Pzopionibacterium, природные штаммы которых образуют 1,0 - 8,5 мг/л цианокобаломина, а полученный искусственный мутант P. shermanii M-82 способен накапливать витамин В 12 до 58 мг/л.

Практический интерес для микробиологического синтеза этого витамина имеют представители актиномицетов и родственных микроорганизмов. Истинный витамин B 12 в значительных количествах синтезируют Nocardia rugoza (до 18 мг/л), а также представители рода Miromonospora. Высокой кобаламинсинтезирующей активностью обладают метаногенные бактерии, например, Methanosarcina barkeri, M. vacuolita и отдельные штаммы галофильного вида Methanococcus halophilus (до 16 мг/л).

Цианкобаламин синтезируют строго анаэробные бактерии из рода клостридий. В значительных количествах образуют витамин B 12 ацетогенные клостридии C.thermoaceticum, C.formicoaceticum и Acetobacter woodi, синтезирующие ацетат из СО 2 .

Известны активные продуценты витамина Bi 2 переди псевдомонад. Некоторые штаммы Pseudomonas denitrificans нашли применение для промышленного получения цианкобаламина (фирма Merk, США). Интерес представляют также термофильные бациллы, а именно Bacillus eirculans и Bacillus stearothermophilus, которые растут при температурах, соответственно, 60 °С и 75 °С и за 18-24 культивирования без соблюдения стерильных условий дают высокие выходы витамина.

В нашей стране в качестве основного продуцента витамина В 12 , получаемого для медицинских целей, используют культуру Propionibacterium shermanii, а для нужд животноводства применяют смешанную культуру, содержащую термофильные метанобразующие бактерии.

На большинстве зарубежных предприятий витамин В 12 выпускают в чистом кристаллическом виде и применяют в животноводстве большей частью в виде компонентов премиксов.

Указанный способ включения витамина В 12 в кормовые рационы применяется и в нашей стране.

Каталитические и регуляторные функции витаминов. Синтез витаминов с помощью микроорганизмов. Технологии промышленного производства биологически активных соединений. Использование витаминов в качестве лечебных препаратов, интенсификации биопроцессов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное государственное образовательное учреждение высшего профессионального образования

«Астраханский Государственный технический университет»

Институт рыбного хозяйства, биологии и природопользования

Кафедра Прикладной биологии и микробиологии

Реферат на тему:

«Производство витаминов»

Выполнил:

Студент группы БМ-41

Беляков Е.С.

Проверил:

Преподаватель:

Доцент, кандидат биологических наук

Куликова И. Ю.

Астрахань - 2009

Витамины представляют собой группу незаменимых органических соединений различной химической природы, необходимых любому организму в ничтожных концентрациях и выполняющих в нем каталитические и регуляторные функции. Недостаток того или иного витамина нарушает обмен веществ и нормальные процессы жизнедеятельности организма, приводя к развитию патологических состояний. Витамины не образуются у гетеротрофов. Способностью к синтезу витаминов обладают лишь автотрофы, в частности растения. Многие микроорганизмы также образуют целый ряд витаминов, поэтому синтез витаминов с помощью микроорганизмов стал основой для разработки технологий промышленного производства этих биологически активных соединений. Благодаря изучению физиологии и генетики микроорганизмов -- продуцентов витаминов и выяснению путей биосинтеза каждого из них создана теоретическая основа для получения микробиологическим способом практически всех известных в настоящее время витаминов. Однако с помощью энзимов целесообразнее производить лишь особо сложные по строению витамины: В2, В12, р-ка-ротин (провитамин А) и предшественники витамина D. Остальные витамины либо выделяют из природных источников, либо синтезируют химическим путем. Витамины используются в качестве лечебных препаратов, для создания сбалансированных пищевых и кормовых рационов и для интенсификации биотехнологических процессов.

Получение витамина В2 (рибофлавин). Вплоть до 30-х годов прошлого столетия рибофлавин выделяли из природного сырья. В наибольшей концентрации он присутствует в моркови и печени трески. Из 1 т моркови можно изолировать лишь 1 г рибофлавина, а из 1 т печени -- 6 г. В 1935 г. обнаружен активный продуцент рибофлавина -- гриб Eremothecium ashbyii, способный при выращивании на 1 т питательной смеси синтезировать 25 кг витамина В2. Сверхсинтеза рибофлавина добиваются действием на дикие штаммы мутагенов, нарушающих механизм ретроингибирования синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды. Отбор мутантов ведут по устойчивости к аналогу витамина В2 -- розеофлавину. Вопросы биосинтеза рибофлавина и его регуляции детально изучены в работах Г. М. Шавловского.

В состав среды для роста продуцентов витамина В2 входят достаточно сложные органические вещества -- соевая мука, кукурузный экстракт, сахароза, карбонат кальция, хлорид натрия, гидрофосфат калия, витамины, технический жир. Грибы весьма чувствительны к изменению состава среды и подвержены инфицированию. Перед подачей в ферментер среду подвергают стерилизации, добавляя к ней антибиотики и антисептики. Подготавливают жидкую питательную среду и посевной материал культуры дрожжей в разных емкостях -- ферментере и посевном аппарате.

В качестве посевного материала используют споры Е. ashbyii, выращенные на пшене (7 --8 дней при 29 -- 30 °С). После стерилизации жидкий посевной материал подается в ферментер. Процесс ферментации грибов для получения кормового рибофлавина длится 3 суток при температуре 28 -- 30 °С. Концентрация рибофлавина в культуральной жидкости может достигать 1,4 мг/мл. По завершении процесса ферментации культуральную жидкость концентрируют в вакууме, высушивают на распылительной сушилке (влажность 5 -- 10%) и смешивают с наполнителями.

В 1983 г. во ВНИИ генетики микроорганизмов сконструирован рекомбинантный штамм продуцента Bacillus subtilis, характеризующийся увеличенной дозой оперонов, которые контролируют синтез рибофлавина. Клонированием генов рибофлавинового оперо-на в одной из созданных плазмид был получен производственный штамм-продуцент витамина В2, способный синтезировать втрое больше по сравнению с Е. ashbyii количество рибофлавина всего за 40 ч ферментации.

Получение витамина В12 (Соа[а-(5,6-диметилбензимидазолил)]-Сор -- цианокобамид). Витамин В12 открыт в 1948 г. одновременно в США и Англии. В 1972 г. в Гарвг.рдском университете был осуществлен химический синтез корриноидного предшественника витамина В12. Химический синтез корнестерона -- структурного элемента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса.

Витамин В12 регулирует углеводный и липидный обмен, участвует в метаболизме незаменимых аминокислот, пуриновых и пири-мидиновых оснований, стимулирует образование предшественников гемоглобина в костном мозге; применяется в медицине для лечения злокачественной анемии, лучевой болезни, заболеваний печени, полиневрита и т. п. Добавление витамина к кормам способствует более полноценному усвоению растительных белков и повышает продуктивность сельскохозяйственных животных на 10 -- 15%.

Первоначально витамин В12 получали исключительно из природного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. Единственный способ его получения в настоящее время -- микробиологический синтез. Обнаружение витамина в качестве побочного продукта при производстве антибиотиков в значительной степени стимулировало поиск организмов-продуцентов витамина и изучение путей его образования. Однако механизмы регуляции биосинтеза витамина В12 до настоящего времени полностью не расшифрованы. Известно, что при высоких концентрациях витамин полностью репрессирует синтез ключевых ферментов своего новообразования.

Продуцентами витамина В12 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. В 70-х годах XX в. интерес ученых привлекли пропионовокислые бактерии, известные еще с 1906 г. и широко использующиеся для приготовления препаратов животноводства. Выделено 14 видов пропионовокислых бактерий, продуцирующих витамин B12 их физиологобиохимическая характеристика дана Л.И. Воробьевой. Для получения высокоочищенных препаратов витамина В12 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. Добавление в среду предшественника 5,6-диметилбензимидазола (способствует переводу неактивных форм в природный продукт) по окончании первой ростовой фазы (5 -- 6 суток) стимулирует быстрый (18 -- 24 ч) синтез витамина с выходом последнего 5,6 -- 8,7 мг/л. Путем селекции, оптимизации состава среды и условий культивирования выход витамина В]2 в промышленных условиях был значительно повышен. Так, выход витамина на среде с кукурузным экстрактом и глюкозой при поддержании стабильного значения рН близ нейтральных зон достигает 21--23 мг/л. Мутант пропионовокислых бактерий продуцирует до 30 мг/л витамина. Бактерии плохо переносят перемешивание. Применение уплотняющих агентов (агар, крахмал), предотвращающих оседание бактерий, а также использование высокоанаэробных условий и автоматического поддержания рН позволяет получить наиболее высокий выход витамина -- 58 мг/л.

Из культуральной жидкости витамин В12 выделяют экстракцией органическими растворителями, ионообменной хроматографией с послецующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. Усовершенствование технологического процесса идет в направлении удешевления компонентов питательных сред (замена глюкозы сульфитными щелоками) и перехода с периодического культивирования на непрерывный процесс. В последние годы исследуется возможность получения витамина с использованием иммобилизованных клеток пропионовокислых бактерий.

Для нужд животноводства сотрудниками Института биохимии им. А.Н. Баха РАН разработана более простая и дешевая технология получения витамина В,2, в создание которой большой вклад внесли работы В.Н.Букина, В.Я. Быховского, И.С. Логоткина, Е.С. Панцхавы и др.

По указанной технологии ферментацию осуществляет сложный биоценоз термофильных микроорганизмов, производящих метановое брожение. Комплекс микроорганизмов включает целлю-лозоразлагающие, углеводсбраживающие, аммонифицирующие, сульфитвосстанавливающие и метанообразующие бактерии. На первой фазе процесса (10 -- 12 дней) развиваются термофильные углеводсбраживающие и аммонифицирующие бактерии. При этом в слабокислой среде (рН 5,0 -- 7,0) органические соединения превращаются в жирные кислоты и аммиак. На второй фазе, когда среду подщелачивают до рН 8,5, в биоценозе преобладают метанообразующие бактерии, которые сбраживают возникающие на первой фазе продукты до метана и диоксида углерода. Именно метанообразующие бактерии -- главные продуценты витамина. Обогащение сред очищенными культурами метанообразующих бактерий увеличивает выход активных форм витамина В)2.

Источником углерода в питательной среде служит ацетонобутиловая и спиртовая барда, которую представляют заводы, перерабатывающие зерно и мелассу. Для оптимизации питательной среды в нее добавляют соединения кобальта (хлорид кобальта -- 4 г/м3), который входит в состав молекулы витамина В12, и субстраты для роста метанообразующих бактерий -- низшие жирные кислоты и низшие спирты, что позволяет значительно повысить выход витамина.

Подготовленное сырье освобождают в декантаторе от взвешенных частиц и непрерывно подают в нижнюю часть ферментера (метантенка) емкостью 4200 м3. Одновременно в ферментер поступает посевной материал культуры микроорганизмов, предварительно выращенный в специальных аппаратах. Для выращивания продуцента требуются облигатно анаэробные условия, ибо даже следы кислорода подавляют рост бактерий. При создании анаэробных условий в среду подают диоксид углерода или газы, выделяющиеся в процессе ферментации. Ежедневно из метантенка отбирают 25 --30 % объема среды. Продукт ферментации стабилизируют, подкисляя соляной или фосфорной кислотой до рН 6,3 -- 6,5 и добавляя 0,2 -- 0,25 % сульфита натрия, что предотвращает разрушение витамина при тепловой обработке, особенно существенное в щелочной среде. В дальнейшем отобранная часть культуральной жидкости дегазируется, упаривается в вакууме; концентрат высушивается в распылительной сушилке до влажности 10--15 % и смешивается с наполнителями. Готовый кормовой препарат, имеющий коммерческое название КМВ-12 (концентратмикробный витамин), содержит, кроме витамина В,2 (2,5 %), витамины Вь В2, Вб, пантотеновую кислоту, фолиевую кислоту, биотин, незаменимые аминокислоты.

Процесс промышленного получения витамина В,2 -- пример безотходной и экологически чистой технологии. Сырьем для ее реализации служат массовые отходы, а конечными продуктами -- биогаз (65 % метана, 30 % диоксида углерода), использующийся как топливо, и биомасса метановых бактерий -- источник биологически активных соединений, активирующих, например, рост молочнокислых бактерий.

Витамины -- объекты международной торговли. Так, витамин В]2 российского производства экспортируют в Польшу, Германию, Чехию, Словакию и другие страны.

Получение р-каротина и витамина D2. Важное место в обмене веществ у животных занимает р-каротин, который в печени превращается в витамин А (ретинол). В организме человека и животных каротины не образуются. Основные источники р-каротина для животных -- растительные корма; человек получает р-каротин также из продуктов животного происхождения. р-Каротин можно выделить из ряда растительных объектов -- моркови, тыквы, облепихи, люцерны. В начале 60-х годов XX в. разработана схема микробиологического синтеза р-каротина, которая стала основой промышленного способа его получения. Установлено, что многие микроорганизмы -- фототрофные бактерии, актиномицеты, плесневые грибы, дрожжи -- синтезируют каротин. Характерно, что содержание р-каротина у микроорганизмов во много раз превышает содержание этого провитамина у растений. Так, в 1 г моркови присутствует всего 60 мкг р-каротина, в то время как в 1 г биомассы гриба Blaneslea trispora -- 3 -- 8 тыс. мкг. Разработаны опытные установки как периодического, так и непрерывного действия для синтеза р-каротина, основной недостаток которых -- высокая стоимость сырья и большая длительность процесса.

Микробиологическим способом получают и витамин D2 (эрго-кальциферол), при производстве которого освоено дешевое сырье (углеводороды) и установлен стимулирующий эффект ультрафиолетовых лучей на синтез эргостерина культурой дрожжей.

Витамин В3 (пантотеновая кислота)

В основном в условиях промышленного производства пантотеновую кислоту получают методом химического синтеза. Наиболее важной коферментной формой витамина В3 является кофермент ацетилирования (КоА). Способностью продуцировать в значительных количествах КоА обладают многие микроорганизмы, в частности актиномицеты. Активно внедряются в промышленное производство способы получения пантотеновой кислоты и ее структурных компонентов из р-аланина и пантотеата калия с помощью иммобилизованных клеток бактерий, а также достигнуты существенные успехи при получении КоА с использованием мутантных штаммов Brevibacterium ammoniagenes, которые позволяют получать КоА в количестве до 3 г на литр.

Витамин РР (никотиновая кислота)

Одним из наиболее распространенных биотехнологических способов получения коферментной формы никотиновой кислоты -- никотинамидадениндинуклеотида (НАД) является выделение (экстракция) его из микроорганизмов, как правило, из пекарских дрожжей. Для повышения содержания НАД в дрожжевых клетках культивирование проводят на средах с предшественниками синтеза никотиновой кислоты. Так, при добавлении в среды культивирования аденина или самой никотиновой кислоты получают до 12 мг НАД на 1 г клеток (по сухой массе). Использование мутантных штаммов Brevibacterium ammoniagenes с одновременным изменением проницаемости мембраны клеток микроорганизмов (коферменты через биомембраны не проникают) с помощью поверхностно-активных соединений (цетилсульфата натрия, цетилпи-ридина хлорида) позволяет получать НАД до 6 г/л.

Аскорбиновая кислота (витамин С)

Аскорбиновая кислота в мировом промышленном производстве витаминной продукции в целом занимает наибольшую долю -- около 40 тыс. т в год. Ее синтез был разработан швейцарскими учеными А. Грюсснером и С. Рейхштейном в 1934 г. и используется до настоящего времени. Синтез аскорбиновой кислоты является многостадийным химическим процессом, в котором только одна стадия представлена биотрансформацией. Эта стадия трансформации d-сорбита в L-сорбозу при участии ацетатных бактерий. Для получения сорбозы используют глубинную ферментацию, когда культуру продуцента Gluconobacter oxydans выращивают в ферментерах периодического режима с мешалкой и барботером для усиления аэрации и массообмена в течение 20 -- 40 ч с результатом по выходу сорбозы до 98% исходного количества сорбита в среде. Обычно для достижения такого высокого выхода целевого продукта в питательную среду вносят кукурузный или дрожжевой экстракт в количестве около 20%. По окончании ферментации сорбозу выделяют из культураль-ой жидкости. Помимо оптимизации среды можно совершенствовать и технологическую аппаратуру. Например, переход от периодического культивирования продуцента Gluconobacter oxydans к непрерывному в аппарате колоночного типа увеличивает скорость образования сорбозы в 1,7 раз.

В настоящее время широкое использование биотехнологических процессов позволяет совершенствовать синтез аскорбиновой кислоты, сокращая многоэтапные и дорогие химические стадии. Например, синтез витамина С осуществляют енолизацией его важнейшего промежуточного продукта -- 2-кето-Ь-гулоно-вой кислоты, которую, в свою очередь, получают методом двухстадийного микробиологического синтеза, состоящего из окисления d-глюкозы в 2,5-дикето-й-глюконовую кислоту (2,5-ДКДГК) и биотрансформации последней в 2-кето-Ь-гулоновую кислоту (2-КГК).

Основными продуктивными микроорганизмами, обеспечивающими процессы окисления d-глюкозы в 2,5-ДКДГК и восстановление последней до 2-КГК, являются мутантные штаммы Erwinia punctata и Corynebacterium sp., при использовании которых выход целевого продукта составляет около 90 % количества глюкозы.

Однако данная технология имеет существенные недостатки, так как при совместном культивировании продуцентов происходит ингибирование синтеза 2-КГК. Поэтому культуральную жидкость после выращивания продуцента 2,5-ДКДГК стерилизуют, применяя поверхностно-активные вещества (ПАВ), что позволяет значительно сократить потери при получении гулоновой кислоты.

Существует и другой биотехнологический способ получения гулоновой кислоты, основанный на синтезе этого продукта штаммом микроорганизмов рода Gluconobacter из сорбозы, производство которой имеет высокую рентабельность. Способность к синтезу целевого продукта обусловлено наличием у этого микроорганизма видоспецифических дегидрогеназ.

Витамин D (кальциферол)

Впервые кальциферол был выделен из рыбьего жира в 1936 г. А. Виндаусом и применен при лечении рахита. Он получил название витамина D3, так как ранее из растительных масел был выделен эргостерин под названием витамин D|, при облучении которого получили витамин D2 -- эргокальциферол (кальциферол -- в переводе «несущий кальций»).

В настоящее время кальциферол производят из эргостерина с применением УФ-облучения биотехнологическим методом. В процессе преобразования эргостерина в эргокальциферол принимают участие микроорганизмы. Особенно богаты эргостерином клетки дрожжей всех видов и плесневые грибы. В сухой биомассе дрожжей содержится 5--10% эргостерина.

В качестве промышленного источника эргостерина используют дрожжи Saccharomyces cerevisiae вследствие высокого содержания в них эргостерина. В анаэробных условиях культивирования происходит накопление в клетках дрожжей сквалена (предшественника эргостерина). Индукция синтеза эргостерина начинается при строго определенной концентрации кислорода от 0,03 до 2%. При этом среда должна содержать избыток углеводов и малое количество азота. По окончании процесса спиртового брожения дрожжи отделяют от барды и вносят в питательную среду необходимое количество источников углерода, азота и фосфора. Ферментацию ведут в аэробных условиях 12 -- 20 ч, по окончании которой клетки дрожжей отделяют от культуральной жидкости, добавляют антиоксиданты и сушат. Обычно в такой биомассе содержание эргостерина достигает 1,5%.

При дальнейшем УФ-облучении эргостерина получают витамин D2, который либо используется как пищевая добавка, либо подвергается дальнейшей обработке с целью получения кристаллического витамина D2.

При получении эргостерина из дрожжеподобных грибов рода Candida сухую массу грибов экстрагируют петролейным эфиром для извлечения остаточных углеводородов. Полученная таким образом липидная фракция называется «микробный жир» и является побочным продуктом микробиологической промышленности. Эта фракция может быть использована как источник не только эргостерина, но и убихинона, а также других жирорастворимых соединений. Для грибов рода Candida характерно, что при переходе от периодического культивирования на углеводородах к непрерывному в клетках сохраняются как уровень образования стери-нов, так и относительное содержание в них эргостерина.

Витамин А (ретинол)

Витамин А -- циклический, непредельный одноатомный спирт, образуемый в слизистой кишечника и печени из провитаминов: а-, (}- и у-каротинов (наибольшей активностью обладает р-каротин, так как образует две молекулы ретинола; другие -- только одну) под воздействием фермента каротиноксидазы. Каротиноиды -- широко распространенная группа природных пигментов, образуемых высшими растениями, водорослями и некоторыми микроорганизмами. У животных эти пигменты не образуются, а поступают с продуктами питания и служат источником витамина А.

Получение р-каротина осуществляется химическим и микробиологическим (с использованием штаммов мицелиальных грибов Blakslea trispora) методами. В настоящее время химический синтез ji-каротина более рентабелен. Микробиологический метод получения р-каротина многостадиен и требует использования достаточно сложной по составу и дорогой кукурузно-соевой среды с растительными маслами, ПАВ и специальными стимуляторами. Разнополые штаммы выращивают сначала отдельно, затем -- совместно в ферментере в течение 6 -- 7 сут при интенсивной аэрации и 26 °С. Если из измельченного мицелия экстрагировать (J-ка-ротин подсолнечным маслом, то можно использовать его в виде масляных растворов. Применяя экстракцию органическим растворителем с последующей кристаллизацией, получают (5-каротин в кристаллическом виде.

Использование отходов крахмало-паточного производства -- кукурузного экстракта и зеленой патоки позволяет снизить себестоимость получаемой продукции, а применение в качестве источника углерода целлобиозы, образующейся при утилизации отходов целлюлозы, позволяет в несколько раз увеличить синтез каротиноидов у штаммов культуры Blakslea trispora.

Убихиноны (коферменты Q)

Убихиноны в последнее время вызывают интерес как перспективные лечебные препараты. С одной стороны, они синтезируются в организме животных и человека, делая необязательным их поступление с пищевыми продуктами, что отличает их от группы витаминов.

С другой стороны, недостаток убихинонов ведет к нарушениям в обменных процессах, характерных для проявлений недостаточности витаминов групп В и К. Убихиноны являются регуляторами тканевого дыхания, окислительного фосфолирирования в цепи транспорта электронов и за счет высокой специфичности проявляют свой регуляторный эффект.

С практической стороны наибольший интерес вызывают высшие гомологи: убихинон-9 (KoQ9) и убихинон-10 (КоОю). Убихи-нон-10 является коферментом организма человека, вследствие чего на его основе создан лекарственный препарат Ubichynon composi-tum, проявляющий общетонизирующее, антиоксидантное и иммуностимулирующее действие.

В производстве убихинонов применяются биотехнологические методы, в основе которых лежит экстракция KoQ из биологического материала. В промышленном производстве убихинонов в качестве субстрата используются как растительные ткани (каллус риса или опухолевые ткани Carthamus tinctorius), так и микроорганизмы с высоким содержанием убихинонов, например дрожжи Cryptococcus curvatus и грибы Candida maltosa.

В настоящее время используется биотехнология получения уби-хинона-9 и эргостерина из микробных липидов, являющихся побочным продуктом крупного производства белково-витаминного концентрата при выращивании грибов Candida maltosa.

Установлено, что биомасса уксуснокислых бактерий (GIuco-nobacter oxydans), которые используются в производстве аскорбиновой кислоты на этапе окисления d-сорбита в L-сорбозу, содержит значительное количество KoQ,n без примеси его гомологов. Причем, с одной стороны, эта биомасса является отходом производства аскорбиновой кислоты, с другой стороны, штаммы Gluconobacter oxydans в биомассе характеризуются наибольшей окислительной активностью по сорбиту. Этот уникальный факт позволил разработать и внедрить совместную технологию получения L-сорбозы и экстракции убихинона-10 из отсепарированной биомассы с последующей очисткой и с выходом целевого продукта до 85 %.

Подобные документы

    История витаминов, их основные химические свойства и структура, жизненная необходимость для нормальной жизнедеятельности организма. Понятие недостатка витаминов, сущность гипоавитаминоза и его лечение. Содержание витаминов в различных пищевых продуктах.

    реферат , добавлен 15.11.2010

    Открытие витаминов. Голландский врач Христиан Эйкман. Биохимик Карл Петер Хенрик Дам. Установление структуры и синтеза каждого витамина. Исследование роли витаминов в организме. Артур Харден. Применение синтетических витаминов. Сбалансированное питание.

    реферат , добавлен 07.06.2008

    Классификация витаминов, их содержание в продуктах. Необходимость низкомолекулярных органических соединений с высокой биологической активностью для нормальной жизнедеятельности. Особенности витаминов различных групп, их применение и действие на организм.

    презентация , добавлен 16.11.2013

    История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.

    презентация , добавлен 24.10.2012

    Анализ участия витаминов в обеспечении процессов жизнедеятельности организма. Изучение особенностей жирорастворимых и водорастворимых витаминов. Клинико-фармакологическая классификация. Содержание витаминов в продуктах. Описания причин гиповитаминоза.

    презентация , добавлен 21.10.2013

    Производство продуктов микробного синтеза первой и второй фазы, аминокислот, органических кислот, витаминов. Крупномасштабное производство антибиотиков. Производство спиртов и полиолов. Основные типы биопроцессов. Метаболическая инженерия растений.

    курсовая работа , добавлен 22.12.2013

    Физиологическое значение витаминов, их классификация, пути поступления в организм человека. Ассимиляция и диссимиляция витаминов, их способность регулировать течение химических реакций в организме. Особенности жирорастворимых и водорастворимых витаминов.

    реферат , добавлен 24.07.2010

    История открытия и изучения витаминов. Понятие о витаминах, и их значении в организме, понятие об авитаминозах, гипо- и гипервитаминозах. Классификация витаминов; жирорастворимые и водорастворимые витамины. Определение содержания витаминов в веществах.

    курсовая работа , добавлен 19.02.2010

    Витамины как один из факторов питания человека. Биологическая роль витаминов. Номенклатура и классификация витаминов. Понятие рекомендуемой суточной нормы. Понятие гипо-, гипер- и авитаминоза. Характеристика жирорастворимых и водорастворимых витаминов.

    реферат , добавлен 27.05.2015

    Ферменты: история их открытия, свойства, классификация. Сущность витаминов, их роль в жизни человека. Физиологическое значение витаминов в процессе обмена веществ. Гормоны - специфические вещества, которые регулируют развитие и функционирование организма.


В нашем лексиконе есть понятие «зимне-весенний авитаминоз». Однако недостаток витаминов подстерегает нас не только с декабря по май. Мы продолжаем вечно актуальный разговор об этих незаменимых веществах и предоставляем слово специалисту - заведующей лабораторией витаминов и минеральных веществ Института питания РАМН, доктору биологических наук, профессору Вере Митрофановне Коденцовой.

Обычно люди полагают, что пора принимать витамины, когда чувствуют слабость, быстро устают, часто болеют. Как еще может проявляться недостаток этих веществ в организме?

Некоторые наиболее часто встречающиеся неспецифические клинические проявления недостаточности витаминов приведены в таблице. Они систематизированы согласно общепринятому описанию статуса больного: состояние кожи, волос, системы пищеварения, костно-мышечной системы и т.д., а также субъективной оценки состояния человека. Иногда клинические признаки недостаточности того или иного витамина очень трудно различить. Эти признаки рассматривают в совокупности.

Кроме того, на практике чаще встречаются полигиповитаминозы, то есть состояния, при которых организм испытывает недостаток одновременно в нескольких витаминах.

Важно помнить, что не все эти симптомы являются следствием только дефицита витаминов. Иногда эти признаки указывают на развитие серьезного заболевания, поэтому правильнее своевременно обратиться к врач. Самолечением заниматься нельзя.

Какие витамины и сколько

Определить физиологическую потребность в витаминах - непростое дело. Есть данные по ситуациям, при которых люди были вообще лишены витаминов (например, во время блокады Ленинграда). Клинические признаки авитаминозов и гиповитаминозов хорошо известны (см. таблицу). Можно определить, при каком уровне поступления витаминов эти признаки исчезают. Поступление витаминов рассчитывают по таблицам, зная, что человек съел за определенный период.

Исследуют состояние людей и не в таких экстремальных ситуациях. Изучают самочувствие, заболеваемость, уровень потребления витаминов и другие показатели. Иногда к этому привлекают добровольцев. Подобных исследований проведено очень много и у нас, и в других странах.

Для определения потребности в витаминах врачи изучали психофизиологические данные и показатели самочувствия (утомляемость, работоспособность и т.д.). У детей проверяли даже такие показатели, как когнитивные функции, то есть обучаемость. У ребят при нормальном питании повышается концентрация внимания, они лучше запоминают информацию.

Качество и количество витаминов в продуктах питания

Для расчетов фактического потребления витаминов используют таблицы, в которых указано содержание нутриентов (в том числе и витаминов) в пищевых продуктах. Но это содержание зависит от многих факторов: где росло растение, сколько оно хранилось, и других. Однако в гораздо большей степени оно зависит от самого продукта. Различия в содержании витаминов между указанным в таблицах и измеренным составляют проценты, иногда десятки процентов, но содержание витамина не может уменьшиться в несколько раз. В тех случаях, когда витамин плохо сохраняется (например, аскорбиновая кислота в картофеле, овощах и фруктах), это известно, и на это делается поправка.

Таблицы содержания витаминов составлены и для готовых блюд. Но ведь хозяйки могут варить борщ или жарить картофель не по тому рецепту, для которого определяли потери витаминов. Кто-то предпочитает, чтобы картошка была совсем мягкая, а кому-то хочется, чтобы она была потверже. Содержание витаминов при разных способах приготовления пищи сильно различаются, однако таблицы это учитывают. Потери отдельных витаминов при длительной готовке иногда составляют 50% и более.

Самые нужные витамины

Авитаминозов - полного истощения витаминных запасов организма - в нашей стране не бывает. Встречаются гиповитаминозы - снижение витаминной обеспеченности. Сезонность здесь наблюдается по витамину С, фолиевой кислоте (ее источник - листовые овощи) и каротиноидам (окрашенные в желтый, оранжевый, красный, иногда и в зеленый цвет овощи и фрукты). Их дефицит усиливается после зимы. Что касается других витаминов (особенно группы В), то их многим людям не хватает круглый год.

Если сравнивать обеспеченность витаминами за последние годы, то можно сказать, что снизился дефицит по витамину С. Наверное, уже все знают, что он содержится во фруктах и овощах. Поскольку в торговой сети круглый год продаются свежие овощи и фрукты (в том числе цитрусовые), частота выявляемого С-гиповитаминоза снизилась с 60-80% до 10- 30%. В нашей стране население хорошо обеспечено витаминами А и Е. Однако по витаминам группы В дефицит большой, в разных группах населения он наблюдается у 50-80% обследованных. Не хватает так же каротиноидов, витамина D. Часто недостаток витаминов сочетается с недостатком некоторых элементов: кальция, йода и железа.

Причина в том, что качественных молочных продуктов, каш и хлеба грубого помола в России стали употреблять гораздо меньше. Сказывается на состоянии здоровья также обилие кондитерских изделий, которые можно купить на каждом углу. Кондитерские изделия содержат мало витаминов, а в основном жир, сахар.

Нужный витамин D

Недавно проведенные в Калифорнии исследования показали его недостаток у части местных жителей. Что уж говорить о нашей стране. Зимой день короткий, часто бывает пасмурно, открыто только лицо, так что витамина D синтезируется очень мало. Основной его источник - пища. Раньше детям давали рыбий жир. Сейчас его можно пить в капсулах, это очень удобно. Или есть больше морской рыбы. Почитайте наш подробный гид по витамину D.

Из чего делают витамины

Экстракцией из природного сырья получают иногда витамин Е (различные растительные масла), D (рыбий жир) и каротиноиды (экстракты водорослей, цветков). Небольшую часть, например витамин В12, производят с помощью микробного синтеза. В основном же витамины получают химическим синтезом, при этом они абсолютно идентичны природным аналогам.

рыбий жир зожник

Может ли навредить избыток витаминов

Понятие переизбыток (гипервитаминоз) применимо только в отношении четырех жирорастворимых витаминов: A, D, E и K. Но и их передозировка возможна, только если превысить профилактическую дозу в десятки и даже сотни раз. Во всех остальных случаях «лишние» водорастворимые витамины свободно выводятся из организма вместе с мочой. Поэтому внимательно читайте инструкцию и принимайте витамины строго в указанной дозировке, а так же подробный гид Зожника по витаминам.

Аллергии при приеме поливитаминов

В подавляющем большинстве случаев аллергию вызывают не витамины, а вспомогательные вещества, которые используются в производстве поливитаминных комплексов, - ароматизаторы, красители, консерванты и прочие добавки. Такие реакции могут возникнуть и при парентеральном (в виде уколов) применении витаминов в больших дозах.

Как и как долго нужно пить витамины

Если долго принимать один и тот же витаминный комплекс, его эффективность не уменьшается, поэтому часто менять витаминные комплексы не обязательно. Лучше использовать витамины постоянно и в виде комплексов, включающих минеральные вещества.

По материалам журнала «Химия и Жизнь» и «Популярная механика»

Здесь хотят продать...

На сегодняшний день все витаминные комплексы согласно маркетинговым нормам разделены на две части: живые и синтетические. На самом деле они все синтетические, но это продаётся плохо. Поэтому лучше для продавца, если что-то на фоне чего-то станет более «природным».

Короче, на витамины сейчас подсадили всех. Но если раньше выбор у нас был только «Ундевит» или «Гексавит», то сейчас всё намного мощнее, красивее и загадочнее.

Итак, в продаже есть следующее:

  1. классические поливитаминные комплексы (Алфавит, Витрум, Мульти-табс, Супрадин и прочие) – химия без заморочек на экологию.
  2. поливитаминные комплексы на пищевой основе (Rainbow Light, Once Daily и прочие) – тоже химия, но с претензией на кошерность.
  3. отдельные витамины – тоже химия, но в моноварианте.

Разбираемся…

  • Натуральные витамины – это только те, что содержатся в сырых (варёных) овощах и фруктах.
  • Синтетические витамины – это выжимка полезных микроэлементов из этих самых овощей и фруктов.

Химические витамины полностью идентичны своим натуральным собратьям, и в некоторых случаях усваиваются организмом даже лучше. Однако принято считать, что натуральное усваивается на 90%, а синтетика всего на 15-20%. Кем это и когда «принято» не понятно, но убеждение существует и процветает.

Отсюда и все проблемы с витаминными комплексами.

Как создают витамины

Весь процесс проходит при температуре минус 40, что позволяет сохранять все витамины и минеральные вещества в целости и сохранности.

На первом этапе витамины выделяются из природных источников.

  • Витамин С - из глюкозы (природного сахара).
  • Витамин Р - из кожуры цитрусовых или черноплодной рябины.
  • Витамины В2 и В12 получают путём синтеза микроорганизмов, собственно так, как происходит естественно.

Почему выделяются, а не делаются «с нуля». Потому что, как ни странно, так дешевле. Дешевле взять лимон и выделить из кожуры натуральное соединение, чем сидеть в лаборатории и создавать по молекуле что-то похожее. Нет, можно, конечно, но очень дорого.

Поэтому на сегодняшний день основной способ производства витаминов – это переработка животного и растительного сырья . Микроэлементы извлекаются без разрушения их природных связей, что позволяет сохранять коллоидную структуру молекулы. Это даёт не просто «выжимку» нужного витамина, это даёт именно то соединение, которое необходимо.

Идентично разборке на запчасти радуги. Разложили луч на цвета и взяли оттуда именно красный. Не алый, не пурпурный, не рыжий, не серо-малиновый-в-крапинку, а именно красный.

В процессе дегидрации (обезвоживания) убираются из сырья влага и растительные волокна. После чего получается готовый продукт, содержащий в себе все полезные вещества в сухом виде без ухудшения полезных качеств микроэлементов.

На втором этапе полученный витамин делают более химически-активным. Для этого к нему добавляют другие вещества.

Например, в витамин С, помимо аскорбиновой кислоты, добавляются биофлавоноиды, рутин, тирозиназа, аскорбиноген и прочее. Всё это подбирается в определенной пропорции. Благодаря этому синтетический витамин часто усваивается лучше, чем его натуральный собрат.

На третьем этапе создаётся оболочка, сохраняющая витамин от преждевременного разрушения. Это делается для того, чтобы витамины не вступали в реакцию между собой и максимально усваивались организмом. Когда Вы проглатываете таблетку, она растворяется в желудке, а затем в кишечнике постепенно, тем самым витамины и микроэлементы практически не конфликтуют друг с другом.

Можно ли обойтись без синтетических витаминов?
Да, можно.

  • Например, если Вы будете выпивать в день 3-4 литра свежевыжатого яблочного сока или съедать 2-4 килограмма апельсинов, то полностью покроете своё норму в витамине С.
  • А чтобы получить всю норму витаминов группы В, придётся внести в дневной рацион порядка килограмма чёрного хлеба.

Кстати, когда пишут, что гречка или пшёнка содержат на 100 грамм чего-то в каком-то количестве, то нагло врут как минимум дважды. В первый раз, говоря о сыром продукте (а при варке больше половины витаминов разрушится). А второй раз, забывая, что мерили одну гречку, а на столе у Вас совершенно другая (из другого региона, другой обработки, с другого поля, другого сорта). Поэтому оглашённые и реальные цифры будут сильно разниться.

Практика сегодняшнего дня показывает, что витаминов и минералов за последние 30 лет в овощах и фруктах уменьшилось на 50-60%. И эти цифры продолжают увеличиваться. Что приводит нас к грустной мысли, что таблички содержания витаминов в продуктах требуют кардинального пересмотра. Но делать это некому, и поэтому лучше смотреть на таблички с нормативами.

Там, правда, тоже всё не айс и разные страны рекомендую разные нормы витаминов в день. Но это уже мелочи жизни. Главное, выбрать истинный первоисточник лично для себя и придерживаться его достаточно длительное время.

Ещё тонкость, касательная первопродуктов…
Растения, знаете ли, не очень любят, когда их едят. Точнее, они это дело совершенно не приветствуют, так как тоже хотят жить подольше. Но поскольку убежать от нападения растения не могут, они защищаются – насколько в их силах, конечно. Некоторые особо продвинутые особи приобретают ядовитость, способную вызывать остановку сердца, а от некоторых отделаешься простым поносом.

Но дело даже не в этом. Дело в том, что клеточная оболочка растений такова, что с трудом поддаётся перевариванию. И так как мы не коровы и у нас нет 4-х желудков, то клетчатка маршрутом «Транзит-Сапсан-Красная стрела» прямиком и без особых задержек входит через одно место, а выходит через другое. И вместе с этой непереработанной клетчаткой сливаются в туалет и все натуральные витамины.

В этом плане синтетический вариант хорош отсутствием неперевариваемой клетчатки и радует наличием дополнительных биозаморочек, с помощью которых микроэлементы всё-таки попадают в наши клетки.

Теперь более подробно пройдёмся по плюсам и минусам каждого комплекса витаминов.

КЛАССИЧЕСКИЕ БАЗОВЫЕ МУЛЬТИВИТАМИНЫ

Что это: синтетические витамины, обычно в таблетках, обычно в комплектации «всё-в-одном». Содержание витаминов в таблетке стремится к 100% рекомендуемой суточной дозы.
Плюсы:

  • всё в одном
  • одна таблетка в день (правда, сейчас уже стараются сделать по 2-3 таблетки в день).

Минусы:

  • употребление всей дозы витаминов за 1 раз

Лучше разделить это дело на 2-3 приёма, так организм будет качественнее использовать микроэлементы для работы.

  • Минеральные вещества в таких комплексах если и присутствуют, то часто не дотягивают до необходимого уровня. Например, суточная норма кальция 1000-1200 мг, такая таблетка стала бы слишком большой и неудобной к употреблению.
  • Обычно витаминные комплексы гипоаллергенны, но вероятен вариант, что лично у Вас что-то пойдёт не так. И в этом, скорее всего, будет виноват не производитель, а именно Ваш организм, который не может усвоить какой-то элемент в большом количестве сразу. И ещё, аллергия скорее всего у Вас будет не на дозу витамина, а на его оболочку (в ней используются красители). Решение вопроса – сменить производителя.
  • Нужно тщательно выбирать производителя (практика показала, что бренды пишут на этикетки одни цифры, а по факту в таблетке находятся другие).

МУЛЬТИВИТАМИНЫ НА ПИЩЕВОЙ ОСНОВЕ

Что это: витамины и минеральные вещества здесь соединены с цельными продуктами, перемолотыми в порошок. Обычно это овощи или фрукты. Считается, что так витамины усваиваются лучше.
Плюсы:

  • можно есть таблетки и капсулы на голодный желудок (классические комплексы принимают только с едой)
  • считается, что эти штуки менее аллергенны и меньше раздражают желудок.

Минусы:

  • цена (она на порядок выше, особенно взлетает вверх при упоминании «вегетарианской капсулы»).

Что надо знать об этих штуках:

  • Внутри вегетарианских капсул находятся всё те же самые невегетарианские синтетические витамины, что и в классическом варианте
  • Все красивые слова о «пищевой основе» - это лишь дополнительный маркетинговый ход, эксплуатирующий идею экологичности и кошерности

МОНОПРЕПАРАТЫ

Плюсы:

  • низкая цена (так как внутри только один микроэлемент)
  • эффективность всасывания вещества организмом (препарату ничто не мешает усвоиться)

Минусы:

  • решают проблему только 1-2 микроэлементов

Что надо знать об этих штуках:

  • Хороши в том случае, если есть явный провал в чём-то одном. Например, надо дополнительно увеличить дозировку кальция. Когда же речь идёт о ряде витаминов, то лучше выбрать мультиверсию.

КАК ВЫБРАТЬ СВОЙ КОМПЛЕКС ВИТАМИНОВ

  1. Если провал в чём-то одном – выбирайте моновариант. Если необходимо обеспечить комплексную профилактику, то лучше мультикомплексы.
  2. Дозировка 1 таблетка (капсула) в день не позволит полностью использовать потенциал витаминов. Дозировка 3 таблетки в день предпочтительнее, так как у производителя есть возможность дополнительно разнести спорные витамины по разным таблеткам. Кроме того, водорастворимые витамины выводятся из организма в течение двух часов, поэтому, чем чаще и мельче дозы, тем больше пользы от таблеток.
  3. Ищите для препарата полную разблюдовку состава (какие дозы и чего в нём содержатся). Обязательно сравнивайте её с сегодняшними нормативами для витаминов.
  4. Подбирайте витамины исходя из своего возраста, пола, жизненной активности. Для тяжёлых тренировок и марафонов нужны витамины в увеличенной дозировке.
  5. Учитываем серьёзность производителя. Откровенно дешёвые препараты лучше не брать.

И, наконец, последнее и самое важное – постарайтесь крайне вяло реагировать на следующие фразы:

  • содержит гендерно-специфические смеси;
  • комплексная система оптимизации питательных веществ;
  • натуральные витамины;
  • аминокислоты свободной формы;
  • растительные экстракты;
  • питательные кофакторы;
  • фруктовый и овощной фито-комплекс;
  • легко проглатываются и лучше переносятся желудком и кишечником;
  • без добавления красителей;
  • без искусственных ароматизаторов;
  • без консервантов;
  • без дрожжей;
  • сильнодействующие витамины и минералы;
  • быстродействующие пробиотики;
  • ферменты растительного происхождения;
  • сырая добавка на основе цельного пищевого продукта;
  • живые пробиотики и ферменты;
  • 23 органически выращенных фрукта и овоща;
  • не содержит связующих веществ и наполнителей;
  • кошерный;
  • подтверждено отсутствие ГМО;
  • не содержит глютена;
  • вегетарианский;
  • пищевая добавка из цельного продукта;
  • сырой витамин;
  • изготовлен без использования высоких температур, синтетических связующих веществ, наполнителей, искусственных ароматизаторов, подсластителей, красителей или добавок.;
  • подтверждено независимой третьей стороной.

Все эти фразы – это МАРКЕТИНГ!
Любой мильтивитаминный комплекс зарекомендовавшей себя фирмы СООТВЕТСТВУЕТ каждому вышеперечисленному пункту. Иначе этот препарат бы не продавался в аптеке.

В следующий раз рассматриваем этикетки, и, может быть, уже сравним несколько поливитаминных комплексов и производителей витаминов между собой.

Загрузка...